
Vehicle State Estimation within a Road Network using a Bayesian Filter

Peter Niedfeldt∗, Derek Kingston†, Randal Beard††,

Abstract— A histogram filter is used to estimate the state
of a vehicle traveling along a known road network. Our
contribution is to provide a framework to estimate vehicle
states without knowing its route or the final destination. The
vehicle is constrained to travel on the road network with an
unknown but bounded speed. We account for road intersections
by applying a likelihood to the possible direction of travel
during the prediction step of the filter. These likelihoods are
determined by system parameters that model how likely roads
will be taken, and the maneuvers that the vehicle will likely
perform.

———————————————————————

I. INTRODUCTION

Unmanned Air Vehicles (UAVs) are often tasked with

performing dull, dirty, and dangerous missions to relieve the

burden and risk for human operators who would otherwise

perform these missions. One assignment that is routinely

tasked to UAVs is to search for and track ground vehicles.

There is extensive literature involving tracking ground

objects. This paper focuses on tracking vehicles that are

constrained to maneuver along a road network. To start the

estimation process, we are given an a priori distribution

describing the initial location and velocity of the vehicle.

Given its dynamics, we can develop a model to propagate

a distribution of where the vehicle will be located after a

known amount of time. Applications include civilian law

enforcement and military surveillance scenarios.

In [1], Worrall and Nebot use Bayesian filters to local-

ize mining vehicles in a surface mine. Specifically, they

implement both a histogram filter and a particle filter to

estimate the location of mining vehicles traveling along the

mine road network. Their estimation scheme assumes that the

mining vehicles will take the optimal route from their current

location to the collection point. This assumption allows the

use of an A* algorithm to calculate the set of roads that

the vehicle will take [2], [3], [4], and reduce the problem to

estimating the distance traveled along one, segmented road.

Worrall and Nebot also collected empirical data from the

vehicles in the mine using GPS measurements to construct

a velocity distribution to more accurately model vehicle

motion. Given a position along the road, they calculate the

likelihood that a vehicle will be traveling at that location

for each of a range of possible speeds. This is an effective

∗ Peter Niedfeldt is a PhD student in Electrical and Computer Engineering
at Brigham Young University, Provo, Utah, 84602 (corresponding author
email: pcniedfeldt@gmail.com)

† Derek Kingston is with the Air Vehicles Directorate, Air Force Research
Laboratories, Wright-Patterson AFB, OH 45433

†† Randal Beard is a professor of Electrical and Computer Engineering
at Brigham Young University, Provo, Utah, 84602

technique for modeling the decreasing velocity in a sharp

turn, or increasing velocity on a straight road. However,

Worrall and Nebot assume that these velocity distributions

are unchanging and time independent and that the road

path is known a priori. In our work, time of day could

drastically effect the velocity distribution due to traffic or

other conditions. Also, since the future paths of the vehicle

are not known to the searcher, one would have to account

for different velocity models at an intersection depending on

whether or not they turn or go straight. We choose to use a

model that assumes a vehicle’s velocity has a high correlation

with its previous velocity.

In developing an estimator to localize vehicles along a

road network, Tang and Özgüner [5] reason that every sensor

measurement includes information that should be included

in the update step of a Bayesian filter. Not detecting a

vehicle is still useful information, as it describes where the

vehicle is not located. Using this method, the probability of

missed detections and false alarms can also be incorporated

to aid in localization and correctly model an operator. Using

the Fokker-Planck equation to model the vehicle dynamics

and assuming near constant velocity, [5] developed a near

constant velocity vehicle model. Our approach uses similar

models but extends the solution domain to include variable

vehicle velocity.

Our contributions include relaxing the constraint that the

final destination of the vehicle is known by letting the belief

spread along all roads leading from an intersection. We also

model the velocity of the vehicle as a second order Markov

process to allow for a strong correlation between the previous

and current velocities, allowing the vehicle to change speeds.

Under this framework, we develop an estimation scheme

using a Histogram filter. We show its utility in searching

for a vehicle using a simple, ‘peak-first’ search while using

a gimbaled camera on a UAV.

II. ROAD NETWORK AS A BI-DIRECTIONAL GRAPH

We first describe the problem mathematically by repre-

senting an arbitrary road network using a directed graph.

The intersections of roads are represented by nodes, and each

direction of travel along a road is represented by a directed

graph edge, as shown in Figure 1. This implies that a two–

way road between two intersections would be represented by

two separate edges. Let N = {n1 . . . nn} represent the set

of nodes and E = {e1 . . . em} represent a set of connecting

edges in the graph G (N, E). The adjacency matrix is denoted

as A , where the element aij ∈ {0, 1} indicates a direction

of travel from node i to node j.

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 4910

There exists a mapping MN that converts node ni, 1 ≤
i ≤ n, to the ith intersection’s North and East coordinates

pn,i and pe,i. There also exists a mapping ME that converts

edge ej , 1 ≤ j ≤ m, to the jth road’s length lj , average

road velocity Vavg,j , and λj = p(ej | ni) or the likelihood

that the vehicle will select to travel along road j when it is

at the intersection ni. This mapping can be represented as

MN (ni) → [pn,i, pe,i] (1)

ME(ej , ni) → [lj , Vavg,j , λj]. (2)

Each edge ej is subdivided into an integer number of cells

cj . Each cell has length L, so cj is calculated according to

cj = round(lj/L). (3)

Since rounding inherently introduces errors, we make the

assumption that the length lj is much larger than L/2
(the maximum error introduced by rounding). We therefore

assume that the rounding error is negligible and is a sufficient

way to discretize the road network. For reasons that will be

discussed in Section IV, L should be chosen such that the

vehicle does not travel more than L units in one time step.

����������	�

	���
jj lLc ==

Fig. 1. The mapping of a physical road network to a graph, where the
intersections are represented by the nodes, and each direction of travel
along the road is represented by a directed edge. Notice that each edge
is subdivided into cells of length L, where the jth edge of length lj is
divided into cj cells.

In implementing a Histogram filter, the continuous range

of possible velocities must be quantized into a finite set. Let

vmin and vmax be the minimum and maximum velocity of

the vehicle, and let d be the number of velocity quantization

levels. Since we account for direction of travel along the

road in the construction of graph G (N, E), we constrain

vmax > vmin ≥ 0.

III. BAYESIAN FILTERS

Suppose there exists a vector of state variables x. Using

the notation presented by Thurn et. al. [6], a belief bel(xt) is

a probability distribution representing the current knowledge

of x at time t. A Bayes filter is implemented using two basic

steps: a control update, and a measurement update.

The control update, or a prediction step, is used to propa-

gate the belief based on the control inputs ut. Therefore, the

prior belief bel(xt) is given by

bel(xt) =

∫

p(xt | ut, xt−1) bel(xt−1) dxt−1, (4)

where bel(xt−1) is the posterior belief from the previous time

step. In other words, the belief is the integral over all of the

previous states that xt will be realized given the previous

states and the current control inputs.

The second step of the Bayes filter occurs whenever a

measurement is received. These measurements are used to

update the belief model according to the equation

bel(xt) = η p(zt | xt) bel(xt), (5)

where zt represents the measurement, and η is a normalizing

factor that ensures that
∫

bel(xt) = 1. Equation (5) calculates

the posterior belief at time t given the prior belief multiplied

by the probability that zt was measured.

To implement the Bayesian filter, we use a Histogram

filter, which uses a discretized search space to allow for a

closed form solution. Following Thurn et. al [6], the general

forms for the prediction step and measurement updates are

pk,t =
∑

i

p(Xt = xk | ut, Xt−1 = xi) pi,t−1 (6)

pk,t = η p(zt | Xt = xk) pk,t, (7)

where p represents the prior probability and p is the posterior

probability

IV. IMPLEMENTATION USING HISTOGRAM FILTER

This section describes the specific implementation of the

Histogram filter in the context of a road network. This

particular type of filter is chosen because of its ability

to account for multi-modal distributions, and because it is

computationally faster than a Particle filter [1]. The major

contribution in this section is the structure introduced to the

typical Histogram filter to account for the distribution split-

ting as it passes through an intersection. For convenience,

we assume that the time step ∆t = 1.

A. Prediction Model

We begin by deriving a velocity prediction model rep-

resented by a random process Vt, with t representing the

current time. We assume that the uncertainty in the veloc-

ity can be modeled as a sampled Gauss-Markov Process,

meaning that the velocity distribution at time t is related

to the previous distribution according to Vt = Vt−1 + W ,

where W represents the random variable describing the

spreading of the velocity and can be thought of as noise. For

simplicity, and without loss of generality, we assume that the

initial velocity distribution is given by a Gaussian distribution

V0 ∼ N
(

µv0
, σ2

v0

)

and that W is a zero-mean Gaussian with

standard deviation σw. This leads to the velocity prediction

equation

p(vt | vt−1) =
1

√

2π(σ2
vt−1

+ σ2
w)

× exp

(

−
(vt − µvt−1

)2

2(σ2
vt−1

+ σ2
w)

)

, t={1, 2, . . .}.

(8)

4911

8 10 12 14 16 18 20 22
0

0.05

0.1

0.15

0.2

Velocity (m/s)

p
(V

 =
 v

)

Velocity Distribution using a priori Distribution

time = 0

time = 100

time = 200

8 10 12 14 16 18 20 22
0

0.2

0.4

0.6

0.8

Velocity (m/s)

p
(V

 =
 v

)

Velocity Distribution after Sensor Measurement

time = 0

time = 100

time = 200

Fig. 2. The velocity probability mass function (pmf) as time increases for
both an initial velocity pmf and for a velocity pmf after receiving a sensor
update.

Since we are implementing a discrete velocity model, these

distributions need to be sampled and normalized to remain

true probabilities, as illustrated in Figure 2.

We now describe the vehicle model, which in continu-

ous time estimates the distance traveled by integrating the

velocity, S =
∫

V dt. However, since the road network is

discretized, we use the the form

st = st−1 + vt, (9)

where vt is a realization of the random variable Vt. To

simplify the notation, we assume that the velocity is defined

in terms of distance per time-step.

In Section II, we constrain the length L of the road

discretization to be less than the distance traveled in a time-

step to avoid gaps in the distribution of position due to the

discretized velocity. Non-integer velocities are accumulated

at each time step and show the vehicle moving either one

road segment or not at all. Mathematically described using

the floor function ⌊(·),

st = st−1 + ⌊(vt + νt−1) (10)

where

νt = (vt + νt−1) mod 1,

where vt is a realization of Vt at time t and where ⌊
and mod are the floor and modulo functions respectively.

Equation (10) keeps track of the velocity without any loss

in precision.

The prediction model of the position belief pt(sk, vl) is

updated according to the equation

pt(sk, vl) =

∑

i

∑

j

[

p(St =sk, Vt =vl | St−1 =si, Vk−1 =vj) ×

× pt−1(si, vj)

]

.

Applying conditional independence and then recognizing that

only the previous velocity at time t − 1 affects the current

position sk,

pt(sk, vl) =

∑

i

∑

j

[

p(St =sk | Vt =vl, St−1 =si, Vk−1 =vj) ×

× p(Vt =vl | St−1 =si, Vk−1 =vj) pt−1(si, vj)

]

=
∑

i

∑

j

[

p(St =sk | St−1 =si, Vk−1 =vj) × (11)

× p(Vt =vl | St−1 =si, Vk−1 =vj) pt−1(si, vj)

]

.

This is the most general form and allows for the jth road’s

average velocity Vavg,j to have an effect on the distribution

of the velocity while on that road. However, if we assume

that all roads have the same average velocity, we can simplify

the equations as

pt(sk, vl) =
∑

i

∑

j

[

p(St =sk | St−1 =si, Vk−1 =vj) ×

× p(Vt =vl | Vk−1 =vj) pt−1(si, vj)

]

=
∑

j

[

∑

i

p(St =sk | St−1 =si, Vk−1 =vj) ×

× pt−1(si, vj)

]

p(Vt =vl | Vk−1 =vj). (12)

These simplifications dramatically reduce the computa-

tional complexity because, given the previous velocity, the

probability that the vehicle is traveling a current velocity is

the same along the entire map, and can be performed with

one vector operation.

Considering that the vehicle can take one of any number

of roads at an intersection, there is extra bookkeeping. For a

single intersection ℓ, let Il ⊂ E be the set of roads leaving

intersection ℓ and Ie ⊂ E be the set of roads entering

intersection ℓ.

To find the probability that a vehicle will leave an inter-

section via road il ∈ Il, we sum the weighted probabilities

of the roads leading into that intersection. The weight wie

represents the likelihood that a vehicle will travel from road

ie to road il, and is composed of 1) the likelihood that the

vehicle prefers road il after traveling into the intersection of

interest λil
, and 2) the likelihood γm(ie,il) that the vehicle

will perform a particular maneuver from road ie to road il.
For example, going straight could be more probable than

turning, and a u-turn would be less probable than a turn. All

possible values are normalized such that the sum is one.

Mathematically, for all il ∈ Il,

p(il) =
∑

Ie

wie
p(ie), (13)

4912

where

wie
=

λil
γm(ie,il)

∑

Ie
λil

γm(ie,il)
. (14)

In theory, one can treat every road cell as an intersection

with two likelihoods: the likelihood of continuing forward

and the likelihood of turning around. This would be par-

ticularly appropriate for a vehicle that is evasive. For this

paper, we assume that the vehicle can only perform a u-turn

at intersections.

B. Measurement Update

In computing the effects of a measurement update, the

general histogram equation given in Equation (7) must be

modified if the sensor is an optical or infrared camera that

measures position only.

According to Tang and Özgüner, most classical mea-

surement update approaches only consider updates when

the vehicle is within the sensor’s field of view (FOV) [5].

We follow the logic of [5] and update the current belief

p(sk,t, vl,t) with sensor measurements, whether or not the

vehicle is detected. Let Zt represent a random variable

describing a report of whether or not the vehicle is within

the FOV of the sensor. Then the sample space is given

by Zt = {D,U}, where D represents a detection and U
represents a non–detection.

This method facilitates the modeling of the probability of

false alarm (PFA) and missed detection (PMD). We extend

Tang and Özgüner’s results by computing the PFA and PMD

as functions based on dwell time tdwell and zoom level ζ of

a gimbaled camera. The dwell time tdwell is simply the time

that the FOV remains over a particular region of the search

space. Therefore, the measurement update for the distribution

of p(sk,t, vl,t) is given by

p(sk,t, vl,t) = η p(yk,t | sk,t, zk,t, tdwell, ζ) pt(sk, vl). (15)

Before we continue, we must characterize the effects of

zoom level. We not only need to know the size of the FOV,

but also the functions fMD(tdwell, ζ) and fFA(tdwell, ζ)
that are associated with the zoom level ζ that describe the

probability of missed detection (pMD) and the probability of

false alarm (pFA), respectively. For simplicity, we assume

that both are linear, piece–wise constant functions described

by Equations (16) and (17).

1
Pmax

P

(t
d

w
el

l,
ζ

)

tζ,min tζ,max

Pmin

Dwell time (tdwell)

f

Fig. 3. This figure shows the function used for both the Probability of
False Alarm and the Probability of Missed Detection. Notice that before
the dwell time tζ,min there is a larger probability of error, after which the
performance increases linearly until a time tζ,max.

The probability p(yk,t | sk,t, zk,t, tdwell, ζ) can now be

given by Equation (18). See Figure 4 for a visual repre-

sentation of what happens during an update, depending on

whether or not a vehicle was detected.

����������	��	�
���
�
��� ��������
�	���	��	�
� �

�
���

����������	����	�
��������

�

),(ζdwellMD tf

�������	����������
�������	

FttdwellMD AXyptf)|(),(1 ζ−

),(ζdwellFA tf
),(1 ζdwellFA tf−

Fig. 4. This figure illustrates the calculation of p(yk,t | sk,t, zk,t) based
on whether or not a vehicle is detected within the sensor footprint while
observing the road network. See also Equation (18).

Figure 5 is an example of a distribution propagating along

a road network after increments of 25 time steps without

any measurement updates. Also, although the filter can be

implemented such that the vehicles can leave the search

space, in this paper we assume that the vehicle remains

present on the map throughout the search effort. In other

words, probabilities are reflected at the edges of the map.

This filter can be extended to search and track multiple

targets. However, this will introduce additional complexities

in the operators ability to distinguish between the various

vehicles. There is a probability that one vehicle will be

incorrectly identified as another vehicle. This is a problem

that will be explored in future work.

V. INTELLIGENT SEARCHING AND SIMULATION

In this section we describe a very simple search algorithm.

Intuition suggests that by considering the posterior distribu-

tion, generated using the estimation strategy developed in the

previous sections, we will have a better idea where to focus

our search on the map. The search algorithm presented here

validates our intuition and gives insight to future work.

Consider first an ideal camera where the camera instantly

points to its commanded location. One strategy would be to

point at the highest probabilities first, resulting in what we

will refer to as a Highest Probability First Camera (HPFC).

Varying several parameters, we will compare the results to a

Randomly Pointing Camera (RPC). In both cases, we must

define when the camera is supposed to recompute the desired

center point of the FOV. We chose to recompute when the

ratio χ, or probability currently in the FOV over the original

probability in the FOV (when it was first observed), drops

below a threshold χt. In this case, χt = 0.1, or 10% of the

original probability in the FOV. A Monte Carlo set of 500

simulations allows us to compare the average result for each

set of parameters.

We first study the effect of increasing the dwell time from

one sample period to time τ , where τ depends on how long

4913

fMD(tdwell, ζ) =











PMDmin ∀ tdwell ≤ tζ,min

PMDmax−PMDmin

(PMDmax−PMDmin) (tdwell−tζ,min) tζ,min < tdwell < tζ,max

PMDmax ∀ tdwell ≥ tζ,max

(16)

fFA(tdwell, ζ) =











PFAmin ∀ tdwell ≤ tζ,min

PF Amax−PF Amin

(PF Amax−PF Amin) (tdwell−tζ,min) tζ,min < tdwell < tζ,max

PFAmax ∀ tdwell ≥ tζ,max.

(17)

p(yk,t | sk,t, zk,t, tdwell, ζ) =



















fMD(tdwell, ζ) if x ∈ F and zt = U

1 − fFA(tdwell, ζ) if x /∈ F and zt = U

(1 − fMD(tdwell, ζ)) p(yt | Xt) AF if x ∈ F and zt = D

fFA(tdwell, ζ) if x /∈ F and zt = D.

(18)

it takes for the ratio χ to fall below χt. In this scenario, the

initial vehicle position is selected randomly, but is known

exactly. The camera does not start making observations

until 100 time–steps after the start of the simulation. The

simulation runs for a total of 500 seconds. The zoom is fixed

to operate at the ζ = 3 (see Table I). There are a total of

1782 road cell elements used to represent the map. Also, for

all simulations, the vehicle is constrained to remain in the

search area.

Figure 6 illustrates the results of varying the dwell time.

When dwell time is equal to one sample period, the RPC

successfully finds the vehicle almost as often as the HPFC,

although it does take longer. This is because both strategies

are changing locations every time step. Including the effects

of dwell time more closely models reality. When the con-

troller switches camera view after the 10% threshold is met,

we find that the HPFC does not find the vehicle as frequently

as before, but still finds it almost twice as often and twice

as fast as the RPC.

Figure 7 shows the effects when the initial time that the

camera begins observations tcam is varied from 50, 100, and

200 time–steps after the start time. The zoom level is again

set to ζ = 3. Here we find that the RPC is not affected very

much while varying this parameter. However, the HPFC is

affected, and as tcam increases, so does the time it takes

to find the vehicle. The success rate also drops as tcam

increases. As we develop a more realistic planner, we see

that as t → ∞, there may come a time when it would be

more effective to switch to a breadth first search because the

distribution over the map approaches a uniform distribution.

The final comparisons we consider are the effects of

zoom level. In Table I, we describe the parameters for the

respective zoom levels. Notice that we assume that the user

is much more likely to miss a detection than to have a false

alarm, although all values increase according to the area in

the FOV.

Figure 8 summarizes the results of these simulations.

Notice that except for the lowest zoom level, higher zoom

levels result in faster vehicle acquisition and a higher likeli-

hood of finding the vehicle within the simulation run time.

These results show the complexities of developing a planner

including both position and zoom. Because of the high false

alarm rate of low zoom levels, the camera falsely detects the

vehicle somewhere in the image, while the vehicle really

is in the FOV but in a different location. An intelligent

planner should identify potential vehicles at low zoom, but

still require the high zoom in order to guarantee correct

classification. In other words, we should have a higher

probability of false alarm associated with low zoom, which

necessitates viewing the vehicle at a higher zoom level.

———————————————————————

VI. CONCLUSIONS

We have shown that given information about a road net-

work and vehicle dynamics, one may construct a histogram

filter that estimates the probability of where the vehicle is

located even if we do not know the exact path that the vehicle

will take. The Histogram filter receives measurement updates

during a search process and combines those updates, using

Bayes rule, with the vehicle belief estimate.

Using a simple planner, we have shown that this filter

allows us to find the vehicle more successfully and quickly

when compared to a random search. We are currently work-

ing on developing a planner that maximizes how fast we

find the vehicle based on position and zoom level. We are

also analyzing various heuristics to develop a planner that

considers gimbal and zoom dynamics.

REFERENCES

[1] Stewart Worrall and Eduardo Nebot, “Using Non-Parametric Filters and
Sparse Observations to Localise a Fleet of Mining Vehicles”, in IEEE

International Conference on Robotics and Automation, April 2007.
[2] Steven M. LaValle and Jr. Kuffner, James J., “Randomized Kinody-

namic Planning”, The International Journal of Robotics Research, vol.
20, no. 5, pp. 378–400, 2001.

[3] Adi Botea, Martin Muller, and Jonathan Schaeffer, “Near Optimal
Hiearchical Path-Finding”, Journal of Game Development, vol. 1, pp.
7–28, 2004.

[4] S.A. Bortoff, “Path planning for UAVs”, in American Control

Conference, 2000, vol. 1, pp. 364–368.
[5] Z. Tang and U. Ozguner, “Sensor fusion for target track maintenance

with multiple UAVs based on Bayesian filtering method and hospitabil-
ity map”, in 42nd IEEE CDC, 2003.

[6] Sebastian Thurn, Wolfram Burgard, and Dieter Fox, Probabilistic

Robotics, MIT Press, 2005.

4914

TABLE I

CHARACTERIZATION OF ZOOM LEVELS

Zoom Level ζ FOV size tmin tmax PFAmin PFAmax PMDmin PMDmax

1 40x40 cells 50 200 0.07 0.2 0.7 1.0
2 16x16 cells 25 100 0.03 0.1 0.5 1.0
3 5x5 cells 3 8 0.03 0.07 0.15 1.0
4 3x3 cells 1 4 0.01 0.04 0.05 1.0

Fig. 5. This figure shows the propagation of the estimated distribution of
where the vehicle by applying the Histogram filter. From top to bottom,
these are snapshots of the distributions at time = 0, 25, 50, 75, and 100
time steps. Notice that due to the probability splitting in an intersection, the
outflowing probability is significantly less. As time approaches infinity, the
distribution spreads to be a uniform distribution.

100

120

140

160

180

200
Comparing RPC and HPFC with and without Dwell Time

RPC No Dwell Time

RPC Dwell Time

HPFC No Dwell Time

HPFC Dwell Time

Time Till First Sighting % of Time Found
0

20

40

60

80

Fig. 6. This figure compares the results between the Randomly Pointing
Camera (RPC) and the Highest Probability First Camera (HPFC) when
considering dwell time or not. Notice that the RPC finds the vehicle almost
as successfully as the HPFC when dwell time is not considered because of
frequent changes in position. In all scenarios, the HPFC finds the vehicle
about twice as fast as the RPC.

100

120

140

160

180

200

Comparing RPC and HPFC
Varying the Time Camera Begins Observations

RPC t
cam

= 50

RPC t
cam

=100

RPC t
cam

=200

HPFC t
cam

= 50

HPFC t
cam

=100

HPFC t
cam

=200

Time till First Sigthing % of Time Found
0

20

40

60

80

100

Fig. 7. This figure shows the effects of changing tcam, or the time when
the camera begins making observations. Notice that tcam has virtually no
effect on the RPC, due to its inherent randomness. For the HPFC, the vehicle
is found less frequently and after a longer time as tcam increases.

100

120

140

160

180

200
Comparing RPC and HPFC varying the Zoom Level

RPC High Zoom

RPC Mid-High Zoom

RPC Mid Zoom

RPC Low Zoom

HPFC High Zoom

HPFC Mid-High Zoom

HPFC Mid Zoom

HPFC Low Zoom

Time till First Sighting % of Times Found
0

20

40

60

80

Fig. 8. Results of fixing the zoom level ζ at different values for various
simulations. Notice that in most cases, higher zoom level results in faster
and more frequent vehicle localization. For low zoom, the vehicle should
find many possible vehicles, but should need to zoom in before being able
to guarantee that the vehicle has been localized.

4915

