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Abstract— The use of variational methods in optimal control
problems involves solving a two-point boundary-value problem
(for states and costates) and satisfying an optimality condition.
For problems with quadratic integral cost that have linear state
dynamics and unconstrained controls, the co-state equations
are also linear. Adjoining control constraints to the objective
function introduces non linearity to the costate equation, and
iterative numerical methods are required to converge upon the
optimal control trajectory. The nonlinear costate terms arise
at times in which the control constraints are active. In the
numerical methodology proposed in this paper, an approxi-
mately optimal solution is converged upon from a feasible sub-
optimal initial control trajectory. In each iteration the control
trajectory moves toward the unconstrained optimum solution
while remaining feasible. Importantly, the state and costate
equations are linear and the method is applied to a multi-
input system designed to minimize the response of a vibration
isolation system by adjusting only the damping characteristics
of a variable damping device.

I. INTRODUCTION

In the time domain, the solution to nonlinear optimal
control problems involves solving a two-point boundary
value problem posed by the Euler-Lagrange equations [1].
For most nonlinear problems, solutions are iteratively con-
verged upon. Problems involving inequality constraints on
the controls and states are representative of a wide range
of applications but remain open problems. For a quadratic
performance index and constraints on states and controls,
the solution consists of trajectories that are sometimes con-
strained and are sometimes within their feasible space [2].
Various methods have been proposed to find the optimal
solution for linearly constrained problems [3],[4],[5],[6]. One
such method uses integral penalty functions to approximately
enforce the constraint [7]. This method requires a choice of
weighting constant and penalty function. If the weighting
constant is too small the actual constraint may not be
enforced. This paper presents a numerical method exhibiting
monotonic convergence to the optimal control trajectories for
a linear system with nonlinear sector bound constraints on
the controls and states.

Semi-active control is a class of control systems in which
a small amount of external power is required to modulate
mechanical properties of the actuators (i.e., stiffness and
damping) [8],[9],[10],[11]. The circle criterion guarantees
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the absolute stability of semi-active control systems; the
plant dynamics are typically linear with strictly positive-real
transfer functions and the control forces are sector-bounded
(within quadrants I and III in the velocity-force plane) [12].
Implementation of semi-active control involves controls act-
ing through actuators that exhibit saturation limits. Therefore,
the controls are sector-bounded.

In this study, trajectories for optimal damping rates are
calculated for equipment isolation systems that operate on
the principle of a rolling pendulum. The isolated components
are supported by large ball bearings (2 cm in diameter)
that roll on rigid dish-shaped bowls with a quadratic pro-
file. The period of motion is determined by the curvature
of the dish, independent of the mass. Damping force is
modulated in the isolation system in order to minimize a
quadratic performance functional that weights total response
accelerations and control efforts in order to improve the
isolation system transmissibility at high frequencies while
simultaneously suppressing resonant behavior. This method
requires a priori knowledge of the disturbance and cannot be
implemented in non-autonomous systems. However, from the
optimal control trajectories, parameterized feedback control
laws may be deduced.

The economic impact of earthquakes depends not only
on the performance of primary structural components, but
also the performance of non-structural building contents. The
serviceability of many important facilities (e.g., hospitals,
emergency-response centers, computer centers etc.) depend
on the functionality of non-structural components following
an earthquake even when the facility’s structural system
remains operational [13],[14],[15],[16]. Therefore, seismic
hazards analyses of structures must include the effects dam-
age to critical equipment [16],[17]. Failure of vibration-
sensitive equipment is caused not only by overturning or
toppling, but also by excessive displacements and/or large
absolute equipment accelerations. For this reason vibration
isolation systems are installed to mitigate the seismic risk
posed to mission-critical equipment.

Isolation systems can considerably reduce the base accel-
eration transmitted to objects by mechanically decoupling the
isolator from the ground [8],[17]. Seismic equipment isola-
tion systems are typically of two types—friction-pendulum
or rolling-pendulum [18],[19],[20]—with natural periods be-
tween 2 and 4 s [13],[17]. During low-level seismic events,
passive equipment isolation systems perform extremely well
[9],[21],[22],[23]. Whereas, when subjected to earthquakes
with high-amplitude near-fault ground motions, considerable
amplification will produce excessive isolator displacements
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endangering the isolated object [9]. Passive damping is effec-
tive in reducing isolator drifts but at the expense of increasing
equipment accelerations at high frequencies [24]. Another
drawback of passive damping is the inability to adjust system
parameters to achieve the desired performance objectives
without a priori knowledge of the external excitation. There-
fore, it would be desirable to be able to adaptively adjust
system parameters in order to optimize the performance of
equipment isolation systems for both near- and far- field
ground motions. To this end, structural control, or smart
isolation systems, has been proposed. In particular semi-
active control systems are attractive due to their guaranteed
stability and low power consumption [13],[17],[25].

II. METHOD

A. Euler-Lagrange Equations

An admissible control trajectory u(t), t0 ≤ t ≤ tf , is to
be applied to a non-autonomous system

ẋ(t) = f [x,u; t], x(t0) = x0, x ∈ Rn, u ∈ Rm (1)

in order to minimize a Lagrange-type cost function of the
states and control

J =
∫ tf

t0

L[x,u; t] dt , (2)

subject to the constraints of the system dynamics (1) and the
l-component state-control inequality constraint

c[u,x; t] ≤ 0 . (3)

This is accomplished by minimizing the first variation of an
augmented cost,

JA =
∫ tf

t0

{
L+ pT (t) (f − ẋ) + λT (t)c

}
dt (4)

where p(t) are the costates and λ(t) are Lagrange multipliers
for the inequality constraint (3). Defining the Hamiltonian,

H = L+ pT f + λT c where
λ = 0 if c < 0
λ ≥ 0 if c = 0 (5)

the necesary condition for control optimality is found from
the first variation of JA

∂H
∂u

: 0 =
(
∂L
∂u

)T

+
[
∂f
∂u

]T

p +
[
∂c
∂u

]T

λ (6)

in which the co-state equation is

∂H
∂x

: ṗ = −
(
∂L
∂x

)T

−
[
∂f
∂x

]T

p−
[
∂c
∂x

]T

λ (7)

where p(tf ) = 0. Equations (6) and (7) are the Euler-
Lagrange equations for a system with constraints on states
and controls.

B. Enforcing constraints with Lagrange multipliers

A numerical solution to the Euler-Lagrange equations is
found by solving the two-point boundary value problem by
iterative modification. At iteration (k), four trajectories—
uk(t), xk(t), λk(t), and pk(t)—must be updated from the
previous iteration. However, a consistent set updating scheme
cannot be determined from (6) and (7). If an inconsistency
occurs in the update of the set, the set does not satisfy
∂H
∂x = 0, and would not lead to a stationary solution.

This issue motivates the development of an iterative
method for solving optimal control problems with nonlinear
constraints on the controls and states, in which the controls
are initialized to be feasible and remain feasible throughout
all iterations. So doing, the Lagrange multipliers are always
zero and the costate dynamics at iteration (k+1) involve only
the states x(k+1) allowing for consistent update schemes.

C. Proposed numerical methods for solving Euler-Lagrange
equations

Two methods are proposed to enforce the constraint:
1) Method A: Exact adherence to constraints: Consider a

linear dynamic system with constant coefficients

ẋ(t) = Ax + Bu + Cw, x(t0) = x0 (8)

where w is an uncontrolled input. A quadratic Lagrangian
may be expressed as

L[x,u; t] = xT Qx + 2xTSu + uTRu (9)

where Q and R are symmetric. If c[u,x; t] < 0 for all
time the Lagrange multipliers λ(t) are zero and the Euler-
Lagrange equations reduce to

0 = 2Ru + 2ST x + BT p (10)

ṗ = −2Qx− 2Su−AT p . (11)

Note that both the state and costate dynamics are first order
linear ordinary differential equations that may be easily
solved by analytical or semi-analytical methods.

An iterative procedure to update the controls, states, and
costates is proposed here to converge on the optimal control
trajectory. Provided a feasible initial guess for the control
trajectory u(0), equations (8) and (11) can be integrated to
find associated state trajectories x(0) and costate trajectories
p(0), respectively. At iteration (k), a trial control trajectory
consistent with x(k) and p(k) is found from (10)

ũ(k)(t) = −1
2
R−1

(
2ST x(k) + BT p(k)

)
(12)

i.e., by setting the gradient of the Hamiltonian equal to zero.
Note ũ(k) might not be feasible for all time. Consistent
states x(k+1) and controls u(k+1) are updated simultaneously
by solving the state dynamics (8) augmented with saturated
controls

u(k+1)(t) = Sat
[
(1− γ)u(k) + γSat[ũ(k),x(k+1)],x(k+1)

]
(13)
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Fig. 1. Schematic of equipment isolation system.

where γ is a positive scalar update gain and Sat[·] is the
saturation operation

Sat
[
u(k),x(k); t

]
=

{
u(k), cj

[
u(k),x(k); t

]
≤ 0

û(k), cj
[
u(k),x(k); t

]
> 0

s.t. cj
[
û(k),x(k); t

]
= 0 ∀j .

(14)

(We assume here that no more than one constraint is invoked
at any point in time.) Note that the saturation operation
makes the state dynamics nonlinear. The costates p(k+1) are
then updated from (11) using u(k+1) and x(k+1). The integral
cost is accumulated within each iteration and iterations are
terminated when criteria are satisfied.

2) Method B: Approximate adherence to constraints:
An alternate approach involves linear state dynamics but
does not rigorously enforce the inequality constraint on the
controls. The states, controls, and costates are initialized in
the same manner as before. At iteration (k), the trial control
trajectory ũ(k) found from (12) is saturated to the feasibility
boundary and the controls are updated by an incremental
move toward the saturated value.

u(k+1)(t) = (1− γ)u(k)(t) + γSat[ũ(k)(t),x(k)(t)] (15)

Consistent states x(k+1) are found by integrating the linear
state dynamics, (8), using u(k+1), and the costates p(k+1)

are then updated from u(k+1) and x(k+1).
By saturating the controls with respect to the states x(k)

from the previous iteration, the updated controls are feasible
with respect to x(k) but not necessarily with x(k+1). Hence,
the algorithm does not enforce the constraint strictly, but
will keep the controls close the the boundary due to the
incremental update of the controls, provided γ is small
enough. Because the state dynamics are linear and may
be solved using a matrix exponential with faster and more
accurate computation, this approximate method is attractive.

III. APPLICATION TO EQUIPMENT ISOLATION
SYSTEMS

In this study, optimal control trajectories are found for the
single-degree-of-freedom equipment isolation system shown
in Figure 1. The linear time-invariant control system is
expressed in state space form (8) where the state vector

x(t) = [r(t) ṙ(t) f(t)]T . (16)

The system matrices A, B, and C are

A =

 0 1 0
−gα 0 − 1

m

0 0 − 1
T

 , B =

 0
0
1
T

 , C =

 0
−1
0



velocity, r  [m/s]

controls, u [m/s/s]

.

umax

cmax

-umax

r  [m/s].

          u [N]

cmax

umax

c  [u, x; t]1

c  [u, x; t]2

Fig. 2. Sector bound constraint for semi-active damping control.

for parabolic bowl of curvature α, gravitational acceleration g
of 9.81 m/s2, and equipment mass m taken to be 500 kg. The
system has a natural period Tn = 2π/

√
gα approximately

equal to 2 seconds, for α equal to 1 m−1. The system is
forced with base acceleration w(t). The state vector includes
the position and velocity of the isolated mass, r(t) and ṙ(t).

The third state equation models the dynamics of the
controllable damping force f(t) as a function of the control
u(t). In this application the damping force is modeled as
a controllable internal force and may be interpreted as a
friction coefficient acting with time lag T = 0.02 s. Feasible
control actions are bounded by sectors shown in Figure 2.
Constraining the control consequently constrains the damp-
ing force. The controllable damper has the performance
limitations described by a maximum achievable damping
coefficient cmax and control force amplitude umax. The
nonlinear constraints are

c[u,x; t] =

[
(u− umax)(u+ umax)

u
(

u
cmax

− ṙ
) ]

. (17)

In this application we choose to minimize peak total
accelerations without using too much control. Thus the
quadratic Lagrangian L[·] is given by

L[x, u; t] = q(r̈ + w)2 + u2 (18)

where q is taken to be 1e6.

A. Numerical example

To initialize the controls, a nonlinear feedback control law
was used. The feedback control law is

u(0)(t) =

{
µcmaxṙ(t), |ṙ(t)| ≤ umax

cmax

µumaxsgn[ṙ(t)], |ṙ(t)| > umax

cmax

(19)

where µ is the fraction of the maximum achievable controls,
ensuring feasibility on initialization. Initialization requires
solving the nonlinear state dynamics with a fourth order
Runge-Kutta solver, but subsequent integrations are linear for
given control trajectories and a matrix exponential is used to
solve the dynamics equations.
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For the sector bound constraint function (17), the satura-
tion function Sat[·] is

Sat[u,x; t] =


u(t), c ≤ 0
cmaxṙ(t), c > 0 and |ṙ(t)| ≤ umax

cmax

umaxsgn[ṙ(t)], c > 0 and |ṙ(t)| > umax

cmax

0, c > 0 and u(t)ṙ(t) < 0
(20)

B. Transient disturbance model

Because transient response to pulse-like excitation is of
primary concern in this application, the base acceleration is
obtained from the expression for base velocity

v(t) = Vp exp

[
−π2

4

(
t− 2NcTp

NcTp

)2
]

cos
(

2π
t− 2NcTp

Tp

)
(21)

where the pulse has a period of Tp, a velocity amplitude
of Vp, and contains Nc cycles. The base acceleration w
is found by differentiating (21) with respect to time using
central differences. In all cases, the final time is selected
as tf = 4NcTp to ensure all transient simulations were
carried out for a sufficiently long duration so as to capture
the peak response. Vp and Nc are taken to be 1.0 m/s and
2, respectively.

C. Comparison to passive linear viscous damping

Semi-active damping systems are advantageous only in
so far as they can out-perform passive damping systems. In
order to assess these advantages, pulse response transmissi-
bilities for the optimal semi-active systems are assessed in
comparison to a set of passively damped systems in which
the damping forces follow a linear relationship with velocity.
The dynamics of the passive system are described by

r̈ + 2ζṙ
√
gα+ gαr = −w (22)

where ζ is the dimensionless damping ratio taken to range
from 0.15 to 0.7.

IV. RESULTS

The primary objective of this study is to investigate the
potential for parameterization of the optimal semi-active
control actions in the form of a feedback control law. First,
the convergence to similar optimal trajectories from various
initial conditions is investigated. Next, the saturation limits of
the controls are shown to depend on the choice of cmax and
umax producing qualitatively different optima, and a parame-
terized feedback control law is proposed. Finally, a parameter
study is undertaken, and peak responses and device forces
for a range of pulse periods are presented in Figure 4 along
with comparisons to passive linear viscous damping. These
pulse response spectra show the dynamic amplification in
terms of relative displacement, max |r(t)|, total acceleration,
max |r̈(t) + w(t)|, and device force, max |f(t)|.

A. Convergence from different initial conditions

To assess the ablility of the proposed method to converge
to optima, control trajectories originating from various initial
guesses were compared. The nonlinear feedback control law
initialization method converges to nearly identical optimal
trajectories from very different initial guesses. Also, plotting
the integral cost function over the iterations showed conver-
gence of the algorithm. The proposed methodology exhibited
monotonic convergence to the optimal trajectory independent
of initial (feasible) guesses.

The algorithm exhibits sensitivity to the choice of γ similar
to an update gain in a gradient descent method. If γ is
chosen to be too large the update of the controls can produce
infeasible state trajectories. However, if γ is too small, rate
of convergence decreases and the method is computationally
expensive. Therefore, γ was dynamically determined in order
to optimize the iterative process by adaptively reducing γ at
a given iteration if the cost increased with respect to the
previous iteration.

B. Constrained optimal control

For short period pulses (Tp < Tn), a semi-active control
law, termed pseudo-negative stiffness, is nearly optimal in
the absence of control acceleration saturation limit, i.e.,
max |u| < umax. A pseudo-negative stiffness relationship
is when the normalized damper force f has the same sign
as velocity ṙ and magnitude of the stiffness force |mgαr|.
Based on the results shown in Figure 3(a), a parameterized
control rule for semi-active damping may be proposed as
follows:

u(r, ṙ) = krH(−rṙ) (23)

where k is feedback gain to be optimized and H(·) is the
Heaviside step function. However, when the max control ac-
celeration becomes saturated, the peak control accelerations
are clipped, Figure 3(a). Therefore, in order to fully realize a
pseudo-negative stiffness feedback control rule, the damper
must be designed to achieve force levels that are high enough
to avoid saturation.

For excitations near resonance (Tn/
√

2 < Tp < 1.2Tn)
a damper must be designed with a large admissible control
force to avoid saturation due to the large isolator responses.
It is in this range of pulse periods that the control law
transitions from pseudo-negative stiffness to passive viscous
damping as illustrated in Figures 3(b) and 3(c). For long
period pulses (Tp > Tn), linear damping similar to passive
viscous damping, is characterized by an elliptical force
displacement relationship seen in Figures 3(c) and 3(d). The
effects of clipping are still present for low umax.

C. Parameter Study

In order to compare peak responses and peak device forces
the following set of dimensionless variables are formed in
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Fig. 3. Saturation of controls by varying umax with cmax = 1500 N/m/s and (a) Tp = 1 s, (b) Tp = 1.6 s, (a) Tp = 2.4 s, and (a) Tp = 3.6 s.

order to perform a parameter study.

Π1 = max |r̈ + w| /max |w| (24)
Π2 = max |r| /max |wr| (25)
Π3 = max |f | /(mmax |w|) (26)
Π4 = Tp/Tn (27)

where wr is the base displacement.
Figure 4 illustrates the pulse response spectra of the

total acceleration Π1, the relative displacement Π2, and
the device force Π3 for optimal semi-active damping and
linear viscous passive damping. The device force for linear
viscous passive damping is f = 2ζṙ

√
gα. Figures 4(b)-(c)

and 4(e)-(f) show that increasing levels of passive damping,
ζ, monotonically reduces peak relative displacements and
monotonically increases the peak required damper forces
for all periods. However, it is seen that peak response
accelerations increase with increasing passive damping for
short periods (Π4 < 1/

√
2).

Two values of cmax were investigated—cmax = 470 and

2193 N/m/s, i.e., damping ratios of 15% and 70%, respec-
tively. For short excitation periods, both cases of optimal
semi-active damping exhibit lower peak accelerations than
any of the passive damping cases. The relative displacement
for short periods is comparable to the lightly passively
damped cases (ζ = 0.3). Reduced relative displacements are
not seen because the quadratic objective function aims to
minimize controls and total accelerations, not displacements.

At pulse periods near resonance (1/
√

2 < Π4 < 1.5),
the optimal semi-active control subject to more restrictive
constraints (cmax = 470 N/m/s) performs worse than the
less constrained case (cmax = 2193 N/m/s) as would
be expected. As illustrated in Figures 4(c) and 4(f), the
maximum achievable device force is not saturated as fre-
quently for lower cmax because the isolator velocities do
not exceed umax/cmax. Further, the displacement capacity
is comparable to the more lightly damped (ζ = 0.15)
passive system for cmax = 470 N/m/s independent of umax.
Whereas, the displacement capacity for cmax = 2193 N/m/s
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Fig. 4. Pulse response spectra of peak total acceleration (a) and (d), peak relative displacement (b) and (e), and peak device forces (c) and (f) for two
sector bounds: (a)-(c) cmax = 470 N/m/s and (d)-(f) cmax = 2193 N/m/s. Legend: · · · · ζ = 0.15, – – – ζ = 0.3, − · − ζ = 0.5, —- ζ = 0.7,
4 umax = 500N, ◦ umax = 1000N, and × umax = 2000N.

with high force capacity (umax = 1000 and 2000 N) is
similar to the lightly damped passive system with ζ = 0.3
over 1/

√
2 < Π4 < 1 and the heavily damped system

(ζ = 0.7) over 1 < Π4 < 1.5. Moreover, in terms of total

acceleration, the weakly constrained optimized semi-active
systems (cmax = 2193 N/m/s, umax = 1000 and 2000 N)
show little resonant behavior.
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V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

For linear systems subject to nonlinear constraints on
states and controls, we have developed a procedure to deter-
mine optimal control trajectories based on the minimization
of a quadratic performance index. Note that the controls
converge to trajectories that are sometimes constrained, but
that these controls were determined from costates that did
not recognize the presence of constraints, since λ is set to
zero for all iterations. Additional performance gains may
therefore be achieved from a method that enforces constraints
with Lagrange multipliers. Such a method is much more
difficult to implement; our implementation did not always
converge due to inconsistencies between states and saturated
controls; and we expect performance gains of such a method
to be slight. To evaluate the performance of the proposed
method, the response behavior of a single-degree-of-freedom
equipment isolation system is investigated for a pulse-like
base-acceleration excitation. Results presented in this paper
support the following conclusions:

• The proposed method is effective in determining so-
lutions to the Euler-Lagrange equations describing op-
timal semi-active control in linear isolation systems.
Also, the method exhibits monotonic convergence to an
optimal trajectory and is robust to variation in initial
guesses.

• At low pulse periods, a pseudo-negative stiffness fric-
tion control is optimal in suppressing response accel-
erations of the isolated component. Whereas, at higher
pulse periods, linear viscous damping is optimal. Pa-
rameterized feedback control laws are proposed for
difference excitation frequencies.

• Pulse response spectra of the optimally controlled iso-
lation system exhibit reduced dynamic amplification in
terms of acceleration response. By not saturating the
controllable damper, resonant effects are suppressed as
well.

B. Future Work

Future work will address higher dimensional systems for
isolation of objects oscillating in the horizontal plane. By
linearizing the dynamics of the horizontal translations and
rotation of the isolated component, optimal trajectories for
the semi-active control of a rolling-pendulum equipment
isolation system will be found using the proposed methodol-
ogy. Optimal control performance computed using dynamic
programming will be compared to passive damping methods.
Also, parameterized feedback control laws will be optimized
via parametric optimization methods.
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