
  

Abstract—While training an LS-SVM model, two main chall- 
enges are parameter optimization and input feature extraction. 
The main purpose of this article is to address these two problems. 
Commonly used tools are PSO and BPSO, but they are not 
suitable for the optimization issues of many local optima owing 
to its random numbers used to update velocities. In this paper, 
an adaptive chaotic particle swarm optimization (cPSO) algori- 
thm is proposed to enhance its global searching capability and 
local searching capability. The practicality of the proposed 
scheme is demonstrated by application to mineral process for 
the prediction models between production rate of the con-      
centrated ore and the technical indexes. Compared with the 
original methods of grid search+PCA, GA+PCA, PSO+PCA as 
well as PSO+BPSO, the proposed strategy outperforms these 
existing methods in terms of convergence accuracy. 

I. INTRODUCTION 
UPPORT vector machine (SVM) [1] is a novel method 
for solving problems in nonlinear classification and 

regression. Unlike most of the traditional methods which 
implement the empirical risk minimization principle, it is 
introduced in the context of statistical learning theory and 
structural risk minimization, eventually resulting in better 
generalization performance. LS-SVM [2] is reformulations to 
standard SVM, which leads to solving linear KKT systems, 
and it is also proposed to address a variety of classification 
and regression problems [3], [4]. 

The main challenge of LS-SVM lies in continuous 
parameter optimization. In this procedure, kernel parameter 
σ2 and penalty coefficient γ are two critical parameters for 
model selection, and have a significant influence on the 
performance of the regression model obtained in the final. 
Therefore, these two parameters’ tuning attracts much atten- 
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tion. Typical continuous optimization method adopted is a 
grid search algorithm [5], but the complete grid search 
unavoidably brings a high computational burden, frequently 
excluding their application to large-scaled problems. In 
addition, heuristic strategies such as GA [6], PSO [7] and 
cPSO [8] are also introduced to optimize parameters of 
LS-SVM, however, GA and PSO easily trap into local optima, 
meanwhile, stochastic nature-inspired search algorithms can 
not assure good results in the different runs. To tackle these 
problems, we propose a bi-population approach in our former 
research [8], in which one population searches in the manner 
of PSO with excellent convergence ability, while the other 
performs adaptive lattice search with outstanding global expl- 
oration ability to ensure a good balance between exploration 
and exploitation, which doubles the optimization process, 
thus it is time consuming. In this paper, we utilize adaptive 
lattice search to create lattice particles to replace the worst 
particles in PSO only when the fitness value of gbest (global 
optima) stays constant for a certain period, which reduces the 
computational load without ruining the optimal solutions. 

Another difficulty of modelling based on LS-SVM is input 
feature extraction. Due to the coupling among input variables 
and computational problems high-dimensional input space 
causes, some linear methods such as PCA [9], PLS [10], ICA 
[11] etc., are proposed to address these issues. However, input 
space with nonlinear coupling limits their application to this 
issue. Thus, nonlinear methods, for example, KPCA [12], 
KPLS [13] based on kernel functions are also adopted. The 
original input space is firstly projected into high dimensional 
subspace, and then extract feature space with linear PCA or 
PLS, but these methods are criticized for their computational 
inefficiency. In addition, the discrete binary particle swarm 
optimization (BPSO) [14] algorithm has lately gained much 
attention for solving discrete feature extraction. In [15] the 
authors apply BPSO to find optimal feature space, through 
experiment they compare BPSO with GA as well as SA and 
conclude that BPSO is more efficient for feature selection. 
However, it is known that BPSO easily traps into local optima. 
Therefore, we introduce a novel BPSO with chaotic operator 
to enhance its searching capability. 

Aiming at solving problems of continuous parameter opti- 
mization and discrete input feature extraction of LS-SVM, we 
propose two novel strategies to modify standard PSO. Firstly, 
chaotic operators generated by chaotic map are introduced to
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replace random numbers. These operators can iteratively 
generate ergodic, non-repeated and pseudorandom solutions, 
which guarantee global search capability and convergence. 
Besides, we put forward a novel adaptive search strategy, in 
which we optimize continuous parameters in a manner of 
Clerc’s constriction PSO [16] unless the gbest fitness lessens 
in certain iterations. Otherwise, an adaptive lattice search will 
be introduced to create lattice particles to substitute the worst 
particles in PSO, which enables us to obtain more accurate 
local solutions. 

The remainder of this paper is organized as follows. 
Section II describes LS-SVM algorithm in brief. Section III 
introduces the proposed adaptive cPSO and its’ application to 
LS-SVM model selection. Section IV describes the mineral 
processing and compares the experimental results with grid 
search+PCA, PSO+PCA, GA+PCA, PSO+BPSO in the 
mineral process. Conclusions are finally given in Section V.  

II. LEAST SQUARE SUPPORT VECTOR MACHINE 
The formulation of LS-SVM is introduced as follows. It is 

necessary to minimize a cost function containing a penalized 
regression error as follows: 
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where,  γ and ζj represent the relative weight and regression 
error respectively.  

To solve this optimization problem, Lagrange function is 
constructed as follows. 
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where, αj is Lagrange multiplier. The solution of (1) can be 
obtained by Karush-Kuhn-Tucker (KKT) with respect to ω, b, 
ζj and αj. Eliminate ω and ζj, and then get linear equality: 
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where, y=[y1,y2,…,yl], H=[1,1,…,1], α=[α1, α2,…, αl].  
Apply Mercer’s condition: 
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In this study, we focus on RBF kernel, its equation is 
demonstrated as follow: 
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which leads to the following nonlinear regression function: 
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To achieve a good generalization and accurate model, it 
should be stressed to do a careful model selection, i.e. tuning 
σ2 and γ. In addition, the feature extraction problem should 
also be taken into account. The algorithm proposed to address 
these two problems is demonstrated in the next section. 

III. ADAPTIVE CHAOTIC PSO (ADAPTIVE CPSO) AND 
ITS’ APPLICATION TO LS-SVM MODEL 

A. Adaptive cPSO Algorithm  
1) Standard PSO and discrete BPSO 
Suppose that the searching space is n-dimensional and 

continuous. The number of particles is Num, the ith particle 
represents an n-dimensional vector Xi. It means that the ith 
particle locates at Xi = (xi1, xij,…, xin) in the search space. The 
position of each particle is a potential solution. The particles’ 
velocity and position are updated by the following equations: 
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where, vij, xij represent velocity and position of ith particle, 
pbesti is the local best position of ith particle, gbest is the 
global best solution. c1 and c2 are acceleration coefficients, 
rand1j and rand2j are two random numbers between 0 and 1. 

Binary particle swarm optimization (BPSO) [14] is propo- 
sed in 1997 by Kennedy and Eberhart. It could be effectively 
utilized to discrete binary sequence optimization problems. In 
the BPSO technique, the probability of the particle being as 0 
or 1 is specified by the velocity value using sigmoid function. 
This determination of the position is performed using the 
following formula: 
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where, rand is the random numbers uniformly distributed 
between 0 and 1, f (·) is sigmoid function and it is given as 
follows. 
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2) Chaotic map 
Chaos is a deterministic dynamic system and is very 

sensitive dependence on its initial conditions and parameters. 
Though the nature of chaos is apparently random and 
unpredictable, but it is characterized by ergodicity and 
regularity, and a chaotic map can iteratively generate ergodic, 
non-repeated, and deterministic solutions [18]. Based on 
special property of regularity, a more efficient pseudorandom 
search algorithm can be designed to replace random numbers 
in every run of standard PSO [19].  

Logistic map and tent map are the most frequently used 
chaotic behavior, but both have the disadvantage of trends to 
assemble to some range in higher probability after certain 
iteration. Hence, we introduce a novel chaotic map model 
utilizing the tent map perturbed by the logistic map [8]. The 
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slight disturbance of the logistic map can eliminate the fixed 
points of the tent map and almost do not change the amplitude 
of the tent map. The new chaotic map model is formulated as 
follows. 
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In this study, we set initial point u0 and x0 to 0.1, and the 
designed chaotic operator generates 30000 iterative points, in 
which the most appearing times of a point are 328, the least 
appearing times of a point are 254, and the average appearing 
times are 300, so the constructed chaotic map is good at 
distribution. Therefore, a chaotic operator chaotic_operator (k) 
= vk is designed, which can get completely different track 
while slightly tuning the initial value of u0 and x0. 

3) adaptive cPSO 
The major drawback of standard PSO lies in its premature 

convergence, especially while handling problems with many 
local optima, in this situation, the solution is mot available for 
some issues for the sake of accurate global solution. In this 
paper, chaotic operators generated from proposed chaotic map 
substitute random numbers in standard PSO. By this way, it is 
intended to improve the global convergence and to prevent to 
trap into local optima. Besides, we also propose adaptive 
lattice search to enhance its accuracy of local solution. Both 
contribute to a more accurate global solution. The details are 
explained as follows. 

Based on the standard PSO, a novel chaotic operator is 
introduced with the expectation of keeping the local diversity, 
as well as enhancing the reliability of the algorithm. The 
velocity of each particle is updated by the following equation: 
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where, chaotic_operator is an iterative value as chaotic map- 
ping. 

In addition, a novel PSO embedded with lattice search is 
introduced to keep a good balance between exploration and 
exploitation. If the gbest fitness lessens in certain iterations, 
we search continuous parameters in a manner of PSO, other- 
wise, adaptive lattice search will be introduced to fulfill 
another subspace search in the neighborhood of gbest. This 
algorithm creates lattice particles in place of the worst PSO 
particles.  

The adaptive lattice search is described as following. Pro- 
vide an n-dimensional decision space Ωn and the ith dimension 
variable range is [dimin,dimax]. Initially partition each dimension 
of the decision space to pi lattices equally, so the range of 
initial lattice is [dimin + δi *(j-1), dimin + δi*j], and its width is δi 
= (dimax - dimin)/pi. Hence, there will be nd =∏pi lattices in the 
decision space Ωn. According to gbest in last generation, we 
locate the position of gbest in a range of a initial lattice [dimin + 
δi *(aim-1), dimin + δi* aim], aim=1,…, pi, and then tune the 

variable range to [dimin + δi *(aim -1), dimin + δi* aim] to search 
the global optima in a more accurate range. Update the 
position of each particle according to the following equation: 
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where, dimin(k) = dimin +δi *( aim -1), and its width is δi
’ = δi /pi, 

and chaotic_operator is an iterative value as chaotic mapping, 
maxgen is overall generations. The construction of the 
two-dimensional 4*4 adaptive lattice search is showed in Fig. 
1. 
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Fig.1. Construction of adaptive lattice search 
The main steps of adaptive cPSO are described as follows, 

and its’ mechanism is shown in Fig. 2. 
Step1. Set parameters of proposed algorithm. The 

population of particles Num is 30, and acceleration coefficient 
c1=2.05, c2=2.05. The maximum iterative number maxgen 
=200, and the inertia weight wV is the linearly decreasing 
weight [20], given by equation 14. By this way, balance 
between the global and local searching abilities of the swarm 
is guaranteed effectively. 
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Step2. Initialize the population of PSO randomly. 
Step3. Calculate the fitness value and update the local best 

position of ith particle pbesti and global best position gbest. 
Step4. Check whether the fitness value lessens in the past 

10 iterations, if it changes, go to step 6, otherwise go to step 5. 
Step5. Rank all the individuals based on fitness values in 

descending order, and select the best particles (account for 
70% of the sum) to Step7, while the rest are replaced by lattice 
particles produced by adaptive lattice search. First tune 
adaptive lattices range according to the best solution gbest, 
and then create lattice particles by (14). Finally, set their 
velocity to 0 at next generation. 
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Step6. Update the particles’ velocity and position of the 
population through (8), (9), (12). 

Step7. Evaluate the termination criterion. If it reaches the 
termination criterion, stop the iteration, and gbest is the 
optimal solution. Otherwise, go to step 3. 

 

initialize the population

calculate fitness value,update the local 
best position of ith particle pbesti  and 

global best position gbest.

update velocities and positions of 
the particles by Eqs. (8)

(9)(12)

end,
and return the global optima

termination criterion?

Y

N

check the fitness lessens 
for certain iterations?

rank all the individuals on the basis of 
fitness values in descending order

the particles of best 
part 

(account for 70%)

the particles of worst 
part 

(account for 30%)

create lattice particles by the Eqs. 
(13) to replace original particles,set 
their velocity to 0 in next generation

Y

N

worst best

 
Fig.2. Flow chart of adaptive cPSO for parameter optimization and feature 

extraction 

B. LS-SVM Parameters Optimization Based on Adaptive 
cPSO 
To improve model accuracy and generalization of LS- 

SVM, adaptive cPSO is proposed to optimize the continuous 
parameters and discrete feature space of LS-SVM model. The 
structure of the modeling process is shown in Fig. 3. 
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Fig.3. Architecture of modelling process 

To assess the performance of the training process compre- 
hensively, we introduce cross validation (CV) [21] algorithm 
to calculate model error. The training set is split into lfold 
subsets equally, denote S1,S2,…,Slfold, for each parameter 

setting and input feature space, and using it to train the 
LS-SVM model lfold times during which Si is held out while 
the remaining subsets serve as training set to train the model, 
and then the trained model is validated using the held-out 
subset Si. That enables each subset to take a turn as the testing 
data, and then calculate the predicting output based on the 
regression model and corresponding root mean square error 
(RMSE) of the entire training set. That is a fitness function of 
the proposed reliable and efficient PSO given by the following 
equation: 
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where, yij is the jth actual output of Si, f(xij) is the jth predicting 
output of Si, and dim represents the dimension of  Si. 

As shown in the modelling flow, firstly, we initialize the 
particles’ position and velocity, in which position represents 
two parameters and the input feature. In each generation the 
adaptive cPSO generates new particles, by which predictive 
model with LS-SVM and CV algorithm is trained, and then 
calculates the predictive output and the corresponding fitness 
value. Based on the fitness of these particles, we update the 
local and global best position until the termination condition is 
satisfied. Finally, we get the global optima and corresponding 
best predictive model. 

IV. EXPERIMENT RESULTS IN MINERAL PROCESS 

A. Mineral Process Description 
Mineral processes, sometimes called ore dressing, are a 

complex process with many uncertain factors and multi- 
variable coupling. And it has the characteristics in terms of 
large-range continuity, nonlinearity and large-time delay, so 
there is no reported explicit physical model so far. How- ever, 
the rich real-time and laboratory analysis data makes it 
possible to establish a data-driven nonlinear model by LS- 
SVM. 

Based on the production process of a mineral processing 
plant in western China, the ore-dressing process is composed 
of the raw ore screening, the shaft furnace roasting,  grinding, 
and the magnetic separation(with strong and weak magnetic 
field) and concentrate generation [17], which is illustrated in 
Fig.4. 
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Fig.4. The production process of mineral process. 

To establish the predictive model, we extract the related 
factors to be taken as the input set of the regression model 
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according to the process mechanism, that is X = [ε, G1, G2, P1, 
P2, Q1, Q2, β1, β2, ζ1, ζ2, ψ1, ψ2, ρ], in which, ε, G1, G2, P1, P2, 
Q1, Q2, β1, β2, ζ1, ζ2, ψ1, ψ2 and ρ represent magnetic tube 
recovery rate, grade of particle ore, grade of roasted ore, 
particle size of strong magnetic ore, particle size of weak 
magnetic ore, production rate per hour of grinding of strong 
magnetic mill, production rate per hour of grinding of weak 
magnetic mill, grade of strong magnetic concentrate, grade of 
weak magnetic concentrate, grade of strong magnetic tailing, 
grade of weak magnetic tailing, running time of grinding of 
strong magnetic ore, running time of grinding of weak 
magnetic ore, and grade of gangue respectively. 

B. Experiments Results 
For the industrial mineral processing data, 575 samples are 

split into training set with 500 samples and the remaining is 
test set. To obtain optimum parameters and feature space, the 
search process is constructed based on 3-fold CV error of the 
training set. Grid search, GA, PSO and adaptive cPSO are 
adopted to optimize two parameters, whilst PCA, BPSO and 
BPSO with chaotic operator are employed to fulfill the task of 
feature extraction. In every generation, we choose 30 particles 
to search the best parameters and feature space. When the 
gbest fitness value doesn’t change for certain iterations, a 3*3 
adaptive lattice search will be adopted to search in the 
neighborhood of gbest. After 200 iterations, we get the best 
parameters σ2 =20, γ= 1037.6 and the input feature space 
feature = 1 4 5 8 9 13 14. 

The simulation results of proposed method are shown in 
Fig.5, representing the performance of the model based on 
adaptive cPSO, in which 500 data are used to train the model 
and 75 are used to test the model. At the same time, we 
calculate the output error between the actual and predicted 
output, the corresponding error autocorrelation is shown in 
Figs. 6-7. From Figs. 5-7, it is can be seen that the proposed 
method is of high accuracy and generalization. 
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Fig. 5.The performance of obtained model for predicting output of train and 
test set 
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Fig.6. Error autocorrelation digram of  training set 
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Fig.7. Error autocorrelation digram of  test set 

In addition, the root mean square error (RMSE) and mean 
square correlation coefficient r2 are used as the criterion to 
evaluate the performance of proposed methods, given by the 
following equations: 
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where, f (xj) represents the estimated value, yj denotes the 
actual value, and dim is the number of input.  

The training and test set are adopted to validate the 
performance of LS-SVM predictive model based on opti- 
mized by grid search+PCA, PSO+PCA, GA+PCA, PSO 
+BPSO and adaptive cPSO respectively. The performance 
indexes are listed in tableⅠ. From this table, it can be seen that 
the model established by LS-SVM with the proposed 
algorithm has a better regression result on indexes of RMSE 
and r2 on training set. Even though indexes on test set is not as 
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good as those obtained by other algorithms, it also is of high 
accuracy. On the other hand, it reflects the good performance 
of the proposed algorithm due to the parameter optimization 
and feature extraction executed on training set, and those are 
not suitable for test set owing to the difference between the 
two sets to some extent. Hence, the proposed method is an 
efficient algorithm for parameter optimization and feature 
extraction. 

TABLE I 
PERFORMANCE INDEXES ON OBTAINED MODEL 

Performance indexes  
Algorithm RMSE 

of train- 
ing set 

r2 of 
training 

set 

RMSE 
of test  

set 

r2 of 
test set 

Grid search+PCA 414.0111 0.8926 342.6216 0.8817 
GA+PCA 413.2958 0.8930 340.8386 0.8837 
PSO+PCA 410.4893 0.8926 342.5434 0.8823 
PSO+BPSO 403.3789 0.8981 332.4582 0.8874 
Adaptive cPSO 359.4959 0.9198 356.0067 0.8786 

V. CONCLUSIONS 
This study aims to design a more efficient algorithm that 

addresses the issues of parameter optimization and feature 
extraction in modelling based on LS-SVM. A novel chaotic 
operator is proposed to replace random numbers in standard 
PSO, which gives similar effect in offering diversity for search 
algorithm and offers an ergodic, non-repeated, and determi- 
nistic solution, leading to a global result. In addition, an 
adaptive lattice search is introduced to strengthen cPSO’ local 
exploration ability to obtain a more accurate local result in the 
neighborhood of gbest, which contributes to a more accurate 
global solution. The proposed method is utilized to establish 
the predictive model between the production rate and the 
technical indexes of the production procedures in the mineral 
processing plant. The experimental results show that the 
proposed adaptive cPSO performs better than other methods 
regarding convergence accuracy. 
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