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Abstract— This paper discusses a new meta-heuristic ap-
proach with high reliability to the synthesis problem of fixed-
structure robust controllers satisfying multiple control spec-
ifications. For this purpose, first, the particle swarm opti-
mizer (PSO) with cyclic-network topology is developed. Such
a neighborhood topology can ensure a good trade-off between
exploration and exploitation ability of the swarm, which results
in a significant reduction of the probability of premature
convergence to local optima. Second, the proposed distributed
PSO algorithm is incorporated with the simple constraint
handling method [8] using a virtual objective function to
handle multiple control specifications. Then, it is shown how
to find optimal parameters of a fixed-structure controller
guaranteeing the given specifications based on the developed
PSO technique using cyclic-network topology. Third, a typical
numerical example to demonstrate its effectiveness is given,
which clearly shows that the proposed distributed PSO scheme
gives a novel and powerful impetus to the fixed structure robust
controller synthesis.

I. INTRODUCTION

This paper describes a new meta-heuristic approach to the
synthesis of fixed-structure (order) robust controllers. Ap-
plications of the problem also include systematic tuning of
proportional-integral-derivative (PID) controller gains.

Practical fixed-structure (such as PID) robust controllers
are required in many application fields, due to limitations
of available computer resource and necessity of on-site
controller tuning. Therefore, a lot of work has been done
in recent years such as robust PID tuning (e.g., [1], [2],
[3], [4]) and fixed-order H∞ controller design (e.g., [5],
[6], [7]). However, it is difficult to treat both multiple (e.g.,
H∞ norm) control specifications and the restricted controller
structure simultaneously. More importantly, since many of
the existing methods require the knowledge of sophisticated
control theory, it is not easy for most engineers in industry
to use those methods.

In this line of research, the authors developed an easy-to-use
design methodology of fixed-structure controllers based on a
meta-heuristic approach, so-called particle swarm optimiza-
tion (PSO) algorithm [8]. The PSO algorithm was proposed
by Kennedy and Eberhart [9], which is a swarm intelligence
technique and is one of the evolutionary computation algo-
rithms. The PSO has attracted a lot of attention in recent
years, and then, within little more than a decade, hundreds
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of papers have reported the successful applications of PSO
[10]. Also, the empirical evidence of its superiority in solving
a variety of non-convex problems has been accumulated [11],
[12]. The main achievement of Maruta et al. [8] was to
develop a method for handling the optimization problems
subject to inequality constraints within the framework of
PSO, and then give a novel impetus to the PSO-based design
scheme for fixed-structure controllers satisfying multiple H∞
norm specifications. They also have shown its effectiveness
and easy-of-use property via several numerical examples.
The method works well in most cases . However, there are
cases that their PSO scheme may not provide a sufficient
reliability in the sense that the probability of obtaining a
desired solution is not high enough (e.g., less than 0.5).
One such examples is given in the numerical example 3
in Maruta et al. [8]. Also, if the domain or number of
design parameters is too large, the PSO may not work well.
Therefore, the enhancement of performance precision of PSO
is inevitable to improve its practicability in fixed-structure
controller designs.

The above shortcomings of PSO, in fact, result from the
neighborhood structure that plays an important role in the
evolution law of particles. In a general PSO scheme, a
particle swarm tries to find an optimum through an iterative
process where particles sample a given search space and then
adjust their search directions to sample near to their fitter
neighbors. Here, the neighbors mean those particles which
share information on individual fitness values. Therefore, the
set of neighbor-connections (the swarm’s topology) between
all of the particles has a significant impact on the exploration
and exploitation ability of the swarm (i.e., its ability to per-
form global search of the given search space, and converge
faster to the most promising region, respectively.) [13].

One of the most common topologies is the star topology
(see Fig. 2(a)) where the neighborhood of an individual
is the entire swarm, which was also adopted in Maruta
et al. [8]. Such a fully connected neighborhood topology
may have many opportunities of containing a relatively good
solution, and thus often exhibits fast convergence of swarm
to optima than other topology. However, because of particles’
poor exploration ability due to the fast convergence rate,
it may lead to the problem of premature convergence to
local optima. We can easily infer from the above observation
that the low success rate appeared in Maruta et al. [8]
results from the particles’ poor exploration behavior due
to a star neighborhood topology. In order to overcome the
drawback of star topology, the ring topology, which has a few
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connected neighbor particles (see Fig. 2(b)), has been studied
[14]. It has a tendency to reduce the convergence rate in
PSO. Such a characteristic improves the exploration ability
and thus reduces the possibility of particles to be trapped
into local optima. Nevertheless, its serious drawback is an
increased amount of computation time (i.e., convergence
speed of particles). It follows from the above observation that
one of the extremely important research issues in PSO is, and
continues to be, finding a best neighborhood topology en-
suring a good trade-off between exploration and exploitation
ability of the swarm [14]. This is also connected directly with
the improvement of practicability of fixed-structure robust
controller designs via the PSO scheme.

The purpose of this paper is to develop an easy-to-use
design scheme with superior reliability and validity for
fixed-structure controllers satisfying multiple control
specifications. The main tool is the distributed particle
swarm optimizer with cyclic-network topology. In order to
find optimal controller parameters satisfying multiple control
specifications, we incorporate this distributed cyclic-network
topology based PSO algorithm with the simple constraint
handling method [8], which does not require any problem-
dependent or user-defined parameters such as penalty
factors or Lagrange multipliers. Next, it is shown how to
obtain a fixed-structure controller guaranteeing multiple H∞
specifications based on the developed distributed constrained
PSO technique. We also thoroughly study an example of
fixed-structure robust controller synthesis with a single H∞
norm specification, since it is a typical one for explicitly
showing the remarkable reliability of the proposed PSO
method. It clearly verifies that the proposed distributed
constrained PSO methodology with cyclic-network topology
gives a novel and powerful impetus to the fixed-structure
robust controller syntheses. Note that, although it is omitted
here due to the page limitation, various types of fixed-
structure robust controllers (e.g., the numerical example 1
with multiple H∞ specifications presented in Maruta et al.
[8]) can be directly designed via our methodology with
more promising results.

II. DISTRIBUTED PARTICLE SWARM OPTIMIZER WITH
CYCLIC-NETWORK TOPOLOGY

In this section, we present a novel distributed PSO algorithm
using a cyclic-network topology for fixed-structure robust
controller design problems. It features not only superior
reliability, but also high practicality, simplicity and imple-
mentability . Some of the advantages of the proposed method
over conventional PSO methods are discussed in detail.

A. Optimization problem description

In this study, we are interested in general constrained op-
timization problems that are mathematically formulated as
follows:

min
x∈F

f(x), f(x) : Rn → R (1)

with

F := {x ∈ Rn|h1(x) < 0, h2(x) < 0, · · · , hm(x) < 0}
(2)

where f(x) is the linear/nonlinear objective function, which
is to be optimized with respect to the design variable vector
x ∈ Rn where n is the number of independent design
variables. In (2), hℓ(x) : Rn → R is the linear/nonlinear
constraint function, and m is the number of constraint con-
ditions. Thus, F denotes the feasible region, and is assumed
to be not empty. Let D denote the initial search space of
x ∈ Rn, which is supposed to be given by the designer in
advance. Note that in order to guarantee particle evolution
within the given search space, it is sometimes required that
the search space information be incorporated into a form of
boundary constraints such that x ≤ x ≤ x where x ∈ Rnp

and x ∈ Rn denote, respectively, the vectors of the lower
and upper bounds of design variables, and ≤ denotes the
element-wise inequality.

In the following subsection, a novel distributed PSO
algorithm using a cyclic-network topology to find an
optimal solution of the constrained optimization problem
defined in (1)-(2) is developed.

B. Distributed PSO with a cyclic-network topology

The PSO algorithm uses a swarm consisting of np particles
(i.e., x1,x2, · · · ,xnp ) to search an optimal solution x∗ ∈
Rn of (1)-(2). In this case, it is crucial to take the given
constraint conditions into account in any form to calculate
the fitness value of each individual xi, and ultimately to
find x∗. To achieve this aim within the PSO framework, we
incorporate the simple constraint handling method [8] using a
virtual objective function fv(x) with the distributed particle
evolution law given later.

A virtual objective function fv(x) : Rn → R could
be a function that simultaneously satisfies the following
two properties: (i) fv(x) < 0 holds for any x satisfying
hℓ(x) < 0, and (ii) fv(xa) < fv(xb) holds whenever
f(xa) < f(xb) is satisfied. One possible candidate for fv(x)
is fv(x) := arctan{f(x)}−π/2, which can be used to solve
various types of optimization problems (see [8] for details
and its distinctive features). Then, the original constrained
optimization problem in (1)-(2) can be modified into an
unconstrained problem as follows:

min
x∈Rn

L(x) (3)

with

L(x) :=

{
hmax(x) if hmax(x) ≥ 0,

fv(x) otherwise.
(4)

where hmax(x) := max[h1(x), h2(x), · · · , hm(x)].

It is important to note that, thanks to the flexibility of PSO,
L(x) can be used as a new objective function without any
problem whatever the objective/constraints functions are [8].
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Fig. 1. Information flow in cyclic-network topology for the case of np =
16 and ns = 4

We next show the way to obtain a solution of the optimiza-
tion problem (3) with (4) using the developed distributed
PSO with a cyclic-network topology. Consider a swarm
consisting of np particles: x1,x2, · · · ,xnp . Each particle
xi is, in effect, an n-dimensional vector. The position
of the ith particle and its velocity are denoted, respec-
tively, as xi := (xi,1, xi,2, · · · , xi,n)

T ∈ Rn and vi :=

(vi,1, vi,2, · · · , vi,n)T ∈ Rn where i ∈ {1, 2, · · · , np}. Then,
the position of the ith particle, xi ∈ Rn, evolves based on
the following update law: For k = 1, 2, · · · , which indicates
the iteration number,

xk+1
i = xk

i + vk+1
i , (5)

vk+1
i = c0v

k
i + c1r

k
1,i(x

k
pbest,i− xk

i )+ c2r
k
2,i(x

k
sbest,i − xk

i ),

(6)

where the inertia factor c0, the cognitive scaling factor c1 and
the social scaling factor c2, which are given by the designer,
influence on the particle trajectories and thus the convergence
and search diversity properties. The random numbers rk1,i
and rk2,i are uniformly distributed in [0, 1] and represent the
stochastic behaviors of PSO.

In (6), xk
pbest,i denotes the best previously obtained position

of the ith particle; i.e.,

xk
pbest,i := arg min

x∈{xj
i |j=1,2,··· ,k}

L(x), (7)

whereas xk
sbest,i denotes the best position in the social neigh-

borhoods of the ith particle at the current iteration k, whose
mathematical formulation is given as

xk
sbest,i := arg min

x∈{xk
ℓ |ℓ=i−ns

2 ,··· ,i+ns
2 }
L(x) (8)

where an even-numbered ns(≤ np) is the number of neigh-
bors ith particle has, and xj

i := xj
(i−1 mod np)+1 for i < 1 or

(a) Star (gbest) topology: ns = 8 (b) Ring (lbest) topology: ns = 2

Fig. 2. A representation of the conventional static social network topologies

np+1 ≤ i. Note that the definition of the ith particle’s social
neighborhoods in (8) means, in fact, the cyclic-network
topology (neighborhood structure) among ns particles (see
e.g., Fig. 1). It is here assumed to be a static topology, i.e.,
the initially determined topology remains fixed during the
PSO run.

It follows from the above observation that the first part of (6)
denotes the inertia effect of previous velocity; the second part
denotes the cognition by the ith individual itself; the third
part denotes the social cooperation among neighborhoods
of the ith individual. Note that if ns = np, xk

sbest,i in (8)
corresponds to one of the most common topologies; i.e., the
star (gbest) topology where every individual is connected to
every other one (see e.g., Fig. 2(a)). On the other hand, if
ns = 2, it denotes the ring (lbest) topology which connects
each individual to its two immediate neighbors (see e.g.,
Fig. 2(b)) [13], [14], [17]. As mentioned in Section I, the
neighborhood structure exerts significant influence on the
PSO’s exploration and exploitation ability (i.e., its ability to
perform global search of the given search space and converge
faster to the most promising region, respectively.).

When the neighborhood of an individual is the entire swarm
(i.e., star topology), it may have many opportunities of con-
taining a relatively good solution. In fact, this fully connected
neighborhood topology often exhibits fast convergence of
swarm to optima than ring topology. However, because of
their poor exploration ability due to the fast convergence
rate of particles, it may lead to the problem of premature
convergence to local optima. On the other hand, the ring
topology, which has few connected neighbor particles, has a
tendency to reduce the convergence rate in PSO. Such a char-
acteristic improves the exploration ability and thus reduce
the possibility of particles to be trapped into local optima.
Nevertheless, its fatal drawback is an increased amount of
computation time (i.e., convergence speed of particles). It
follows from the above observation that one of the extremely
important research issues in PSO is, and continues to be,
finding a number of neighbors, ns, ensuring a good balancing
between exploration and exploitation ability of the swarm
[14].

In this line of researches, the authors’ recent study [18]
thoroughly investigated a suitable number of ns for the
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related problems in this field, and obtained the following
result:

ns ≈ 2n (Two times of the number of design variables).

Note that the details of how the neighborhood structure (i.e.,
the number of ns) affects the performance and convergence
of the swarm can be found in Maruta et al. [18].

The proposed distributed constrained PSO algorithm using a
cyclic-network topology consists of the following steps:

[Step 0] Set k = 0. Initialize np particles with randomly
chosen positions x0

i ∈ D, and v0
i = 0. For i =

1, 2, · · · , np, set x0
pbest,i = x0

i , and x0
sbest,i as

x0
sbest,i ← arg min

x∈{x0
ℓ |ℓ=i−ns

2 ,··· ,i+ns
2 }
L(x)

[Step 1] If the termination criterion is satisfied (i.e.,
k > kmax), the algorithm terminates with the solution

x∗ := arg min
x∈{xj

i |i=1,2,··· ,np; j=1,2,··· ,k}
L(x). (9)

Otherwise, go to Step 2.

[Step 2] Apply the following evolutionary update law to
all particles: For i = 1, 2, · · · , np,

vk+1
i ← c0v

k
i+c1r

k
1,i(x

k
pbest,i−xk

i )+c2r
k
2,i(x

k
sbest,i−xk

i ),

xk+1
i ← xk

i + vk+1
i .

Set k = k + 1, and then determine xk
pbest,i and xk

sbest,i as

xk
pbest,i ← arg min

x∈{xj
i |j=1,2,··· ,k}

L(x),

xk
sbest,i ← arg min

x∈{xk
ℓ |ℓ=i−ns

2 ,··· ,i+ns
2 }
L(x).

Go to Step 1.

Note that the termination criterion in Step 1 is set as a max-
imum number of iterations for simplicity; i.e., the algorithm
terminates after a user-determined number of iterations kmax.
For various types of termination criteria, refer to Kwok et
al. [19].

In the following section, we present a concrete synthesis
procedure of fixed-structure robust controllers based on
the aforementioned distributed constrained particle swarm
optimizer with a cyclic-network topology.

III. SYNTHESIS OF FIXED-STRUCTURE ROBUST
CONTROLLERS

In this section, we present a design procedure of fixed-
structure robust controllers satisfying the given multiple
H∞ performance specifications, which is based on the
distributed constrained PSO with a cyclic-network topology
presented in Section II-B. We also provide an example
verifying the applicability of the proposed methodology to

the synthesis of fixed-structure robust controllers.

A. Controller synthesis procedure [8]
Consider the linear time-invariant closed-loop system Σ[x]:[

z
y

]
= G(s)

[
w
u

]
, u = K(s;x)y, (10)

where G(s) denotes the generalized plant, K(s;x) denotes
the fixed-structure controller which depends on the design
parameter x ∈ Rn. The vectors z and w are, respectively,
defined as z := (zT

1 ,z
T
2 , · · · , zT

m)T where zi ∈ Rpi and
w := (wT

1 ,w
T
2 , · · · ,wT

m)T where w ∈ Rqi . The signals
zi ∈ Rpi , wi ∈ Rqi , y ∈ Rp0 and u ∈ Rq0 are the controlled
output vector, the external input vector, the measurement
vector and the control input vector, respectively. Let λi(Σ[x])
denote the ith pole of the system Σ[x] and λmax(Σ[x]) be the
pole whose real part is greater than that of any other pole;
i.e., Re[λmax(Σ[x])] = maxi{Re[λi(Σ[x])], ∀i}. Further,
let Tziwi(s;x) denote the transfer matrix from wi to zi for
i = 1, 2, · · · ,m.

Now the optimization-based controller synthesis problem
considered in this paper is stated as follows: Given the
objective function

J(x) := ∥Tz1w1(s;x)∥∞ (or Re[λmax(Σ[x])]) (11)

and the admissible level γi > 0, find the design parameter
x ∈ Rn which minimizes J(x) while satisfying the fol-
lowing multiple stability/performance constraint conditions
simultaneously:
(C1) Re[λmax(Σ[x])] < 0,
(C2) ∥Tziwi(s;x)∥∞ < γi for i = 2, 3, · · · ,m.

In order to design a controller by minimizing J(x) in (11)
subject to (C1)-(C2), it is enough to solve the optimization
problem (3) with (4). Here, fv(x) and hℓ(x) could be set in
the following manners:

If J(x) := ∥Tz1w1(s;x)∥∞ is given, an example of
fv(x) satisfying the required properties mentioned in
Section II-B is given by

fv(x) = −∥Tz1w1(s;x)∥−1
∞ . (12)

On the other hand, if J(x) := Re[λmax(Σ[x])] is given,
it is enough to choose

fv(x) = Re[λmax(Σ[x])]. (13)

Then, the feasible region F of x in (2) could be set as

F :=

x ∈ Rn

Re[λmax(Σ[x])] < 0,
∥Tz2w2(s;x)∥∞ − γ2 < 0,

...
∥Tzmwm(s;x)∥∞ − γm < 0

 (14)

Therefore, all we have to do is to solve (3) with (4) using
the above-defined fv(x) and the constraint conditions in (14)
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Fig. 3. Simulation results: Convergence property and bode plot

via the distributed constrained PSO algorithm using a cyclic-
network topology presented in Section II-B.

In the following subsection, its effectiveness is evaluated
through a simulation study, because it is difficult to guarantee
the performance of the proposed method theoretically due
to probabilistic nature of PSO. Also, the performance
superiority of the proposed distributed constrained PSO
scheme over our previous PSO method in Maruta et al. [8]
in controller design problems is clearly demonstrated.

B. Numerical example

In order to show the effectiveness of our distributed PSO-
based controller design methodology over the mixed prob-
abilistic/deterministic approach by Fujisaki et al. [20], the
example presented in their paper is handled. Note that,
although it is omitted here due to the page limitation, various
types of fixed-structure robust controllers (e.g., the numerical
example 1 with multiple H∞ norm specifications presented
in Maruta et al. [8]) can be directly designed via our
methodology with more promising results. In the following
example, all computations are performed with the MATLAB
Version 7.10.0.499 (R2010a) 64-bit.

Consider the unity feedback system Σ[x] consisting of

P (s) =
17 (1 + s) (1 + 16s)

(
1− s+ s2

)
s (1− s) (90− s) (1 + s+ 4s2)

, (15)

K(s) =
θ0 + α0s+ θ2s

2

1 + µ0s+ β2s2
. (16)

Let x := (θ0, α0, θ2, µ0, β2)
T denote the design parameter

vector. Its initial search space is supposed to be given by
D := {x ∈ R5| − 5 ≤ xi ≤ 5, i = 1, 2, · · · , 5} based
on the problem setting in Fujisaki et al. [20]. Note that the
search spaces of θ0 and θ2 are not specified in their method,
since these are not determined in a probabilistic way. On
the other hand, in Fujisaki et al. [20], two types of fixed-
structure controllers are designed so that the following two

performance specifications are separately satisfied:

(i) The first one is designed to satisfy the following pole
placement condition:

Re [λmax(Σ[s;x])] < −0.2, (17)

(ii) The second one is designed to satisfy the following H∞
performance condition:

∥W (s)S(s;x)∥∞ < 1, W (s) :=
55 (1 + 3s)

1 + 800s
. (18)

Here, in order to find the optimal design parame-
ter vector x∗ ∈ R5 satisfying both of these con-
ditions in (17) and (18) simultaneously, we solve (3)
with (4) using fv(x) = Re [λmax(Σ[s;x])] with F :={
x ∈ R5 Re [λmax(Σ[s;x])] < 0,

∥W (s)S(s;x)∥∞ − 1 < 0

}
. The number of particles is

set as np = 300, and the maximum PSO iteration number
is kmax = 4000. The parameters of particle evolution law in
(6) are set as c0 = 0.75 and c1 = c2 = 1.6. The number
of neighbors of the ith particle is set as ns = 10, which is
two times of n = 5 as mentioned in Section II-B. Then, we
run the proposed distributed constrained PSO algorithm 50
times.

The changes of the best objective function values at the
first 800 iterations of 50 trials are illustrated in Fig. 3(a).
This figure shows that the proposed PSO method can find
the best solution with superior reliability as compared with
the method adopted in Maruta et al. [8]. The above fact is
also confirmed from the statistical comparison result given
in Table I. It verifies that the proposed method provides the
feasible solution, which achieves Re [λmax(Σ[s;x])] < −0.2,
in all trials (100% success rate), while the PSO technique
in Maruta et al. [8] achieves the same performance with
44% chance in whole trials. Furthermore, the standard devi-
ation of the obtained feasible solutions explicitly verifies a
remarkable reliability of the proposed distributed constrained
PSO scheme in this type of fixed-structure robust controller
synthesis problems.
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TABLE I
STATISTICAL RESULT OF EXAMPLE

Success rate Objective function value: Re [λmax(Σ[s;x])]
Best Worst Mean Standard deviation

Maruta et al. [8] 44% (22/50) -0.593041 -0.560853 -0.590354 0.007106
This paper 100% (50/50) -0.593041 -0.593041 -0.593041 0

The best controller parameters x∗ := (θ∗0 , α
∗
0, θ

∗
2 , µ

∗
0, β

∗
2)

T

obtained from the above procedure are as follows:

θ∗0 = −0.584077176726232, α∗
0 = −0.719319610966632,

θ∗2 = −2.57431670869684, µ∗
0 = −0.552299376960132,

β∗
2 = −1.5498348855402,

and the best value of Re [λmax(Σ[s;x
∗])] is −0.593041.

The poles of the corresponding closed-loop system are
−18.9979, −0.5930 ± 0.2947j, −0.5930 ± 0.2946j and
−0.5930 ± 0.2944j, which verifies that the pole placement
specification is guaranteed with a considerable margin. Fig.
3(b) shows the gain plot of the sensitivity function S(s;x∗),
which verifies the given constraint condition is guaranteed.

IV. CONCLUSION

In this paper, we have proposed a new meta-heuristic
approach with superior reliability and validity to the
synthesis of fixed-structure controllers satisfying multiple
control specifications. The main tool is the distributed
particle swarm optimizer (PSO) with cyclic-network
topology, which achieves significant reduction of the
possibility of particles to be trapped into local optima (i.e.,
a premature convergence phenomenon of particles). In order
to handle multiple specifications in controller design, the
distributed PSO algorithm has been incorporated with the
constraint handling method [8] using a virtual objective
function. Since the proposed controller design method does
not require strong back ground on sophisticated control
theory and it does not depend on types of controller
structure nor specifications, it is easy to use for most
practical engineers. Its effectiveness has been shown
through the detailed numerical example, which clearly
demonstrates that the proposed distributed constrained
PSO scheme gives a novel and powerful impetus to the
fixed-structure robust controller syntheses.

V. ACKNOWLEDGEMENT

This research was supported by Basic Science Research
Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Education, Science
and Technology. (No.2010-0010720)

REFERENCES

[1] M. Ho and C. Lin. PID controller design for robust performance.
IEEE Trans. Automat. Contr., vol. 48, no. 8, 2003, pp. 1404-1409.

[2] M. Ho. Synthesis of H∞ PID controllers: A parametric approach.
Automatica, vol. 39, no. 6, 2003, pp. 1069-1075.

[3] F. Blanchini, A. Lepschy, S. Miani, and U. Viaro. Characterization of
PID and lead/lag compensators satisfying given H∞ specifications.
IEEE Trans. Automat. Contr., vol. 48, no. 5, 2004, pp. 736-740.

[4] C. Hwang and C.-Y. Hsiao. Solution of a non-convex optimization
arising in PI/PID control design. Automatica, vol. 38, no. 11, 2002,
pp. 1895-1904.

[5] T. Iwasaki and R. E. Skelton. All fixed order H∞ controllers:
Observer-based structure and covariance bounds. IEEE Trans. Au-
tomat. Contr., vol. 40, 1995, pp. 512-516.

[6] P. Apkarian, D. Noll, and H. Duong Tuan. Fixed-order H∞ control
design via a partially augmented Lagrangian method. Int. J. Robust
Nonlin. Contr., vol. 13, no. 12, 2003, pp. 1137-1148.

[7] T. Shimomura and T. Fujii. Multiobjective control via successive over-
bounding of quadratic terms. International Journal of Robust and
Nonlinear Control, vol. 15, no. 8, 2005, pp. 363-381.

[8] I. Maruta and T.-H. Kim and T. Sugie, Fixed-structure H∞ controller
synthesis: A meta-heuristic approach using simple constrained particle
swarm optimization, Automatica, vol. 45, 2009, pp. 553-559.

[9] J. Kennedy and R. Eberhart, “Particle swarm optimization”, Proc.
IEEE Int. Conf. Neural Networks, vol. 3, 1995, pp. 1942-1948.

[10] R. Poli, Analysis of the publications on the applications of particle
swarm optimisation, Journal of Artificial Evolution and Applications
, vol. 2008, no. 1, 2008, pp. 1-10.

[11] A. Banks, J. Vincent and C. Anyakoha, A review of particle swarm op-
timization. Part I: background and development, Natural Computing,
vol. 6, no. 4, 2007, pp. 467-484.

[12] A. Banks, J. Vincent and C. Anyakoha, A review of particle swarm
optimization. Part II: hybridisation, combinatorial, multicriteria and
constrained optimization, and indicative applications, Natural Com-
puting, vol. 7, no. 1, 2008, pp. 109-124.

[13] J. Lane, A. Engelbrecht and J. Gain, “Particle swarm optimization
with spatially meaningful neighbours”, IEEE Swarm Intelligence Sym-
posium, St. Louis, MO, 2008, pp. 1-9.

[14] K. Kennedy, R. Mendes, Neighborhood topologies in fully-informed
and best-of-neighborhood particle swarms, Systems, Man, and Cyber-
netics, Part C: Applications and Reviews, IEEE Transactions on, vol.
36, no. 4, 2006, pp. 515-519.

[15] K. E. Parsopoulos and M. N. Vrahatis, Unified particle swarm opti-
mization for solving constrained engineering optimization problems,
Lecture Notes in Computer Science, Springer Berlin/Heidelberg, 2005,
pp. 582-591.

[16] K. Sedlaczek and P. Eberhard, Using augmented Lagrangian particle
swarm optimization for constrained problems in engineering, Struc-
tural and Multidisciplinary Optimization, vol. 32, no. 4, 2006, pp.
277-286.

[17] S. A. Hamdan, Hybrid particle swarm optimiser using multi-
neighborhood topologies, INFOCOMP Journal of Computer Science,
vol. 7, no. 1, 2008, pp. 36-44.

[18] I. Maruta, T. Sugie and T.-H. Kim, “Identification of piecewise affine
systems via distributed particle swarm optimization”, The 18th IFAC
World Congress, Milano, Italy, 2011 (to appear).

[19] N. M Kwok, Q. P. Ha, D. K. Liu, G. Fang and K. C. Tan, “Efficient
particle swarm optimization: a termination condition based on the
decision-making approach”, IEEE Congress on Evolutionary Compu-
tation, Singapore, 2007, pp. 3353-3360.

[20] Y. Fujisaki, Y. Oishi and R. Tempo, Mixed Deterministic/Randomized
Methods for Fixed Order Controller Design, IEEE Trans. Automat.
Contr., vol. 53, no. 9, 2008, pp. 2033-2047.

3721


