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Abstract— Recent years have witnessed extensive research
activity in modeling genetic regulatory networks (GRNs) as
well as in developing therapeutic intervention strategies for
such networks. S-systems, which offer a good compromise
between accuracy and mathematical flexibility, are a promising
framework for modeling the dynamical behavior of GRNs,
as well as that of biochemical pathways. In this paper, an
intervention strategy is proposed for the S-system model.
In this approach, a model predictive control algorithm is
developed which guides the target variables to their desired
values. The proposed intervention strategy is applied to the
glycolytic-glycogenolytic pathway as well as a generic branched
pathway and the simulation results presented demonstrate the
effectiveness of the proposed scheme.

I. INTRODUCTION

An ambitious goal of genetic regulatory network modeling

is to develop therapeutic intervention strategies for shifting

the undesirable state of a diseased network towards a more

desirable one. To date, different modeling approaches such

as Probabilistic Boolean networks (PBNs) [1], S-systems

[2]–[6], and Bayesian networks [7], to name a few, have

been proposed in the literature to mathematically capture

the behavior of genetic regulatory networks. In addition,

various intervention approaches [8]–[19] have been devel-

oped for biological systems. In [20], the authors studied the

controllability of S-systems based on feedback linearization

approach. In this paper we develop an intervention strategy

applicable to biological systems and phenomena modeled by

S-systems. These include genetic regulatory networks and

metabolic pathways.

S-systems are proposed in [21] as a canonical nonlinear

model to capture the dynamical behavior of a large class

of biochemical pathways. They are characterized by a good

trade-off between accuracy and mathematical flexibility [22].

In this modeling approach, nonlinear systems are approxi-

mated by products of power-law functions which are derived

from multivariate linearization in logarithmic coordinates. It
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has been shown that this type of representation is a valid

description of biological processes in a variety of settings.

For a more elaborate discussion of S-systems, the interested

reader is referred to [21], [23].

In this paper, an intervention strategy is proposed for

biological phenomena modeled by S-systems. The goal of

the intervention strategy is to transfer the target variables

from an initial steady state level to desired final ones by

manipulating the control variables. Towards this goal, the S-

system model of biological phenomena is first augmented by

integrators. This provides a mechanism for manipulating the

control (independent) variables and guaranteeing zero steady

state error in accordance with the internal model principle of

control theory [24]. Then an MPC-based control intervention

is developed to achieve the intervention objective. In the

cases where the number of control variables is more than the

number of target variables, the choice of the optimization

parameters in the MPC approach determines the optimal

values of the variables with no pre-specified desired values.

The main advantage of MPC-based approach is that it allows

the incorporation of input and state constraints in the control

design.

The paper is organized as follows. In Section II, the control

problem for S-systems is formulated and an MPC based

control approach is proposed. In Section III, the glycolytic-

glycogenolytic pathway model and generic branched path-

way are considered as case studies. Comments and possible

future research directions are outlined in Section IV.

II. CONTROL OF S-SYSTEMS

Consider the following S-system dynamics

ẋi = αi

N+m
∏

j=1

x
gij
j − βi

N+m
∏

j=1

x
hij

j , i = 1, 2, ..., N (1)

where αi > 0 and βi > 0 are rate coefficients and gij
and hij are kinetic orders and there exist N +m variables

(genes/metabolites) where the first N variables are depen-

dent and the remaining m variables can be manipulated to

control the system. In order to control the values (expres-

sions/concentrations) of the dependent variables, we consider

an integral control approach where the following m equations

are added to the above S-system

ẋi+N = ui, i = 1, ...,m. (2)

Figure 1 shows the S-system (1) augmented by the integral

control. The S-system with integral control ((1) and (2)) can
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Fig. 1. S-system with integral control architecture.

be written as follows:

ẋ = f(x) + g(x)u (3)

where x = [x1, ..., xN+m]T ∈ R
N+m, u = [u1, ..., um]T ∈

R
m, and

f(x) =


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g(x) =

[

0N×m

Im×m

]

Using the Euler approximation, we can write the discrete

time representation of the equation (3) as

x(k + 1) = F (x(k)) +G(x(k))u(k) (4)

where

F (x(k)) = x(k) + Tsf(x(k))

G(x(k)) = Tsg(x(k))

and Ts is the sampling time.

Problem Formulation:

Suppose that the S-system (1) is initially in the steady

state condition xss0 . Let us denote by Xt ⊂ {1, ..., N}
the set of indices corresponding to the target variables

(genes/metabolites) whose desired final steady state values

are specified as xssd . Then the control problem is to find

the control inputs ui, i = 1, ...,m that can guide the target

variables from the initial steady state condition xss0 to the

final one xssd .

A. Controller Design

In this section, a control design approach to the S-system

control problem is proposed. In this approach, we try to con-

trol the target variables (genes/metabolites) corresponding to

the indices Xt using an MPC approach. In other words the

control problem for system (1) reduces to finding a control

policy by solving the following optimization problem:

min
u(k),...,u(k+T−1)

T−1
∑

i=0

(

∑

j∈Xt

qi+1,j(xj(k + i)− xssd

j )2

+
m
∑

j=1

ri+1,ju
2
j (k + i) +

m
∑

j=1

wi+1,j∆u2
j (k + i)

)

(5)

subject to the following constraints

umin,i ≤u ≤ umax,i, i = 1, ...,m

0 ≤xi ≤ xi,Max, i = 1, ..., N +m

∆ui,min ≤∆ui ≤ ∆ui,max, i = 1, ...,m

x(k + j + 1) =F (x(k + j)) +G(x(k + j))u(k + j)

j = 0, ..., T − 1

where T is the prediction horizon and Ts is the sampling

time. In the cost function in (5), the weight variable q

penalizes the deviation of the dependent variables from

their desired steady-state values, while the weights r and w

penalize the control input and changes in the control input,

respectively. The above optimization problem is solved at

each controller sample point and the control input is selected

as

u(t) = u∗(k), kTs ≤ t < (k + 1)Ts

where u∗(k) is the solution of the above optimization

problem. Figure 2 shows a schematic diagram for the MPC

control of S-systems.

Due to the fact that the S-systems are inherently nonlinear,

the optimization problem (5) is a complex nonlinear one and

finding the solution for it is in general difficult. One way to

solve (5) is to make it linear via local linearization [25]. In

this approach, at any time step, the nonlinear system

x(k + 1) = F (x(k)) +G(x(k))u(k)

is linearized at the current state, and the local linear model

x(k + 1) = Ax(k) +Bu(k)

is used as the system constraint in the optimization problem.

The new local optimization problem can be solved using the

quadratic programming approach.

III. CASE STUDIES

A. glycolytic-glycogenolytic

In this section, we demonstrate the efficacy of the proposed

intervention approach developed in this paper by applying it

to an S-system that can be used to model a well-studied

biological pathway. Consider the following S-system which

represents the glycolytic-glycogenolytic pathway, shown in

Figure 3 [20], [26]:

ẋ1 =0.077884314x0.66
4 x6 − 1.06270825x1.53

1 x−0.59
2 x7

ẋ2 =0.585012402x0.95
1 x−0.41

2 x0.32
5 x0.62

7 x0.38
10

− 0.0007934561x3.97
2 x−3.06

3 x8

ẋ3 =0.0007934561x3.97
2 x−3.06

3 x8 − 1.05880847x0.3
3 x9

(6)
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Fig. 2. MPC Control of S-system.
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Fig. 3. Glycolytic-glycogenolytic pathway.

where N = 3, m = 7 and the independent variables have

the values x4 = 10, x5 = 5, x6 = 3, x7 = 40, x8 = 136,

x9 = 2.86, and x10 = 4. The steady state concentrations can

be found as x1 = 0.067, x2 = 0.465 and x3 = 0.150.

1) Scenario # 1: In the first scenario, we try to control

x1, x2, and x3 by manipulating x4, x5 and x8, i.e.

ẋ4 = u1

ẋ5 = u2

ẋ8 = u3

(7)

and all other xi’s i = 6, 7, 9, 10 are kept fixed. Physically,

this corresponds to the problem of using the glucose, inor-

ganic phosphate ion and phosphoglucose isomerase concen-

trations to control the concentrations of glucose-1-phosphate,

glucose-6-phosphate and fructose-6-phosphate. The target

values for x1, x2 and x3 are selected as xssd

1 = 0.2,

xssd

2 = 0.5 and xssd

3 = 0.4.

We try to apply the MPC control approach for guiding x1,

x2 and x3 to their target values. The local linear model is

used at any time step for solving the optimization problem

(5). The optimization parameters are selected as: T = 10

0 100 200 300 400 500 600
0

0.2

0.4

0.6

x

t (in minutes)

Fig. 4. Metabolite concentrations corresponding to scenario # 1 with MPC-
based controller.
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Fig. 5. Control input signals u corresponding to scenario # 1 with MPC-
based controller.

(prediction horizon), ri+1,j = 0, wi+1,j = 0.01, i = 0, ..., 9,

j = 1, 2, 3 (control input weights), qi+1,j = 1, i = 0, ..., 9,

j = 1, 2, 3 (target state weights), umax,i = 2, umin,i = −2,

i = 1, 2, umax,3 = 50, umin,3 = −50, ∆umax,i = 1,

∆umin,i = −1, i = 1, 2, 3, and Ts = 3 minutes (sampling

time). Figures 4 and 5 show the trajectory response and

control input for the S-system (6) controlled by the MPC-

based approach whose goal is to make the target states x1,

x2 and x3 converge to their desired values.

2) Scenario # 2: In this scenario, we consider the case

where the number of control variables is more than the

number of target variables. For instance, we seek to control

x1, x2 by manipulating x4, x5 and x8 where xssd

1 = 0.2 and

xssd

2 = 0.5. Physically, this corresponds to the problem of

using the glucose, inorganic phosphate ion and phosphoglu-

cose isomerase concentrations to control the concentrations

of glucose-1-phosphate and glucose-6-phosphate. Figures 6

and 7 depict the trajectory response and control input for

the system (6) corresponding to scenario # 2, controlled

by the MPC approach, where the optimization parameters

3521



0 50 100 150 200
0

0.2

0.4

0.6

x

t (in minutes)

Fig. 6. Metabolite concentrations corresponding to scenario # 2 with MPC-
based controller.
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Fig. 7. Control input signals u corresponding to scenario # 2 with MPC-
based controller.

are selected as: T = 10 (prediction horizon), ri+1,j =
wi+1,j = 0.01, i = 0, ..., 9, j = 1, 2, 3 (control input

weights), qi+1,j = 1, i = 0, ..., 9, j = 1, 2 (target state

weights) and Ts = 3 minutes (controller sampling time).

As shown in Figure 6, for the above choice of optimization

parameters, the steady state value of x3 is 0.178.

B. Branched Pathway

In this section, we demonstrate the efficacy of the proposed

intervention approach developed in this paper by applying

it to an S-system that can be used to model a generic

branched pathway. Consider the following S-system which

represent a generic branched pathway with the following

typical parameters [2] shown in Figure 8:

ẋ1 = 20x−0.8
3 x1

5 − 10x0.5
1

ẋ2 = 8x0.5
1 − 3x0.75

2

ẋ3 = 3x0.75
2 − 5x0.5

3 x0.2
4

ẋ4 = 2x0.5
1 − 6x0.8

4

(8)

5
x 1

x

2
x

4
x

3
x

+

-

Fig. 8. Generic branched pathway with four dependent variables.
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Fig. 9. Metabolite concentrations corresponding to the branched pathway
with MPC-based controller.

where N = 4, m = 1 and the initial condition x1(0) =
5.6, x2(0) = 3.1, x3(0) = 2.9, x4(0) = 3.1, and x5(0) =
0.9. As shown in Figure 8, the production of x1 depends

on the independent variable x5 with inhibition effect exerted

by x3. Moreover x4 has an activation effect of the depletion

of x3. It is assumed that x3 is the target gene/metabolite

in this pathway and we try to control the value of x3 by

manipulating x5, i.e.

ẋ5 = u1

and the target value for x3 is selected as xssd

3 = 5.

We try to apply the MPC control approach for guiding

x3 to its target value. The local linear model is used at

any time step for solving the optimization problem (5). The

optimization parameters are selected as: T = 10 (prediction

horizon), ri+1,1 = 0.1, wi+1,1 = 0.01, i = 0, ..., 9, (control

input weights), qi+1,1 = 1, i = 0, ..., 9, (target state weights),

umax,1 = 2, umin,1 = −2, ∆umax,1 = 1, ∆umin,1 = −1,

and Ts = 10 minutes (sampling time). Figures 9 and 10 show

the trajectory response and control input for the S-system

(8) controlled by the MPC-based approach whose goal is to

make the target states x3 converges to its desired value.

IV. CONCLUSION

In this paper, we have developed an intervention strategy

for biological phenomena modeled in the S-system frame-

work. In the proposed approach, a model predictive control

algorithm is developed which guides the target variables
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Fig. 10. Control input signal u1 corresponding to the branched pathway
with MPC-based controller.

to their desired values. The proposed control algorithm is

applied to the glycolytic-glycogenolytic pathway as well as

a generic branched pathway and the simulation results look

promising. One of the future research directions for this work

would be the development of robust control algorithms for

biological phenomena modeled by S-systems. Such robust

control algorithms are essential to ensure that a control

design based on a theoretical model succeeds when applied

to the actual biological phenomenon.
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