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Abstract—Assuming no knowledge of closed-loop dynamics 
other than being that of a stable nonlinearly perturbed linear 
system and the forward path gain at the frequency of interest 
being known and non-zero, a control approach is proposed that 
rejects a sinusoidal disturbance of known frequency from the 
system output. The approach consists in partitioning the 
feedback path of a stable closed-loop system into two weighted 
paths and inserting between them a loop containing an internal 
model based filter. The approach is supported by two theorems 
ascertaining internal stability, that guarantee the rejection of 
the unwanted sinusoid under the augmentation proposed, with 
no closed-loop stability loss. The efficacy of the approach is 
demonstrated through simulations on a model of a servo system 
consisting of a beam with an electro-hydraulic actuator 
attached at one end and a mass at the other, and through 
experiments on the corresponding physical testbed. Robustness 
of the approach is briefly discussed. A relative non-
intrusiveness of the augmentation procedure, a virtual lack of a 
modeling necessity, and simplicity of estimating the 
unaugmented forward path gain via experiment on the stable 
closed-loop system make the approach proposed well suited for 
industrial use. 

 
Index Terms—Internal model principle, Small gain theorem, 

Perturbed linear system, Periodic response.  

I. INTRODUCTION 

RACKING and rejection of periodic signals with zero 
steady state error based on internal model principle [1] 

places the generator of the signal into the stable closed-loop 
system. This approach has been used widely for both linear 
and nonlinear plants whose model is known. This paper 
addresses rejection of an internally generated sinusoid of 
angular frequency r  assuming no knowledge of the plant 

and hence the closed-loop system, other than that the latter 
behaves like a stable perturbed linear system and its forward 
path gain at r , readily found through a closed-loop test, is 

non-zero. The methodology in [2] for tracking of periodic 
signals in linear systems uses comparable plant information 
and could apply to the problem considered here. The novelty 
of the current work, compared to [2] lies in  
i) considering a nonlinearly perturbed linear system. The 

presence of the nonlinear perturbation is essential as the 
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source of the small amplitude sinusoid to be rejected that 
dramatically influences the application considered 
(Sections II, III).  

ii) providing a quantitative estimate of stability and 
disturbance rejection robustness in terms of permissible 
variations in the forward path gain (Section IV).  

iii)  using a gain based proof technique which enables 
visualizing the effect of the small controller parameter  
that must be tuned in this approach as well as in [2].  

The unpartitioned feedback structure is motivated by the 
repetitive control topology [3]. Experimental and numerical 
validation of the controller is presented in Section V via 
magnitude spectrum plots. 

II.  APPLICATION AND PROBLEM STATEMENT 

In continuous casting of steel, the mold executes a 
sinusoidal vertical motion of specific frequency and 
amplitude, imposed by a mold oscillation system. 
Metallurgical considerations require that the sinusoidal 
profiles of the mold displacement and velocity be 
undistorted. The mold oscillation system in some casters 
consists of a subsystem of beams that supports a heavy mold 
at one end and is subject to sinusoidal motion by an electro-
hydraulic servo actuator with piston attached to this 
subsystem at the other end, to drive the mold. The servo is 
open loop unstable and is typically operated under feedback. 
The desired mold displacement is specified as the actuator 
piston position reference. Since the beam subsystem is not 
rigid, there is an inherent mismatch between the 
displacement and the velocity profiles at the mold and the 
actuator ends. At most frequencies the mold displacement 
profile is a scaled but undistorted version of the actuator 
displacement profile. This problem is easily resolved by 
suitably scaling the piston reference. However, at 
frequencies that are submultiples of the first resonant 
frequency of the beams in the subsystem, a significant 
distortion is observed in the mold displacement profile. The 
goal is to identify the source of this submultiples distortion 
problem and eliminate it.  

To carry out experiments, a testbed of the mold oscillation 
system was built at Nucor Steel, Decatur. The testbed (Fig. 
1) has a hinged hollow beam that supports a heavy mass, 
resembling a mold, on one end and has a servo actuator 
located at the other end. It exhibits the submultiples 
phenomenon present in the mold oscillation system, albeit 
more pronounced. The first resonance frequency of the 
beam is 9.65 Hz. When the beam is driven by the actuator at 
4.8 Hz, the mold displacement profile is severely distorted. 
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Fig. 2 shows the testbed piston and the mold displacement 
profiles with servo under proportional feedback with a 
controller gain 2. The reference to the piston is a sinusoid of 
3 mm magnitude and 4.8 Hz frequency. The distortion in the 
mold displacement is clearly visible, while the piston 
displacement seems to track the reference perfectly. The 
magnitude spectrum of the two signals shown in Fig. 3 
reveals, however, a small peak of about 0.04 mm at 9.6 Hz, 
which is twice the reference frequency, in the piston 
displacement. It was conjectured that being near the beam 
resonance frequency, this peak - a manifestation of the 
nonlinear servo dynamics - is amplified by the beam, 
yielding distortion at the mold end. Experiments verified 
that when the piston displacement was a sinusoid of 0.05 
mm magnitude and 9.65 Hz frequency, the mold 
displacement magnitude was about 1.5 mm, which matches 
well the magnitudes of peaks in Fig. 3. It is therefore 
expected that elimination of sinusoids near resonance 
frequency in the piston displacement signal will ensure 
distortion free mold displacement. Hence, the reference and 
the actual piston displacements are taken to be the input and 
output, respectively, for controller design in this paper. 
Since the frequencies near 9.65 Hz have been identified to 
be the cause of distortions, in the rest of the paper the 
position signals are not plotted due to space constraints; 
instead the magnitude spectrum of these signals around 9.65 
Hz is presented. 

 

 
Fig. 1. Picture of the mold oscillation system testbed 

 
Electro-hydraulic servos, though inherently nonlinear, are 

designed to exhibit stable predominantly linear behavior in a 
nominal range of operation under feedback, implemented 
typically in the form of a P or a PI controller [4]. The effect 
of the beam on the piston in the operating range is mostly 
linear as well, making a linear system perturbed by small 
nonlinearity a plausible model for the input-output 
(reference - actual piston position) behavior of the servo 
system/testbed. This is confirmed, both in simulations and 
experiments, by the absence of any large nonlinear effects at 
the actuator output. Based on the above discussion the 
following problem statement is formulated: 

Given a stable closed-loop system exhibiting perturbed 
linear dynamics that tracks the input sinusoid of frequency 
 , but has the output containing small magnitude higher 
harmonics of   due to nonlinear effects, augment the loop 

with a suitable filter so that the harmonic at r  in the 

output is eliminated without affecting the closed-loop 
stability and the  tracking at frequency  . Here r  is a 

specific integer multiple of  . 
This problem is addressed in Section IV. In the 

application presented in this paper, r  is the first resonance 

frequency of the beam. The effect of small amplitude higher 
harmonics at frequencies other than r  on the beam is 

negligible and is omitted from consideration. 
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Fig. 2. Experimental result: piston and mold position with piston 

reference at 4.8 Hz 
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Fig. 3. Experimental result: magnitude spectra of piston and mold 

position near resonance frequency  

III. COUPLED SERVO-BEAM MODEL AND SIMULATIONS 

A. Electro-hydraulic servo model 

 
Fig. 4 Schematic of the servo setup 

 
A layout of the coupled servo and beam system is shown in 
Fig. 4, where ‘S’ and ‘T’ refer to the supply of the 
pressurized fluid and the fluid on the tank side, respectively. 
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The hydraulic actuator functions as follows. When the spool 
moves to the right, ‘S’ is connected to chamber ‘B’ and the 
piston is pushed down. When the spool moves to left, ‘S’ is 
connected to chamber ‘A’ and the piston is pushed up. 
Hence, the appropriate motion of the spool can cause the 
piston to oscillate. The servo system typically functions in 
the closed loop. The error between the desired and the actual 
piston position is used to control the spool position. Piston 
position px  is governed by the equation 

  p p p p pB BAm x bx P P a m g F                  (1) 

where pm (2 Kgs), b  (1000 N.sec/m), AP , BP , pa  (0.0046 

m2), g , BF  stand for the piston mass, damping, pressure in 

chamber ‘A’, pressure in chamber ‘B’, piston area, gravity, 
and force from the beam, respectively. When px  is zero, 

chambers ‘A’ and ‘B’ have equal volumes. The pressures in 
chambers ‘A’ and ‘B’ are governed by 
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where   (1.5x109 Pa), Aq , Bq , AV  (4.7113x10-5 m3) , BV  

(7.0464x10-5 m3), L (0.015 m) are bulk modulus of the 
actuator fluid, flow rates into chamber ‘A’ and out of 
chamber ‘B’, volumes of  tubes connected to chambers ‘A’ 
and ‘B’ and half the stroke length of the piston, respectively. 
Assuming turbulent flow conditions, the flow rates Aq  and 

Bq  are given by 
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where c  (3x10-4), d  (1.27x10-6 m), sP  (20684250 Pa), tP  

(206840 Pa), sx  are flow coefficient, spool underlap length, 

supply pressure, tank pressure, and spool position, 
respectively. In Section V.A modifications to this equation 
when the pressure difference is small are discussed. The 
spool position dynamics including the spool control is 
assumed to be governed by a second order system: 
                      2 22 .s s s s s s sx x x u                              (4) 

Here u  is the input generated by a controller using error 
between px  and desired reference signal r, as seen in Fig. 4. 

The value of s  is 0.6 and of s  is 255 rad/sec. Typically, a 

proportional control law 

                                 pu k x r                                     (5) 

is used where k  is the proportional gain. In Fig. 4 mx  is the 

mold position.  

B. Beam model 

The hollow beam in the testbed is modeled as two beams 
attached at the hinge, each using Timoshenko beam model 
consisting of two coupled second order PDEs. The 
coordinate along the length of the beams is x .  The beams 
are coupled via the boundary conditions at the hinge 
location 0x   that ensure that the torque and angular 
displacement at this location are identical. Thus, the model 
of the hinged beam of length 2l (1.76 m) shown in Fig. 5, 
with the vertical and the angular displacements to the left 
and to the right of the hinge denoted by  ,L Ly   and 

 ,R Ry  , respectively, is given by a set of 4 coupled PDEs 

of the form  
2

2
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  The mold dynamics is part of the boundary condition of the 
right beam at x l . The boundary conditions are 
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In the equations bm  (69.256 Kg/m), ba  (0.0088 m2), G  (7.7 

x1010 Pa), E  (2 x1011 Pa), I  (1.9204 x10-5 m4), y /   (10 / 

10 Kg/m/sec), m  (2), 'k  (0.83), M  (2250 Kgs) stand for 

mass of beam per unit length, area of cross section of beam, 
shear modulus, Young’s modulus, moment of inertia of 
beam, beam transverse/angular displacement damping, mold 
damping, shear constant, and mold mass. The coupling 
between the nonlinear actuator and the beam is via the 
piston displacement entering the boundary condition for the 
left beam and the force BF  from the beam acting on the 

piston where 
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Fig. 5. Beam Schematic 

C. Simulation results 

Simulation of the servo system in Fig. 4 is performed 
using the nominal parameter values presented above. The 
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initial chamber pressures are set at AP = BP =50 tP . All other 

initial conditions are zero. The servo simulation uses a 
proportional controller, with the value of u  in eq. (4) given 

as   0.6 pu x r t   where  r t  is a sinusoid of 3 mm 

magnitude and 4.8 Hz frequency. The simulated mold 
position exhibits distortions, similar to those seen in the 
experiment. These distortions occur due to the nonlinear 
characteristics of the actuator that gives rise to small 
amplitude sinusoid of frequency 9.6 Hz in the piston 
position, which excites the beam resonance. This is 
confirmed using spectral analysis of the simulated piston 
and mold position data (Fig. 6). Therefore, the model 
presented adequately exhibits the submultiples problem and 
can be used as a platform for testing control strategies. 
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Fig. 6. Simulation result: magnitude spectra of piston and mold position 

around resonance frequency 

IV. CONTROLLER DESIGN AND ANALYSIS 

A. Theorems on controller design 

Theorem 1 deals with the topology where the feedback 
signal is not partitioned (Fig. 7), while Theorem 2 considers 
the general case (Fig. 9) with weighted partitioned feedback 
path. To formulate Theorem 1, consider the system shown in 
Fig. 7, referred to as the unpartitioned unaugmented system, 
where P is a nonlinear plant, K is a controller that stabilizes 
the loop, r is the reference input, and y is the output.  

 
Theorem 1: Assume that the closed loop system in Fig. 7 is 
described by a perturbed linear model: 

                , ,cl cl clx A x B u g x y C x         (7) 

where clA  is Hurwitz and  g x
 

is a small nonlinear 

perturbation. Also assume the following:

 B1.   : n ng x    is a continuous function, with 

 0 0g  , such that for any bounded domain 
nD   , there exists L  such that 

   1 2 1 2 nn
g x g x L x x   , 1 2,x x D . Let the 

input r and initial conditions be uniformly bounded. 

n
  is the Euclidean norm in n . 

B2. Assume that the unpartitioned unaugmented system 
tracks input sinusoid of frequency  , but its output 
contains small amplitude higher harmonics of  , 

including r , due to nonlinear effects. Here r  is 

an integer multiple of  .  
B3. When the reference input r is a sinusoid of 

frequency r , the corresponding steady state 

periodic outputs  yss and (r-yss) contain sinusoids at 
that frequency; let they be  ,ss ryS t  and 

 ,ss rr yS t  respectively. Assume that the complex 

gain KPg  from ,ss rr yS   to ,ss ryS  , referred to as 

the unaugmented system forward path gain  at r ,  

satisfies the condition 
                               1 1 1KPg  .                                (8) 

Next consider the feedback system shown in Fig. 8, further 
referred to as the unpartitioned augmented system. Let F  
be the linear stable transfer function  

                      
2

2 2

2

2
r r

rr r

e s
F s

ss e s

 
 




 
                   (9) 

where 0 1e  . For a sufficiently small choice of e, under 
the above assumptions, if   is small, the unpartitioned 
augmented system is stable and tracks the input sinusoid of 
frequency   and possibly contains small magnitude higher 
harmonics of   induced by the nonlinear perturbation, but 
the harmonic at frequency r  is asymptotically eliminated 

from its output. 
   Proof: The proof uses the small gain theorem, a series of 
block diagram manipulations and periodic response of 
nonlinearly perturbed systems. Details are omitted for lack 
of space. It can be shown that, for   sufficiently small, if 

               1 1,F s G s s                   (10) 

internal stability of the augmented unpartitioned system in 
Fig. 8 is guaranteed, which in turn guarantees asymptotic 
elimination of the harmonic at frequency r  from its output. 

Here   is the closed right half complex plane and  G s  is 

the transfer function of the linear system 
  , .cl cl cl cl clz A B C z B u       y C z     

For small  , (10) follows from (8).                                      

 
Fig. 7. Block diagram of the unpartitioned unaugmented system 

 

 
Fig. 8. Block diagram of the unpartitioned augmented system 

 

   Remark 1: With (8) being only a sufficient condition, 
Theorem 1 can be restated more generally using (10) in B3. 
However, verifying the latter in experiments is not simple. 
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When the controller-plant gain at r  satisfies neither (8) 

nor (10), increasing the controller gain and, hence, the 
forward path gain could possibly result in one of these gain 
conditions being satisfied to guarantee stability of the 
unpartitioned augmented loop. This approach is employed to 
satisfy the gain condition in the experiments with the testbed 
in Section V.C where a proportional controller is used.  

Increasing the controller gains can lead, however, to the 
unaugmented closed loop stability loss. In this scenario, 
when controller gains are fixed and gain conditions are not 
satisfied, a modified feedback structure that provides added 
flexibility in guaranteeing the stability of the corresponding 
augmented loop, while solving the problem of Section II, 
would be required. Such a structure containing a partitioning 
of the feedback path with a stable filter is introduced in 
Theorem 2, which generalizes Theorem 1 (Fig. 9). Stability 
of the augmented loop corresponding to this structure (Fig. 
10) is guaranteed by a suitable choice of the partitioning 
filter as long as the forward path gain at r  is non-zero. In 

the production unit, increasing gains to a desired value may 
not be feasible and Theorem 2 could prove valuable. 

 

 
Fig. 9. Block diagram of partitioned unaugmented system with 

stabilizing feedback 
 

 
Fig. 10. Block diagram of partitioned augmented system 

 
Theorem 2: Consider the feedback system shown in Fig. 9, 
referred to as the partitioned unaugmented system where P, 
K, r, and y are as in Theorem 1 and   is a stable filter to be 
chosen. Assume that this system is described by the 
perturbed linear system (7) with clA  Hurwitz and  g x  

being a small nonlinear perturbation. Let assumptions B1 
and B2 hold. Let KPg , as defined in B3, be non-zero and 

choose   such that   1r KPj g   . Consider the feedback 

system in Fig. 10, referred to as the partitioned augmented 
system where F  is given by (9). For a sufficiently small 
choice of e, under the above assumptions, for sufficiently 
small  , the partitioned augmented system is stable and  
tracks the input sinusoid of frequency   and  possibly 
contains small magnitude higher harmonics of   induced 
by the nonlinear perturbation, but the harmonic at 
frequency r  is asymptotically eliminated from its output.  

    Proof: It can be shown that with G as in the proof of 
Theorem 1, the condition for the stability of the partitioned 
augmented loop instead of (10), takes the form  
              . 1 1 1,F s s G s G s    s         ,       (11) 

which holds if 

           1 1 1 ,j G j G j F j              ,     (12) 

which in turn follows, for sufficiently small  , from the 
choice   1r KPj g    and properties of F .                      

B. Robustness of the controller 

Given a stable plant, Theorem 2 proposes an internal 
model based controller to reject an internally generated 
sinusoidal disturbance. The sole measurement used in this 
approach is the forward path gain at the frequency of 
interest, KPg . In practice, the actual forward path gain could 

change from KPg  to KP KPg g  , owing to changes in the 

plant. It is useful to obtain conditions on KPg  which 

guarantee that even when the forward path gain changes, the 
stability and disturbance rejection performance of the 
augmented loop in Fig. 10 which was designed using KPg , 

is  unaffected. Such a condition can be obtained using (12). 
Since the nonlinear perturbation is small,  rKPg G j  is 

small. It can be shown that any KPg  that satisfies 

 1 1KP KP KP KPg g g g      is a permissible variation 

and the augmented loop stability is not affected. Using this 
estimate inequality bounds on KPg  can be obtained and 

used in combination with experimental monitoring of the 
changes in KPg  to estimate the risk of instability. For 

example, if 1KPg  , then any KPg  with 1KPg   is 

permissible. The unaugmented loop is assumed to be stable. 

V. NUMERICAL AND EXPERIMENTAL CONTROLLER 

VALIDATION 

A. Properties of the nonlinearities in servo system 

The input-output dynamics of the testbed (Section II) can 
be captured by a perturbed linear model (7) with small  . 
The simplified model (3) for the orifice flow is in terms of a 
non-Lipschitz at zero square root of the pressure drop. Since  
orifice flow is better captured by a more complex Lipschitz 
function [5], that equals (3) for pressure drops not near zero 
and since the simulated pressure drops are always bounded 
away from zero, it is reasonable to assume that a Lipschitz 
function  g x  in (7) captures the flow nonlinearities making 

Theorems 1 and 2 applicable to the model (1)-(6).  

B. Numerical controller validation 

The unpartitioned control configuration of Theorem 1 is 
applied to the computational model of the testbed, presented 
in Sections III.A and III.B to eliminate the distortions in the 
simulated mold position. To verify the validity of 
assumption B3, the reference is chosen to be a sinusoid at 
frequency 9.65 Hz and magnitude 0.05 mm, and  1 1 KPg  
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is calculated. As in Section III, a proportional controller 
with a gain of 0.6 is used and simulations indicate that 

 1 1 1KPg  . To test the scheme,  r t  is chosen to be a 

sinusoid of magnitude 3 mm and frequency 4.8 Hz. A filter 
is introduced as in Theorem 1 with 2 9.65r    and 

0.1e   in (9). The piston position signals (not presented 
here) before and after augmentation are similar, indicating 
that the augmentation of the closed loop has minimal effect 
on its tracking at 4.8 Hz, as stated in Theorem 1. 
Furthermore, the distortion in the mold position is 
dramatically reduced owing to the drastic reduction of the 
magnitude of sinusoid at frequency 9.6 Hz contained in 
piston position which in turn reduces the corresponding 
magnitude in the mold position (please, compare Fig. 11 and 
Fig. 6).  
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Fig. 11. Simulation result: Magnitude spectra of piston and mold position 

near resonance frequency with augmented closed loop (magnitude at 9.6 Hz 
in mold position is reduced by a factor of 17 compared to Fig. 6) 

 

C. Experimental controller validation 

The controller validation was carried out in three steps. In 
step one, the estimate of KPg  at r  for the unaugmented 

system under proportional feedback with a gain 2 (i.e. k=2) 
considered in Section II was obtained using a reference 
input of frequency 9.65 Hz and magnitude 0.05 mm. The 
corresponding gain KPg  did not satisfy the conservative 

condition (8), and controller gain increase to 4 or 5 was 
required to obtain  1 1 0.7KPg  , guaranteeing 

augmented system stability. To retain controller gain 2, 
Theorem 2 could have been applied. This, however, was not 
pursued, since according to Remark 1, verification of (8) 
was only sufficient, and internal stability of the 
unpartitioned augmented system with controller gain 2 was 
attainable if (10), but not necessarily (8), were satisfied. This 
provided guidance for the next two steps. 

In step two, the augmented loop was tested in a wide 
frequency range: first, the proportional gain was set at 1, and 
the reference was chosen to be a sinusoid of 1 mm 
magnitude and 1 Hz frequency, resulting in unexpected 
oscillations. Increasing the proportional gain to 2, although 
not satisfying (8) as indicated above, permitted the 
augmented system to be operated safely over all amplitudes 
and frequencies of interest, apparently satisfying condition 
(10) and making  further gain increase unnecessary.  

Step three demonstrated the efficacy of the controller: the 
reference input was chosen to be a sinusoid of magnitude 3 
mm and frequency 4.8 Hz and the servo proportional 
feedback gain was set at 2, all as in Section II where large 
mold displacement distortion was observed. The filter 
parameters were 2 9.65r    and 0.1e  . From Fig. 12, it 

is seen that the magnitude of the sinusoid at 9.6 Hz present 
in the piston position, and hence the mold position, is 
significantly reduced, compared to Fig. 3, leading to a 
significant reduction in the distortion in the mold position 
that was observed in the unaugmented case (Fig. 2). The 
piston position signals (not shown here) before and after 
augmentation are similar, since the augmentation of the 
closed loop has minimal effect on its tracking at 4.8 Hz.  In 
Fig. 12, the small peaks around 9.6 Hz are artifacts of data 
processing invisible in case of simulations and in Fig. 3 due 
to much larger sampling rate and larger x-axis scale, 
respectively. 
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Fig. 12. Experimental result: magnitude spectra of piston and mold 

position around resonance frequency after loop augmentation (magnitude at 
9.6 Hz in mold position is reduced by a factor of 5 compared to Fig. 3) 
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