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Abstract— A hierarchical inner-outer loop-based controller is
proposed to solve the trajectory tracking problem of a small
unmanned helicopter. The outer loop employs model predictive
controller to track the reference trajectory, while the inner
loop controller is designed by means of backstepping techniques
that allow the stabilization of the attitude. The obtained control
method takes advantage of both controllers and it is simple and
easy to implement and tune in future real flight test. Finally, the
computer simulations are conducted to illustrate the tracking
performance of the proposed control method.

I. INTRODUCTION

Since the last decades, there has been significant interest
in using unmanned helicopters for applications in dealing
with emergency situations, such as an earthquake, flood, an
active volcano, or a nuclear disaster. However, helicopters
are well known to be highly nonlinear systems with signifi-
cant dynamic coupling and inherently unstable characteristic,
therefore design of flying control systems has now become
a very challenging area of research[1].

In recent years, a wide set of control methodologies, from
classical PID control to LQR and H-Infinity control, have
been reported [2,3,4]. These controllers have achieved quite
modest performance: the flight models are limited to hover
and low-speed straight flight, or they lose tracking accuracy
considerably as the speed is increased and maneuvering flight
is attempted. In [5], gain scheduling control is used to obtain
acceptable performance for the full flight envelope. The main
drawback of this approach is the severe trade-off between
control performance and the number of the required trim
points.

In order to overcome the drawbacks of the previous
approaches, a variety of nonlinear flight control techniques
have been developed. Such as feedback linearization [6],
dynamic inversion [7,8], neural networks [9], etc. However,
these controllers are very difficult to implement in real flight.

Model predictive control (MPC) is a form of optimization
algorithm, which computes a future control sequence in a
finite horizon in such a way that the prediction of the plant
output is driven close to the reference [10]. This is accom-
plished by minimizing a cost function which is constructed
based not only on actual state error but also on thefuture be-
havior of the system. To avoid model mismatch and external
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disturbance, only the first control in this sequence is applied
to the plant. Compared with the conventional control which
uses a pre-computed control law, model predictive control
action is obtained on-line. Therefore, the controller will be
more robust and could guide the system more smoothly.

Backstepping (BS) is mainly applicable to systems having
a cascaded or triangular structure. The central idea of the
approach is to recursively design controllers for subsystems
in the structure and ”step back” the feedback signals towards
the contro input [11]. This differs from the conventional
feedback linearization in that it can avoid cancellation of use-
ful nonlinearities in pursuing the objectives of stabilization
and tracking. In addition, by ultilizing the control Lyapunov
function, it also has the flexibility in introducing appropriate
dynamics to make the system behave in a desired manner.
Especially in the flight control problem, in which case,
unlike the traditional control philosophy, it could guarantee
the stability and tracking performance in three channels
simultaneously.

This paper presents a hierarchical inner-outer loop based
flight controller for an unmanned helicopter, which takes ad-
vantage of the decoupling of the nonlinear translational and
rotation dynamics of the rigid body. The outer loop makes
use of model predictive controller to tracks the reference
position, and the inner loop uses backstepping controller to
track the attitude commands. This new method combines the
advantages of both MPC and backstepping, particularly it is
simple, easy to implement and to tune in future flight test.

The organization of this paper is as follows: In Section 2,
an overview of the nonlinear unmanned helicopter model and
the hierarchical control strategy are presented. The predictive
controller for the translational movement is designed in
Section 3. In Section 4, the attitude controller based on
backstepping is developed. The simulation results are given
in Section 5, and Section 6 presents conclusion of this paper.

II. HELICOPTER MODEL AND CONTROL
STRATEGY

A. Helicopter dynamics model

The dynamics of small-scale helicopters can be adequately
described by a set of the rigid body equations. The external
forces f b and torques τ b are applied at the center of mass
with respect to the body frame. m and I ∈ R3×3 respectively
denote the mass and the moment inertial matrix of the model
helicopter. The position and velocity of the helicopter are
given by P i = [x y z]T and V i = [u v w]T respectively
in the inertial frame. The helicopter dynamics are written as
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follows[6]:

Ṗ i = V i (1)
mV̇ i = R(η)f b (2)
η̇ = H(η)ωb (3)

Iω̇b = −ωb × Iωb + τ b (4)

where ωb = [p q r]T represents the helicopter angular rate
vector with respect to its body axes. The Euler angle vector
η = [ϕ θ ψ]T is defined in the roll-pitch-yaw sequence.
Therefore, the helicopter’s rotation matrix from the body axes
to the inertial axes is expressed by

R(η) =




cθcψ sϕsθcψ − cϕsψ cϕsθcψ + sϕsψ

cθsψ sϕsθsψ + cϕcψ cϕsθsψ − sϕcψ

−sθ sϕcθ cϕcθ


(5)

The transformation matrix H(η) is shown as follows:

H(η) =




1 sϕtθ cϕtθ
0 cϕ −sϕ

0 sϕ/cθ cϕ/cθ


 (6)

where c(·), s(·), t(·) are abbreviations for cos(·), sin(·) and
tan(·).

Following the modeling approach of [6], [12], [13], there
are four control inputs associated with helicopter. The control
inputs are defined as U = [TM TT a b]T . The components
TM and TT are the magnitudes of the generated thrusts by
the main and tail rotor, respectively. a and b are longitudinal
and lateral tilt angles of the tip path plane of the main rotor
with respect to the shaft. Denote the thrust vector of the main
and tail rotor by ~TM and ~TT respectively, then

~TM =




XM

YM

ZM


 =



−sacb

casb

−cacb


TM ≈



−a
b
−1


TM (7)

The above equation is simplified by assuming small angle
approximation since the tilt angles a and b are small.

~TT = [0 YT 0]T = [0 − 1 0]T TT (8)

Therefore, the complete force vector is

f b =




XM

YM + YT

ZM


 + RT




0
0

mg


 (9)

We neglect the contribution of TM along the x direction and
we assume that the contribution of TT and the contribution
of TM along the y direction is matched, thus obtained the
following model for f b

f b = [0 0 − TM ]T + RT [0 0 mg]T (10)

Denote ~hM = [xm ym zm]T and ~hT = [xt yt zt]T as the
position vectors of the main and tail rotor shafts respectively,
with respect to the body frame. Then the torques generated
by ~TM and ~TT are τ b

M = ~hM × ~TM and τ b
T = ~hT × ~TT ,

respectively, and the total torques are

τ b = τM + τ b
M + τ b

T (11)

where
τM = [RM MM NM ]T

RM = cmb−QMsacb

MM = cma + QMsbca

NM = −QMcacb

QM = CMT 1.5
M + DM

(12)

In the above equations, cm is a positive constant associated
with the main rotor’s stiffness and QM is the main rotor’s
anti-torque. The positive constants CM and DM are asso-
ciated with the generation of the reaction torque QM . The
equation (11) can be rewritten as

τ b = A(TM )vc + B(TM ) (13)

where vc = (a b TT )T , A(TM ) ∈ R3×3, B(TM ) ∈ R3×1.

B. Control Strategy

This paper presents a hierarchical inner-outer loop based
flight controller for a unmanned helicopter. The outer loop
employs model predictive controller to track the reference
position, and the inner loop uses backstepping controller
to track the attitude commands. The block diagram of the
overall controller is shown in Fig.1.
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Fig. 1. Structure of the inner-outer loop controller

III. TRAJECTORY TRACKING CONTROLLER
DESIGN

From the equations (1), (2), (5) and (10), we could get



ẍ = 1
m (cψsθcϕ + sψsϕ)TM

ÿ = 1
m (sψsθcϕ − cψsϕ)TM

z̈ = g + 1
m (cθcϕ)TM

(14)

We transform the above equations into the following state
space form

ξ̇(t) = f(ξ(t), Fξ(t))

=




u
Fx

TM

m
v

Fy
TM

m
w

g + (cθcϕ)TM

m




(15)

where,

Fx(t) ∆= cψsθcϕ + sψsϕ

Fy(t) ∆= sψsθcϕ − cψsϕ

(16)

ξ(t) = [x(t) u(t) y(t) v(t) z(t) w(t)]T is the state vector
of the system, Fξ(t) is the control input. The objective of
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this paper is to guarantee the helicopter follows a previously
defined reference trajectory with minimum error. However,
due to the fact that the destination coordinates vary in time,
we assume a reference virtual helicopter having the same
mathematical model is placed on the track, i.e.,

ξ̇r(t) = f(ξr(t), Fξr(t)) (17)

where ξr(t) = [xr(t) ur(t) yr(t) vr(t) zr(t) wr(t)]T

and Fξr(t) = [Fxr Fyr TM r]T are the reference states
and control inputs, respectively. Under the assumption that
the helicopter height has been stabilized, we could get the
reference control inputs for the translation movements:

TM r = m · (z̈r − g), Fxr = ẍr·m
TM r

, Fyr = ÿr·m
TM r

By subtracting the reference model (17) from (15), we get
the translation error model

˙̃
ξ(t) = A(t) · ξ̃(t) + B(t) · F̃ξ(t) (18)

Where ξ̃(t) = ξ(t)−ξr(t) is state error, and F̃ξ(t) = Fξ(t)−
Fξr(t) is control error.

Using Euler’s method, a time-variant discrete linear model
is obtained

ξ̃(k + 1) = Ā · ξ̃(k) + B̄(k) · F̃ξ(k) (19)

Following [12], the error model (19) can be split up into
two subsystems: height error and x and y motions error.
Matrices for each subsystem are the following:

Āz =
[

1 ∆t
0 1

]
(20)

B̄z =
[

0
∆t
m cos(θ(k)) cos(ϕ(k))

]
(21)

Āxy =




1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1


 (22)

B̄xy =




0 0
∆t
m TM (k) 0

0 0
0 ∆t

m TM (k)


 (23)

where ∆t is the sampling time. Following the above model,
we consider the height control problem first. Define a cost
function as

Jz = [ˆ̃ξz − ˆ̃
ξzr]

′
Qz[

ˆ̃
ξz − ˆ̃

ξzr]

+[ ˆ̃F ξz − ˆ̃F ξzr]
′
Rz[

ˆ̃F ξz − ˆ̃F ξzr]
(24)

where Qz and Rz are positive weighting matrices, the
predictions of plant output ˆ̃

ξz are computed using (19), (20),
(21)[14]:

ˆ̃
ξz = Pz(k |k ) · ξ̃z(k |k ) + Hz(k |k ) · F̃ξz (25)

where

ˆ̃
ξz

∆=




ξ̃z(k + 1 |k )
...

ξ̃z(k + N2z |k )




ˆ̃F ξz
∆=




F̃ξz(k |k )
...

F̃ξz(k + NFz − 1 |k )




ˆ̃
ξzr

∆=




ξ̃zr(k + 1 |k )− ξ̃zr(k |k )
...

ξ̃zr(k + N2z |k )− ξ̃zr(k |k )




ˆ̃F ξzr
∆=




F̃ξzr(k |k )− F̃ξzr(k − 1 |k )
...

F̃ξzr(k + NFz − 1 |k )− F̃ξzr(k − 1 |k )




Pz(k |k ) ∆=




Āz(k |k )
Āz(k |k )Āz(k + 1 |k )

...
α(k, 0, 2)
α(k, 0, 1)




Hz(k |k ) ∆=


B̄z(k |k ) 0
Āz(k + 1 |k )B̄z(k |k ) B̄z(k + 1 |k )

...
...

α(k, 1, 2)B̄z(k |k ) α(k, 2, 2)B̄z(k + 1 |k )
α(k, 1, 1)B̄z(k |k ) α(k, 2, 1)B̄z(k + 1 |k )

· · · 0
· · · 0
. . .

...
· · · 0
· · · B̄z(k + NFz − 1 |k )




α(k, j, l) ∆=
N2z−l∏

i=j

Āz(k + i |k ), N2z is the cost horizon and

NFz is the control horizon.
Let ∂Jz

/
∂ ˆ̃F ξz = 0, we get the optimal control law in

this horizon as

ˆ̃F ξz = [H
′
zQzHz + Rz]−1 · [H ′

zQz(
ˆ̃
ξzr

−Pz ξ̃z(k)) + Rz
ˆ̃F ξzr]

(26)

At each sampling time k, only ˆ̃F ξz(k |k ) is needed. Then
we obtain the height control signal as

TM (k) = ˆ̃F ξz(k |k ) + TM r(k) (27)

The x and y motion control signal is computed using the
same procedure as the height control, we get

ˆ̃F ξxy = [H
′
xy ·Qxy ·Hxy + Rxy]−1 · [H ′

xy

·Qxy · (ˆ̃ξxyr − Pxy · ξ̃xy(k)) + Rxy · ˆ̃F ξxyr]
(28)
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where ˆ̃F ξxy(k |k ) = [F̃ξx(k) F̃ξy(k)]T , then
[

Fx(k)
Fy(k)

]
=

[
F̃ξx(k)
F̃ξy(k)

]
+

[
Fxr(k)
Fyr(k)

]
(29)

Using equations (16) and (29), the reference roll and pitch
angles are derived as following:

{
ϕd = sin−1(sin(ψd)Fx − cos(ψd)Fy)

θd = Fx−sin(ψd) sin(ϕd)
cos(ψd) cos(ϕd)

The reference yaw angle ψd is set as desired. These reference
angles are needed by the attitude loop.

IV. ATTITUDE CONTROLLER DESIGN

The objective in this section is to design a backstepping
control law vc = (a b TT )T for the rotational dynamics
(3) and (4) to track the desired attitude angles ηd =
[ϕd θd ψd]T . First, define the following control Lyapunov
function:

W1 = 1
2 (η − ηd)T Kη(η − ηd)

where Kη is a positive definite matrix. The reference attitude
angles ηd = [ϕd θd ψd]T is generated by the outer loop. This
gives

Ẇ1 = (Hωb)T Kη η̃

If ωb = ωb
d

∆= −αH−1η̃, where α is a positive scalar, η̃ =
η − ηd, then Ẇ1 ≤ 0. For notational simplicity, we denote
H−1 = γ.

Next, define an error z1
∆= ωb − ωb

d and have another
control Lyapunov function as follows:

W2 = 1
2 (η − ηd)T Kη(η − ηd) + 1

2zT
1 I z1

then,

Ẇ2 = zT
1 (HT Kη η̃ − ωb × Iωb + τ b

+αIγη̇ + αIγ̇η̃) + (Hωb
d)

T Kη η̃

If we make the torque τ b as

τ b = ωb × Iωb − αIγη̇ − αIγ̇η̃ −HT Kη η̃

then Ẇ2 ≤ 0. Substituting the above equation into (13), we
get the attitude control law as

vc = A−1(TM )(τ b −B(TM ))

V. SIMULATION RESULTS

We define the following ascendant helix curve as the
reference trajectory:

Pd =




2 cos(t/3)
2 sin(t/3)
−1− t


 , ψd = 0

The initial conditions of the helicopter are (x, y, z) =
(1.5, 0,−1) m, (ϕ, θ, ψ) = (0, 0, 0.5) rad, the helicopter
parameters follows [15] as:





m = 8.2kg, g = 9.81m
/
s2, xt = −0.91m

I = diag(0.18, 0.34, 0.28)kg ·m2, yt = 0
zt = −0.08m, zm = −0.235m,xm = ym = 0
cm = 52N ·m/rad, DM = 0.6304N ·m
CM = 0.004452m

/√
N

The model predictive controller parameters are adjusted as:




N2z = 5, NFz = 3
Qz = diag(20, 15, · · · , 20, 15) ∈ R10×10

Rz = diag(0.05, · · · , 0.05) ∈ R3×3

N2xy = 10, NFxy = 6
Qxy = diag(5, 15, · · · , 5, 15) ∈ R40×40

Rxy = diag(85, 85, · · · , 85, 85) ∈ R12×12

In order to evaluate the robustness feature of the con-
troller, we assume the persistent wind gusts of magnitudes
1m/s, 1m/s, 0.5m/s are added to the x, y, z directions,
respectively.

The simulation results of the reference tracking under the
perturbations illustrate in Figs 2-6. Figs 2-5 show the heli-
copter can follow the reference trajectory under the proposed
control method. Figs 3 and 5 show that at the beginning
of the disturbances are added to the helicopter, there are
a considerable large deviations in the tracking trajectory,
but they are converged to the desired values quickly. Fig
6 shows the control input signals, they have not exceeded
the constraints of the helicopter.
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VI. CONCLUSIONS

This paper presents a hierarchical inner-outer loop based
flight controller for an unmanned helicopter, which takes
advantage of the decoupling of the nonlinear translational
and rotation dynamics of the rigid body. The outer loop
employs model predictive controller to track the reference
position, and the inner loop uses backstepping controller to
track the attitude commands. This is the main idea of the
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design. The new method combines the advantages of both
MPC and backstepping. Particularly the hierarchical structure
is simple, easy to implement and to tune in future real flight
test.
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