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Abstract— This paper is concerned with the problem of model
reference tracking control for a class of linear networked con-
trol systems (NCSs) in which a controlled plant is connected to
an observer-based controller via a communication network. In
the presence of network-induced delays and packet dropouts in
the sensor-to-controller and controller-to-actuator connections,
the inputs of the plant and the controller are updated in an
asynchronous way. In this case, the resulting NCS is equivalent
to a linear system with two interval time-varying delays. A
sufficient stability condition that ensures the NCS with an
H∞ tracking performance is derived by using a Lyapunov-
Krasovskii functional approach. Due to the asynchronous input
errors, a separation principle cannot be used to design the
observer-based controller. A novel design algorithm of tracking
control is presented by using the stability condition and a
particle swarm optimization (PSO) technique. The effectiveness
of the algorithm is illustrated by a numerical example.

I. INTRODUCTION

Output tracking control has many industrial applications

such as flight control, robot control, motor control and so

on. Generally speaking, the objective of tracking control is

to drive the outputs of a controlled plant to follow those

of a reference model or some predefined trajectories as

close as possible. In many modern industrial systems, system

components (the controlled plant, sensors, actuators and

controllers) are often located in different physical places.

To exchange information among these system components,

a shared communication network is used to interconnect

the plant and the controller. Such control systems with the

control loop closed through a network are called networked

control systems (NCSs) [1]-[2]. NCSs have exhibited a wide

range of applications due to their advantages such as flexible

deployment, low cost and easy maintenance. The existing

research on NCSs is mainly focused on two aspects, i.e.,

design of network protocols and system architectures [3],

[4] and design of performance requirements on NCSs [5]. In

particular, much work has been done to deal with stability

and stabilization for NCSs [6]-[8]. In recent years, tracking

control for NCSs has been increasingly highlighted since

the insertion of a network between a physical plant and a

controller enables an execution of remote tracking control.
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For point-to-point wired systems, serval methods have

been presented to investigate the output tracking control, for

example, an H∞ tracking control strategy [9]-[11]. Such a

strategy is extended to design the state feedback tracking

controller for NCSs in [12]-[14]. More specifically, Gao and

Chen (2008) apply continuous-time systems with an interval

time-varying delay to describe the NCSs and analyze an H∞

tracking performance by a Lyapunov-Krasovskii functional

method [12]. They derive some existence conditions of the

tracking controller in terms of linear matrix inequalities

(LMIs). Wang and Yang (2008) formulate linear NCSs with

a constant or a time-varying sampling period as two kinds of

augmented discrete-time systems and consider the H∞ model

reference tracking control [13]. Jia et al. (2009) employ a T-

S fuzzy model to represent the nonlinear NCSs and design

a controller to guarantee the tracking error systems with a

desired H∞ tracking performance [14]. Different from the

previous H∞ method, Van de Wouw et al. introduce an input-

to-state stability property to achieve a tracking performance

for network-based tracking error systems modeled by a

discretization technique and a delay impulsive approach,

respectively [15]. It should be pointed out that all the states

of the controlled plants in [12]-[15] are assumed to be mea-

surable. In fact, it is impossible or prohibitively expensive

to measure all of the process variables in many practical

situations. Moreover, the state feedback controllers in [12]-

[15] depend only on network-induced delays and packet

dropouts in the sensor-to-actuator channel because they are

designed by specific state information that successfully drives

the actuator. Therefore, the first concern of this paper is to

study the observer-based tracking control for NCSs by taking

the sensor-to-controller channel and the controller-to-actuator

channel into account.

It is not uncommon to design an observer-based controller

for hardwired systems by a separation principle. To use the

separation principle, the matrix variables in Lyapunov func-

tionals are usually set to be diagonal, which introduces some

conservatism [9]-[11]. For NCSs with an observer-based

controller, some stability and stabilization results are reported

in recent years [16]-[18]. Naghshtabrizi and Hespanha [16]

characterize the network-induced delays and packet dropouts

that occur in the sensor-to-controller and the controller-to-

actuator channels by two independent interval time-varying

delays. They introduce a numerical procedure to design an

observer-based controller by means of some non-convex

matrix inequalities. Seuret et al. [17] present a GPS technique

to ensure that the control inputs of a controlled plant and

an observer-based controller in NCSs are synchronous, but
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different from the observer inputs. In this framework, control

gain and observer gain are first solved separately; then these

gains are checked by a stability condition of the closed-loop

system [17]. When there is no GPS synchronization, Seuret

et al. address the stability of NCSs in [18] and reveal that

the separation principle cannot be used to design the control

gains and observer gains. Accordingly, another concern of

this paper is to develop an observer-based tracking control

design method without using the separation principle, which

can determine the control gains and observer gains by solving

an optimization problem of an H∞ tracking performance.

Notice that some heuristic search methods play a key

role in solving complex design optimization problems. A

typical method is the Genetic Algorithm (GA), which was

introduced in the mid 1970s by John Holland. Recently,

GA has been extended to design the delay-dependent con-

troller [19], [20]. In [19], the implementation architecture

of NCSs is established via Profibus-DP protocols and a

PID tuning of remote controller is designed by GA [19].

Du and Zhang show the merits of GA in finding solutions

of delay-dependent conditions by some numerical examples

[20]. Another well-known stochastic optimization algorithm

is the Particle Swarm Optimization (PSO) technique invented

by Kennedy and Eberhart in the mid 1990s [21]-[22]. PSO is

a population-based optimization algorithm which is inspired

by the social behavior of animals such as fish schooling and

birds flocking. This algorithm has been well studied because

of its easy implementation, stable convergence characteristic

and computational efficiency. However, the potentials of PSO

in finding the solutions of a network-based controller for an

NCS has not been explored. In this study, we will develop

a new strategy to design the observer-based controller by a

PSO algorithm with the feasibility of the LMI-based stability

condition without using the separation principle.

II. PROBLEM STATEMENT

Consider the following reference model
{

ẋr(t) = Arxr(t)+Brr(t),
yr(t) =Crxr(t),

(1)

where xr(t)∈R
n is the state vector, r(t)∈R

r is the energy

bounded input vector and yr(t)∈R
q is the output vector,

respectively. Ar, Br and Cr are constant matrices with appro-

priate dimensions. It is assumed that Ar is Hurwitz and xr(t)
is measurable to be used for control signal.

The controlled plant is described as follows
{

ẋ(t) = Ax(t)+Bu(t)+Dω(t),
y(t) =Cx(t),

(2)

where x(t)∈R
n, u(t)∈R

m, y(t)∈R
q and ω(t)∈ L2[0,∞)

are the state, the input, the output, the external disturbance,

respectively. A, B, C and D are real constant matrices.

x(t0) = x0 is the initial condition.

Suppose that a communication network is used to connect

the plant (2) and the following observer-based controller






˙̂x(t) = Ax̂(t)+Bû(t)+L(y(t)− ŷ(t)),
ŷ(t) =Cx̂(t),
û(t) = F(x̂(t)− xr(t)),

(3)

where x̂(t) ∈ R
n is the state estimate vector, û(t) ∈ R

m is

the input vector, and ŷ(t) ∈ R
q is the output vector. The

observer gain L and the control gain F are to be determined.

First, y(kh) and xr(kh) are augmented as a single packet and

transferred over the sensor-to-controller channel, where h is

a sampling period. After the sensor-to-controller delay τsc
bk

,

y(bkh) and xr(bkh) are available update the following event-

driven controller (3) on the interval [bkh+τsc
bk
, bk+1h+τsc

bk+1
)







˙̂x(t) = Ax̂(t)+Bû(t)+L(y(bkh)− ŷ(t)),
ŷ(t) =Cx̂(bkh),
û(t) = ũ(bkh) = F(x̂(bkh)− xr(bkh)),

(4)

where bk (k = 1,2, ...,) are time-stamps of packets that

successfully reach the controller. Notice that the controller

outputs the control signals in the update instants instead of

re-sampling itself due to the redundant samplings of xr(t).
Similarly, the control signal ũ(lkh) is available to input the

controlled plant after the controller-to-actuator delay τca
lk

,

where lk (k = 1,2, ...,) are time-stamps of control signals

received by the actuator. Then the actuator holds the signal

until next update. Clearly, on [lkh+ τlk , lk+1h+ τlk+1
),

u(t) = ũ(lkh) = F(x̂(lkh)− xr(lkh)). (5)

Let τ1(t) = t − bkh for t ∈ [bkh+ τsc
bk
, bk+1h+ τsc

bk+1
) and

τ2(t) = t − lkh for t ∈ [lkh+ τlk , lk+1h+ τlk+1
). One obtains

τsc
bk
≤τ1(t)≤ (bk+1 −bk)h+ τsc

bk+1
, k = 1,2, ... (6)

τlk ≤τ2(t)≤ (lk+1 − lk)h+ τlk+1
, k = 1,2, .... (7)

Remark 1: Packet dropouts may occur in both the sensor-

to-controller channel and the controller-to-actuator channel.

So one obtains {lk}
∞
k=1 ⊆ {bk}

∞
k=1 ⊆ Z+, and Z+ denotes

the set of positive integers. Both the controller (4) and the

actuator (5) are assumed to recognize and drop outdated

data actively. On [lkh+τlk , lk+1h+τlk+1
), the actuator (5)

holds ũ(lkh) while the controller (4) may witness more than

one update. Specifically, the controller (4) holds the signal

y(b
m(k−1)h) and xr(bm(k−1)) on [lkh+τlk , bmk+1h+τsc

b
mk+1

) and

are updated by the signals y(bmk+1h) and xr(bmk+1h), · · · ,
y(bmk+dk h) and xr(bmk+dk h) on [bmk+1h+τsc

b
mk+1

, bmk+2h+

τsc
b

mk+2
), · · · , [bmk+dk h+τsc

b
mk+dk

, lk+1h+τlk+1
), respectively,

where lk ≤ b
m(k−1) , mk+1 = mk +dk, and m0, mk, dk, k ∈ Z+.

Define τm = mini∈Z+{τsc
bi
}, τ1M = maxi∈Z+{(bi+1 − bi)h +

τsc
bi+1

} and τ2M = maxk∈Z+{(lk+1 − lk)h + τlk+1
}. Then, for

t ∈ [lkh+τlk , lk+1h+τlk+1
), we have

{

0 ≤ τm ≤ τ1(t)≤ τ1M,
0 ≤ τm ≤ τ1(t)≤ τ2(t)≤ τ2M.

(8)

where τm is the lower bound of network-induced delays, τ1M

and τ2M can be viewed as the synthetical index involving in-

formation about network-induced delays and packet dropouts

in the sensor-to-controller and sensor-to-actuator channels.

Remark 2: The sensor-to-controller delay and controller-

to-actuator delay can be lumped together τlk for NCSs with

fixed controllers in [6], [12], [13] and [15]. But this is not the

case for NCSs with an observer-based controller because of
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Fig. 1. The response of the system (10) with τ1 =τ2 =3s
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Fig. 2. The response of the system (10) with τ1 =1.5s and τ2 =3s

the difference between û(t) and u(t): different packets may

be available at the controller and the actuator since packet

dropouts may occur in the controller-to-actuator channel;

due to the controller-to-actuator delay τca
lk

, the data stamped

by lkh cannot update synchronously the actuator and the

controller at the time instant lkh+ τlk .

Then, the closed-loop system can be given by
{

ξ̇ (t)= Āξ (t)+B̄1ξ (t−τ1(t))+B̄2ξ (t−τ2(t))+D̄ω̄(t),
e(t)=C̄ξ (t), t ∈ [lkh+ τlk , lk+1h+ τlk+1

), ∀k ∈ Z+,
(9)

where

Ā =





A 0 0

0 A 0

0 0 Ar



 , B̄1 =





0 0 0

LC BF−LC −BF

0 0 0



 ,

B̄2 =





0 BF −BF

0 0 0

0 0 0



 , D̄=





D 0

0 0

0 Br



 , C̄=





CT

0

−CT
r





T

,

ξ (t) =
[

xT (t) x̂T (t) xT
r (t)

]T
, ω̄(t)=

[

ωT (t) rT (t)
]T
.

The initial condition of the state x(t) on [t0 − τ2M, t0] is

supplemented by x(t) = ψ(t), t ∈ [t0 − τ2M, t0]. Then the

initial states of the augmented system NCS can be given

by ξ (t) = φ(t) = [ψT (t) 0]T with φ(t0) = ξt0 .

Remark 3: Some techniques such as network protocols

including round-trip acknowledgement signals [8] and a state

predictor [16] are introduced to implement a synchronized

control input in the controlled plant (2) and the controller

(4), i.e., τ1(t) = τ2(t) for t ∈ [lkh+ τlk , lk+1h+ τlk+1
), ∀k ∈

Z+. Then an interesting question arises: can the controller

designed for the system (9) with τ1(t) = τ2(t) guarantee the

stability of the system (9) with τ1(t) ≤ τ2(t)? In particular,

we exhibit the answer to this question by a simple numerical

example. A linear system with two constant delays (a special

case of the system (9)) is given by

ξ̇ (t)=





−1 0 0

0 −1 0

0 0 −1



ξ (t)+





0 0 0

1 −2 1

0 0 0



ξ (t−τ1)

+





0 −1 1

0 0 0

0 0 0



ξ (t−τ2). (10)

The initial state is set to be ξ (0)=[1 −1 0.5]T . Fig. 1. and

Fig. 2 show the responses of the system (10) with τ1=τ2=3s

and τ1 =1.5s and τ2 =3s, respectively. One can clearly see

that the system (10) with τ1 = τ2 = 3s is asymptomatically

stable but unstable even τ1 is less than the delay τ2. Thus,

the synchronization technique in [8] and [16] cannot be used

in this paper and the condition (8) must be ensured in the

stability analysis and controller synthesis for the system (9).

Throughout this paper, the following H∞ tracking perfor-

mance for the system (9) is required [9]-[14].
∫ t f

t0

eT (t)Me(t)dt ≤V (ξ0)+ γ2
∫ t f

t0

ω̄T (t)ω̄(t), (11)

where γ > 0 is the tracking level, M > 0 is the weighting

matrix, and V (ξ0) is the energy function of initial states.

The purpose of this paper is to analyze the H∞ tracking

performance (11) and to design the observer-based controller

(4) for the system (9).

III. MAIN RESULTS

In this section, a sufficient condition on the existence of

the tracking controller for the system (9) is first derived

by a Lyapunov-Krasovskii functional method. The stability

condition is given by the following proposition.

Proposition 1: For given positive scalars τm, τ1M , τ2M and

γ , gain matrices F and L, the system (9) is asymptotically

stable with the H∞ tracking performance γ if there exist

matrices P > 0, Qi > 0 and Ri > 0 (i = 1,2,3) such that

Ψ =

[

Ψ11 Ψ12

∗ Ψ22

]

< 0, (12)

where

Ψ11 =









Ψ(1,1) PB̄1 PB̄2 R1

∗ −2R2 −2R3 R3 R2 +R3

∗ ∗ −2R3 0

∗ ∗ ∗ Ψ(4,4)









,
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Ψ12 =









0 0 PD̄ ĀTΛ

R2 0 0 B̄T
1Λ

0 R3 0 B̄T
2Λ

0 0 0 0









,

Ψ22 =









Q3−Q2−R2 0 0 0

∗ −Q3−R3 0 0

∗ ∗ −γ2I D̄TΛ

∗ ∗ ∗ −Λ









,

Λ = τ2
mR1+(τ1M − τm)

2R2+(τ2M − τm)
2R3,

Ψ(1,1) = PA+AT P+Q1+C̄T MC̄−R1,

Ψ(4,4) = Q2−Q1−R1−R2−R3.
Proof: First, we consider the stability of the system (9)

with ω̄(t) = 0. Choose the following Lyapunov-Krasovskii

functional including information about τm, τ1M and τ2M .

V (ξt) = ξ T (t)Pξ (t)+
∫ t

t−τm

ξ T (s)Q1ξ (s)ds

+
∫ t−τm

t−τ1M

ξ T (s)Q2ξ (s)ds+
∫ t−τ1M

t−τ2M

ξ T (s)Q3ξ (s)ds

+
∫ t

t−τm

∫ t

s
ξ̇ T (θ)τmR1ξ̇ (θ)dθds

+
∫ t−τm

t−τ1M

∫ t

s
ξ̇ T (θ)(τ1M − τm)R2ξ̇ (θ)dθds

+
∫ t−τm

t−τ2M

∫ t

s
ξ̇ T (θ)(τ2M − τm)R3ξ̇ (θ)dθds. (13)

Taking the time-derivative of V (ξt) on [lkh + τlk , lk+1h +
τlk+1

) along the trajectory of the system (9), we have

V̇ (ξt) =2ξ T (t)P[Āξ (t)+
2

∑
i=1

B̄iξ (t−τi(t))]+ξ T (t)Q1ξ (t)

+ξ T (t − τm)(Q2−Q1)ξ (t − τm)

+ξ T (t − τ1M)(Q3−Q2)ξ (t − τ1M)

−ξ T (t − τ2M)Q3ξ (t − τ2M)−
∫ t

t−τm

ξ̇ T (s)τmR1ξ̇ (s)ds

+ξ̇ T (t)[τ2
mR1+(τ1M − τm)

2R2+(τ2M − τm)
2R3]ξ̇ (t)

−
∫ t−τm

t−τ1M

ξ̇ T (s)(τ1M−τm)R2ξ̇ (s)ds

−
∫ t−τm

t−τ2M

ξ̇ T (s)(τ2M−τm)R3ξ̇ (s)ds.

Considering C̄T MC̄+ PD̄D̄T P/γ2 ≥ 0 and the LMI (12)

by the schur complement technique, we can conclude the

asymptotical stability for the system (9) with ω̄(t) = 0 by

following the similar analysis method in [7].

Next, under the zero initial condition, we consider the H∞

tracking performance (11) for all nonzero ω̄(t) ∈ L2[t0, ∞).
For [lkh+ τlk , lk+1h+ τlk+1

), it follows from (11) that

∫ t

lkh+τlk

eT (s)Me(s)ds =V (ξlkh+τlk
)−V (ξt)

+
∫ t

lkh+τlk

(V̇ (ξs)+ eT (s)Me(s))ds. (14)

Define t f = lT+1h+ τlT+1
, where T is the time stamp that

the last control signal successfully arrived the actuator. And

we have
⋃k=T

k=0 [lkh+ τlk , lk+1h+ τlk+1
) = [t0, t f ). Then one

can see the H∞ tracking performance (11) is ensured in

consideration of the continuity of the LKF V (ξt) on [t0, t f ),
which completes the proof.

Now, we are in a position to design an observer-based

controller for the system (9). It is a routine way to use a

separation principle to solve the control gain and observer

gain for traditional systems. However, due to the synchro-

nization errors introduced by communication networks, x(t)
and x̂(t) in (9) are interconnected so that F and L are coupled

in B̄1. As a result, the separation principle does not work for

the system (9). In this paper, an algorithm which utilizes the

random search of PSO and the feasible solution of the LMI-

based stability condition, is presented to obtain the optimal

tracking performance γ and the corresponding feedback gains

F and L. In the PSO technique, the particle status are

characterized by two factors: its position and velocity, which

are updated by the following equations [21]-[22]

νid(k+1) = ω ·νid(k)+ c1 · rand( ) · (pid(k)− xid(k))

+c2 · rand( ) · (pgd(k)− xid(k)), (15)

fid(k+1) = fid(k)+νid(k+1), (16)

ω = (ωM −ωm)(mη − cη)/mη +ωm, (17)

where νid(k) is the dth dimensional velocity (d=1,2, . . . , l)
of the ith particle (i=1,2, . . . ,Np) at the discrete-time index

k; fid and pid are the current position and previous best

position of the ith particle, respectively; pgd is the global best

position; rand() is a uniformly distributed random variables

lied on [0, 1]; c1 and c2 are two acceleration coefficients; ω
is the inertia weight; ωM and ωm represent the maximum and

minimum inertia weight respectively; mη and cη denote the

maximum iteration and the current iteration, respectively.

The PSO algorithm is given as follows.

Procedure 1:

Step 1: Initialization

1.1) Randomly initialize the population of Np particles.

Each particle consists of the elements the feedback

matrices F , L and scalar γ , and these elements fi

lie in the range [αi,βi] (i = 1,2, . . . ,mn+1).
1.2) Initialize the parameters c1, c2, ωM , ωm, νmax and

iteration number.

Step 2: Repeat until a given maximum number of iteration

2.1) Evaluate the individual fitness. First, decode in-

dividual produced in Step 1.1) to obtain the Fj,

and L j ( j = 1,2, ...,Np). Second, search the γ for

every Fj and L j satisfying the LMI-based stability

condition. And take every γ as the objective value

corresponding to Fj and L j.

2.2) Store the global best particle and its fitness.

2.3) Store the previous best particles and their fitnesses.

2.4) Update the velocity and position according to (15).

Step 3: Obtain the minimum γ and the corresponding

feedback gains Fj and L j from the global best particle.

Remark 4: The convergence speed of Procedure 1 mainly

depends on the search space [αi,βi]. How to determine the
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orders of magnitude (αi and βi), is vital to the control design.

Usually, one can refer to the expert knowledge database, the

other is in virtue of the following traditional control strategy.

If no network exists between the controlled plant and the

controller we have the following hardwired system from (9)
{

ξ̇ (t)=(Ā+B̄)ξ (t)+D̄ω̄(t),
e(t)=C̄ξ (t),

(18)

where B̄= B̄1+B̄2.

Based on the separation principle and the result in [11],

we have the following proposition.

Proposition 2: For given scalars γ > 0, ε > 0 and a

weighting matrix M > 0, the system (18) is asymptotically

stable and satisfies the H∞ tracking performance γ if there

exist matrices Xi>0 (i=1,2,3) such that Θ < 0, where

Θ=

























−2εX1 0 0 −(B̄Y )T 0 0 εI 0

∗ −2ε 0 DT 0 0 0 εI

∗ ∗ Θ33 Θ34 X3Br Θ36 0 0

∗ ∗ ∗ Θ44 −Br X1CT 0 0

∗ ∗ ∗ ∗ −γ2I 0 0 0

∗ ∗ ∗ ∗ ∗ −M−1 0 0

∗ ∗ ∗ ∗ ∗ ∗ Θ77 X2D

∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ2I

























,

Θ33=X3Ar+AT
r X3, Θ44= ĀX1+B̄Y1+(ĀX1+B̄Y1)

T ,

Θ34=(Ā−Ar)
T , Θ36=(C̄−Cr)

T ,

Θ77=X2Ā+ĀT X2−ZC̄−C̄T ZT .

Moreover, if the above condition is feasible, the gains are

obtained by F = Y X−1
1 and L = X−1

2 Z, respectively.

Proof: The proof is a routine case and omitted.

IV. NUMERICAL EXAMPLES

Example 1: The controlled plant is borrowed from [17]






ẋ(t)=

[

0 1

0 −11.32

]

x(t)+

[

0

11.32

]

u(t),

y(t)=
[

1 0
]

x(t).

(19)

The reference model is given as follows [11]






ẋr(t)=

[

0 1

−6 −5

]

xr(t)+

[

0

1

]

r(t),

yr(t)=
[

1 0
]

xr(t).

(20)

Applying Proposition 2 with M=1 and ε =0.5, one can

obtain the minimum tracking index γ = 0.51, the control

gain F1 = [−1.1441 − 0.0983] and the observer gain L1 =
[0.2182 6.5645]T . Suppose the network setting I to be τm=
60(ms), τ1M=100(ms), τ2M=200(ms) and the scalars in the

algorithm Np = 20, c1= 2, c2= 2, ωM = 0.7 and ωm = 0.4,

which satisfy the convergence of criterion [22]. Then γmin=
0.0934, F2=[−3.2061 −0.46114] and L2=[9.9825 9.9574]T

are solved by Procedure 1 with Proposition 1.

In simulation, the sampling period is h = 20(ms) and

initial states are x(0)= x̂(0) = [0.5 0], xr(0)= [−0.5 − 2].
Moreover, we make brief of packet dropout and network-

induced delay by assuming bi = 2i, 30(ms)≤ τsc
bi
≤ 60(ms),

lk = 4k and 30(ms) ≤ τlk ≤ 120(ms), which satisfies that
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Fig. 3. The tracking response of the systems (19)-(20) by Proposition 2
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Fig. 4. The outputs of the systems (19)-(20) in the network constraint I

30(ms) ≤ τ1(t) ≤ 100(ms) and 30(ms) ≤ τ2(t) ≤ 200(ms).
Then Fig. 3 shows the tracking response of (19)-(20) in the

network setting I, where the controller with F1 and L1 is

designed by Proposition 2. It is noted that an unsatisfactory

tracking performance is obtained, though the stability of

overall systems with the traditional controller (F1 and L1)

is satisfied in the network environment. The output response

of the controlled plant (19) and the reference model (20) in

the network constraint I is depicted in Fig. 4. It can be shown

in Fig. 4 that y(t) tracks yr(t) with a satisfactory accuracy.

In addition, we can calculate that

eT (t)Me(t)

rT (t)r(t)
= 0.0101 < γmin = 0.0934.

For the comparison purpose, setting the network setting

II to be τm = 6(ms), τ1M = 50(ms) and τ2M = 100(ms), it

follows the similar process that γ=0.04863, F3=[−9.0985 −
0.82043] and L3=[9.9384 8.8150]T are solved by Procedure

1 with Proposition 1. Applying these gains F3 and L3 in sim-
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Fig. 5. The outputs of the systems (19)-(20) in the network constraint II
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Fig. 6. The comparison of tracking errors in two network constraints

ulation, we can depict the trajectories of the controlled plant

(19) and the reference model (20) in Fig. 5. Correspondingly,

the comparison of tracking errors between the response by

the controller with F2 and L2 (curve e1) and the response by

the controller with F3 and L3 (curve e2) is given in Fig. 6.

Apparently, the tracking effect is improved because of the

smaller tracking index γ = 0.04863 and the higher network

setting II, which explains the tradeoff between the tracking

performance and the network constraint.

V. CONCLUSIONS

This paper has considered the output tracking control for

a class of linear NCSs with an observer-based controller. A

stability condition that ensures an H∞ tracking performance

is provided in terms of LMIs. To achieve a desired tracking

performance, we have transformed the control design into an

algorithm by using the PSO technique with the feasibility of

LMI-based stability condition. An example has been given

to show the effectiveness of the proposed method.
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