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Abstract— We consider the problem of cooperative control
of unmanned vehicles in an uncertain environment in which
each vehicle can obtain only noisy measurements of the other
vehicles. In particular, we want to establish convergence to a de-
sired formation using a stochastic algorithm with measurement
errors. In this paper, the problem of stabilization of parallel
formations in a self-propelled particle model is considered,
which can be modeled as synchronization on the N -torus in the
presence of noisy measurements of relative phase. Simulations
are included to illustrate the result.

I. INTRODUCTION

The increasing interest in applications of multi-agent au-

tonomous systems such as unmanned air vehicles, mobile

robots, and unmanned underwater vehicles increases the

need for cooperative-control algorithms to address real-world

challenges. A networked multi-vehicle system may have

only limited knowledge of its environment and the states

of the other agents. One such limitation is the issue of

noisy communication links. With imperfect communication,

convergence of a standard consensus algorithm is not guar-

anteed.

A consensus algorithm specifies the interaction between

each agent and its neighbors; consensus occurs when every

agent reaches a common value. There is a rich body of

literature on consensus protocols in Euclidean space in both

continuous time and discrete time, with applications to multi-

agent autonomous systems [6], [7] (see [8], [9] for a review).

In addition, the problem of coordination and consensus

with noisy communication has been addressed using various

approaches. The majorization of a stress function is used

in [3] to develop a distributed coordination algorithm that

stabilizes the shape of a relative sensing network to a desired

formation; robustness of the algorithm against measurement

errors in the relative information of neighboring agents is

established. Robustness of consensus to noise for directed

communication characterized by the H2 norm of the system

is studied in [15]. A stochastic adaptive algorithm approach

is used in [4], [5], in which a stochastic approximation

type algorithm with a decreasing step size is proposed and

convergence results are established with measurement noise.

There have been other works that consider noise-free con-

sensus on non-Euclidean manifolds such as the N -torus [11],
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[12] and the sphere [10]. The problem of synchronization and

global convergence on the N -torus has been studied using

noise-free state iteration by assuming exact data exchange

between the agents [11], [12]. Each agent updates its heading

based on the relative phases of its neighbors on the torus.

The contribution of this paper is to present convergence

analysis in consensus seeking on the N -torus in an uncertain

environment where each agent can only obtain noisy mea-

surements of its neighbors’ relative phases. We study the

behavior of a discrete-time network of N agents moving on

the torus. To deal with the measurement noise, a stochastic

approximation algorithm is proposed for consensus seeking

where the signal received from other agents is corrupted by

additive noise. Convergence to the set of synchronized phases

is established for all-to-all interactions by constructing a

stochastic Lyapunov function. We assume the corrupting

noise is associated with signal reception, not transmission,

and that it has zero mean in the range [−π/2, π/2].
The paper is organized as follows. Section II reviews

the problem of synchronization on the N -torus and con-

sensus. It also summarizes existing convergence results for

Euclidean consensus in the presence of noisy measurement

using stochastic Lyapunov analysis. Section III presents a

stochastic Lyapunov function for synchronization on the

N -torus following the first-order Euler approximation of

the continuous-time algorithm, establishes the conditions for

convergence, and presents simulation results. A stochastic

Lyapunov function for synchronization on the N -torus for

discrete-time is introduced in Section IV. Section V summa-

rizes the paper and indicates ongoing research directions.

II. BACKGROUND AND MATHEMATICAL

PRELIMINARIES

In this section, the problems of synchronization on the

N -torus and Euclidean consensus are reviewed. In addition,

existing convergence results for Euclidean consensus in the

presence of noisy measurement are summarized.

Consider a network of N identical agents interacting

via an undirected graph G = (N , E) with nodes N =
{1, 2, ..., N} and edges {l, k} ∈ E ⊂ N × N . The set

of neighbors of node k is represented by Nk = {l ∈
N|(l, k) ∈ E}. The graph G is called undirected when

(l, k) ∈ Nk ⇔ (k, l) ∈ Nk. The graph G corresponding

to all-to-all communication satisfies (k, l) ∈ E ∀ l 6= k.

The Laplacian L associated to the graph G is defined as

the following N ×N matrix:

Lkl =







dk, if l = k,
−1, if l ∈ Nk,
0, otherwise,
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where dk = |Nk| is the number of neighbors of agent k. If

graph G is undirected then L is symmetric positive semi-

definite. If G is also connected then rank(L) = N − 1 and

the null space of L is spanned by 1N = [1, . . . , 1]T ∈ R
N .

A. Synchronization on the N-Torus

Continuous-time algorithm: Consider a network of N
identical agents evolving on the unit circle S1. ( For example,

the synchronization of vehicle headings in the plane evolves

on the S1.) The state of each agent at time t can be

represented by θk ∈ S1, k ∈ N . The state space is the torus,

TN , S1 × . . .× S1 and the agents communicate pairwise.

The goal is to stabilize the set of synchronized formations

in which θk = θl ∀ k, l. In the synchronized set the centroid

of the phasors

pθ ,
1

N

∑

k∈N

eiθ
k

,
1

N

∑

k∈N

zk

satisfies |pθ| = 1.

Consider the all-to-all potential [13]

U(θ) =
N

2
|pθ|

2, (1)

which can be written in terms of the Laplacian phase

potential, P = QL = 1
2N 〈eiθ,Leiθ〉, where eiθ =

[eiθ
1

, . . . , eiθ
N

]T . We have

U(θ) =
N

2
−

1

2N
〈eiθ,Leiθ〉 =

N

2
− P, (2)

where 〈., .〉 is the inner product. The gradient of U(θ) is

∂U

∂θk
= −

1

N
〈ieiθ

l

,Lke
iθ〉 = −

1

N

∑

k∈N

sin(θl − θk), (3)

where Lk is the kth row of the the L.

A continuous-time gradient algorithm associated with the

potential is [13]

θ̇k = K
∂U

∂θk
= −

K

N

∑

k∈N

sin(θl − θk). (4)

This control requires measurements of the relative phases

θl − θk. The potential U(θ) reaches its unique maximum

when all phases are identical (synchronization). When K <
0, the set of synchronized states is asymptotically stable and

all other critical points of U(θ) are unstable [13].

When K < 0, the same result equivalently holds in

a rotating frame, that is, for the coupled-phase oscillators

model [13]

θ̇k = ω0 −
K

N

∑

k∈N

sin(θl − θk). (5)

In (5) all oscillators have identical natural frequency ω0

and each oscillator is modeled by a phase variable θk.

This model is a simplified version of the Kuramoto model,

where in general the oscillators have different natural

frequencies. Synchronization of the Kuramoto model have

been studied [1], [2], including oscillators with noisy,

randomly distributed intrinsic frequencies and time-delayed

interactions [14]. This paper addresses the problem of

synchronization in the presence of noisy measurement of

the relative phases θl − θk, as depicted in Figure 1.

Fig. 1. Phase measurement with additive noise ω
kl
t .

Discrete-time algorithm: Let θkt ∈ S1, k ∈ N , be the

state of each agent at time t or, equivalently, the unit phasor

zkt ∈ C, |zkt | = 1. Consider a network of N identical agents

evolving on the unit circle. The state equation of each agent

k in a discrete-time synchronization algorithm is [11], [12]

θkt+1 = arg

(

(1 − ak)zkt + ak
1

dk

∑

l∈Nk

zlt

)

, (6)

where ak ∈ (0, 1). For the case of a fixed, undirected

graph, the algorithm (6) is a discrete-time approximation

of a gradient algorithm for the Laplacian phase potential,

QL = 1
2N 〈eiθt ,Leiθt〉, where eiθt = [eiθ

1

t , . . . , eiθ
N

t ]T . The

states are updated either asynchronously or synchronously

with small ak [11]. A dynamic approach was proposed

in [12], which uses the local information from the Euclidean

consensus algorithm to estimate the global information re-

quired for synchronization on the N -torus:

zkt+1 = zkt −DdLkzt

θkt+1 = arg

(

(1 − ak)zkt + ak
1

dk

∑

l∈Nk

zlt

)

, (7)

where Dd = diag(d−1
1 , . . . , d−1

N ). The algorithm (7) is

expressed in terms of the relative phasors zlt − zkt for the

convergence analysis.

If G = G(t) is uniformly connected and L = L(t) is

bounded and piecewise continuous [12], then algorithm (7)

asymptotically converges to a critical point of U(θ) [12,

theorem 3]. The only stable set of equilibrium points is the

synchronized set characterized by N identical phases.

B. Consensus in the Presence of Noise

Let zkt ∈ R be the state of agent k at time t ∈ Z+.

Denote the state vector zt = [z1t , ..., z
N
t ]T . A discrete-time
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synchronous consensus algorithm for each agent is [8]

zkt+1 = zkt +
ak

dk

∑

l∈Nk

(zlt − zkt ) (8)

where ak ∈ (0, 1) is the step size for agent k.

Consensus is achieved by a network of agents if

|zkt − zlt| → 0 as t → ∞, ∀ k 6= l.

For the case that agent k receives noisy measurements of

the states of its neighbors, qklt is the resulting measurement

of agent l’s states by agent k [4]:

qklt = zlt + wkl
t , t ∈ Z

+, l ∈ Nk,

where additive noise {wkl
t , t ∈ Z+, k ∈ N , l ∈ Nk} is

introduced as shown in Figure 2.

Fig. 2. State measurement with additive noise w
kl
t .

From [4], a stochastic consensus algorithm is (assuming

akt = at ∈ [0, 1] ∀ k, t)

zkt+1 = (1− at)z
k
t +

at
dk

∑

l∈Nk

qklt , t ∈ Z
+. (9)

We rewrite (9) to adopt the structure of the recursion used

in the classic stochastic approximation algorithm [4]

zkt+1 = zkt +
at
dk

∑

l∈Nk

(qklt − zkt ), (10)

Note (10) only requires (noisy) measurements of the relative

states, zlt − zkt + ωkl
t .

The objective is to select a step size so that agents

converge to a common limit in a certain sense. To char-

acterize the asymptotic behavior of the agents, the following

definitions are used [4]:

• Weak consensus: E
∣

∣zkt
∣

∣

2
< ∞ ∀ t ≥ 0, k ∈ N , and

limt→∞E
∣

∣zkt − zlt
∣

∣

2
= 0 ∀ k, l ∈ N ,

where E is the expected value operator.

• Mean square consensus: E
∣

∣zkt
∣

∣

2
< ∞ ∀ t ≥ 0, k ∈ N ,

and there exists a random variable z∗ such that

limt→∞E
∣

∣zkt − z∗
∣

∣

2
= 0 ∀ k ∈ N .

• Strong consensus: There exists a random variable z∗

such that

limt→∞zkt = z∗ with probability one ∀ k ∈ N .

Consider the following conditions and assumptions for

the additive noise and step size [4]:

A1) The noises wkl
t are independent with respect to indices

k, l, t and the initial state vector z0, where E |z0|
2
<

∞. Each wkl
t has zero mean and variance Qkl

t ≥ 0,

where supt≥0,k∈N supl∈Nk
Qkl

t < ∞.

A2) The sequence at, t ≥ 0, satisfies at ∈ [0, 1],
∑∞

t=0 at = ∞, and
∑∞

t=0 a
2
t < ∞.

A3) The graph G is undirected and connected.

[4, Theorem 21] shows that under assumptions (A1)–

(A3) the expected value of the difference between the

states of any two agents converges to zero and, therefore,

algorithm (9) achieves weak consensus.

A stochastic Lyapunov function can be defined based

on the state differences of every pair of connected agents

averaged over multiple random trials. Let potential P k
t for

agent k be [4]

P k
t =

1

2

∑

l∈Nk

|zkt − zlt|
2, t ≥ 0.

Accordingly, the total potential is Pt =
∑

k∈N P k
t and the

Lyapunov function Vt is the expected value of the total

potential,

Vt = E

(

∑

k∈N

P k
t

)

= E(Pt), t ≥ 0.

In terms of the graph Laplacian we have

Pt = zTt Lzt and Vt = E
(

zTt Lzt
)

,

where zt = [z1t , ..., z
N
t ]T .

[4, Theorem 26] states that, under assumptions (A1)–

(A3), algorithm (9) achieves mean square consensus. The

result is based on asymptotic vanishing of Vt, which

indicates that the state vector zt will approach the subspace

spanned by 1N . This is proven by defining the directions

of invariance associated with the consensus algorithm (9),

which is characterized in terms of the degree of each agent

in the network. The proof shows that the oscillation of the

sequence zt, t ≥ 0 along the direction 1N will gradually die

off.

III. NOISY SYNCHRONIZATION ON N-TORUS:

CONTINUOUS-TIME ALGORITHM

Synchronization on the N -torus requires knowledge of

the relative orientations of at least some of the agents.

In this section, we study the case that agent k receives

measurements of the relative orientation of every other

agent, albeit corrupted by noise. The results extend naturally

to connected, undirected graphs. We have a network of N
identical agents evolving on the torus, where each agent

k ∈ N receives noisy measurements of the relative state of
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its neighbors (see Figure 1).

Consider the following two models for the noise {ωkl
t , t ∈

Z+, k ∈ N , l ∈ Nk}:

N1) The additive noises are independent and identically

distributed with respect to the indices k, l, t (Figure 3).

N2) The additive noise on each agent is the same for every

measurement at time t (Figure 4).

The first noise model is more general and is not addressed

here; we adopt the second model, which we associate with

noisy reception (as opposed to noisy transmission) of infor-

mation.

We make the following additional assumptions:

Fig. 3. Additive noise model (N1): ωkl
t 6= ω

kj
t 6= ω

lj
t .

Fig. 4. Additive noise model (N2): ωkl
t = ω

kj
t = ωk

t 6= ωl
t.

A1′) The graph G corresponds to an all-to-all communica-

tion network.

A2′) The additive noise on agent k obeys noise model (N2),

i.e., ωkl
t = ωkj

t = ωk
t ∀ l, j ∈ Nk, where wk

t has zero

mean and finite range supt≥0,k∈N supl∈Nk
ωk
t ≤ π/2.

Using a first-order Euler approximation, the continuous-

time algorithm becomes

θkt+1 = θkt −
atK

N

∑

k∈N

sin(θlt − θkt ), (11)

which depends on the relative phase θlt − θkt measurement

and at ∈ [0, 1]. As shown in (2) the phase potential at each

instant can be calculated from

Ut =
N

2
−

1

2N
〈eiθt ,Leiθt〉 =

N

2
− Pt. (12)

From (3), in discrete time we get

Ut+1 = Ut −
atK

N
〈ieiθ

l

t ,Lke
iθt〉2. (13)

Assume that the relative phase measurement θlt − θkt by

agent k is corrupted by noise ωk
t at each instant. The result of

measurement of l’s state by k is θlt +ωk
t , hence the gradient

(3) becomes

∂U

∂θkt
= −

1

N
〈iei(θ

l

t
+ωk

t
),Lke

iθt〉

= −
1

N

∑

k∈N

sin(θlt − θkt + ωk
t ).

According to (A2′), the noise lies in a compact distribution

on the interval of [−π/2, π/2] with zero mean. Let αk
t =

θlt − θkt − π/2, which implies

θkt+1 = θkt −
atK

N

∑

k∈N

cos(αk
t + ωk

t ). (14)

The aim is to build a stochastic Lyapunov function based

on the potential function Ut and perform stability analysis

of (14). By analogy with (13) the evolution of the phase

potential becomes

Ut+1 = Ut −
atK

N
〈iei(θ

l

t
+ωk

t
),Lke

iθt〉〈ieiθ
l

t ,Lke
iθt〉

= Ut −
atK

N

∑

k∈N

〈iei(θ
l

t
+ωk

t
), eiθ

k

t 〉〈ieiθ
l

t , eiθ
k

t 〉.

Following [4], the mean of the total potential is the

stochastic Lyapunov function Vt = E(QLt
) = E(Pt). By

(12), considering the definition of αk
t , we have,

Pt+1 = Pt +
atK

N

∑

k∈N

cosαk
t cos(α

k
t + ωk

t ) (15)

= Pt +
atK

N

∑

k∈N

(cos2 αk
t cosω

k
t

+
1

2
sin 2αk

t sinω
k
t ).

Hence, we take the expectation of both sides of (15).

By assumption (A2′), cosωk
t ≥ 0 for all k and t, hence

cos2 αk
t cosω

k
t ≥ 0. For the second term, E(sinωk

t ) = 0 and

the independence of αk
t and ωk

t gives

E(sin 2αk
t sinω

k
t ) = E(sin 2αk

t )E(sinωk
t )

Therefore, expected value of the second term is zero.

Consequently with K < 0, the Lyapunov function is

non-increasing; Vt+1 ≤ Vt, which implies limt→∞Vt =

limt→∞E(Pt) = 0. Since 〈eiθt ,Leiθt〉 =
∑

(l,k)∈E |e
iθk

t −

eiθ
l

t |2, it follows that

limt→∞E|eiθ
k

t − eiθ
l

t |2 = 0 ∀ k, l ∈ N .

Theorem: Under assumptions (A1′)–(A2′), algorithm (14)

achieves weak consensus on the N -torus.

To illustrate synchronization of a set of agents in the

presence of noisy communication, we consider a graph

Laplacian corresponding to all-to-all communication of five

agents (N = 5).
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The initial conditions of the simulation are picked ran-

domly from [0, 2π]. The measurement noise has a truncated

normal distribution in the range [−π/2, π/2]. Figure 5 shows

the weak convergence of algorithm (14) where the measure-

ment noise has standard deviation is σ = 10 and zero mean.

Figure 6 illustrates the potential Pt for ten trials and the

resulting stochastic Lyapunov function, Vt = E(Pt).

0 200 400 600 800 1000
3.5

4

4.5

5

5.5

6

iterations

θ

Fig. 5. Five agents reach weak consensus on the torus with noise standard
deviation σ = 10.

0 200 400 600 800 1000
0

5

10

15

iterations

 

 

V
t

P
t

Fig. 6. The potential of five agents for ten trials with σ = 10 and the
stochastic Lyapunov function.

IV. NOISY SYNCHRONIZATION ON N-TORUS:

DISCRETE-TIME ALGORITHM

Let Θkl
t be the result of the measurement of l’s state by

k:

Θkl
t = θlt + ωk

t , t ∈ Z
+, l ∈ Nk,

where wk
t ∈ R is additive noise satisfying (A2′). Let zlt =

eiθ
l

t and Ωkl
t = eiω

k

t , so that zklt , eiΘ
kl

t = zltΩ
kl
t .

Augmenting algorithm (6) with the noise model yields the

following update rule:

θkt+1 = arg

(

(1− at)z
k
t + at

1

dk

∑

l∈Nk

zltΩ
kl
t

)

. (16)

To conduct the stability analysis of (16) following [4], the

total potential can be defined in terms of the graph Laplacian

Pt = zt
T
Lzt (17)

and the mean of the total potential is the stochastic Lyapunov

function

Vt = E(Pt). (18)

Consider the following additional assumption:

A3′) The sequence at, t ≥ 0, satisfies at ∈ (0, 1),
∑∞

t=0 at = ∞, and
∑∞

t=0 a
2
t < ∞.

From equation (16), we have

θkt+1 = arg

[

at
1

dk

∑

l∈Nk

zltΩ
k
t + (1− at)z

k
t

]

Subsequently, we obtain

zkt+1 =
1

ρk

[

at
Ωk

t

dk

∑

l∈Nk

(zlt − zkt ) + (1− at + atΩ
k
t )z

k
t

]

=
1

ρk

[

at
Ωk

t

dk
Lkzt + (1− at + atΩ

k
t )z

k
t

]

,

where Lk is the kth row of L and

ρk =

∣

∣

∣

∣

at
1

dk
Ωk

tLkzt + (1− at + atΩ
k
t )z

k
t

∣

∣

∣

∣

.

(If ρk = 0, then agent k is allowed to take any position on

the circle [12].)

We define the following additional matrices: Dρ =
diag(ρ−1

1 , . . . , ρ−1
N ) and DΩ = diag(Ω1

t , . . . ,Ω
N
t ). Recall

Dd = diag(d−1
1 , . . . , d−1

N ), which for all-to-all communica-

tion becomes Dd = 1
N−1IN . We have

zt+1 = Dρ[atDdDΩLzt + ((1− at)IN + atDΩ)zt]. (19)

Substituting (19) into (17) gives

Pt+1 = [atDdDΩLzt + ((1 − at)IN + atDΩ)zt]
T

DρLDρ[atDdDΩLzt + ((1 − at)IN + atDΩ)zt].

Let L̂ = DdL and L
′ = DρLDρ. Since L, Dd, and Dρ

are symmetric positive semi-definite, L̂ and L
′ are symmetric

positive semi-definite. Consider the following equalities:

[atDdDΩL̂zt]
T

= atz
T
t L̂DΩ

[((1 − at)IN + atDΩ)zt]
T

= (1 − at)z
T
t + atz

T
t DΩ.

The total potential is

Pt+1 = (1− at)
2zTt L

′zt

+at(1 − at)
(

zTt L̂DΩL
′zt + zTt L

′
DΩL̂zt

+zTt L
′
DΩzt + zTt DΩL

′zt
)

(20)

+a2t

(

zTt L̂DΩL
′
DΩL̂zt + zTt L̂DΩL

′
DΩzt

+zTt DΩL
′
DΩL̂zt + zTt DΩL

′
DΩzt

)

.
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Taking the expectation of both sides of (20) builds the Lya-

punov function expression (18). Analysis of (18) is ongoing,

but suggest the following proposition.

Proposition: Under assumptions (A1′)–(A3′), algorithm (16)

achieves weak consensus on the N -torus, i.e.,

limt→∞E
∣

∣zkt − zlt
∣

∣

2
= 0 ∀ k, l ∈ N .

0 200 400 600 800 1000
−3
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−1.5

−1

−0.5

0

0.5

1
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θ

Fig. 7. Five agents reach weak consensus on the torus with noise standard
deviation σ = 10.
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V
t

P
t

Fig. 8. The potential of five agents for ten trials using σ = 10 and the
stochastic Lyapunov function.

Figure 7 shows the weak convergence of algorithm (16)

for five agents with all-to-all communication where the

measurement noise has normal distribution and is randomly

selected between [−π/2, π/2], with standard deviation σ =
10 and zero mean. Figure 8 illustrates the potential Pt for

ten trials and shows that the resulting stochastic Lyapunov

function Vt decays to zero.

V. CONCLUSIONS

We are considering the problem of cooperative control of

unmanned vehicles in an uncertain environment when each

vehicle can obtain only noisy measurements of the other

vehicles. We aim to prove convergence to the desired forma-

tion and robustness to measurement errors using a stochastic

algorithm. This paper studies the problem of consensus on

the N -torus for all-to-all interactions corrupted by noise.

A stochastic approximation algorithm is applied and weak

consensus of agents is established. In ongoing research we

are extending the results to limited communication.
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