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Abstract— This article presents an optimal input design
approach to achieve rapid broadband nanomechanical mea-
surements of soft materials using the indentation-based method.
The indentation-based nanomechanical measurement provides
unique quantifications of material properties at specified loca-
tions. The measurements, however, are currently too slow in
time and too narrow in frequency (range) to characterize time-
elapsing material properties during dynamic evolutions (e.g.,
the rapid-stage of the crystallization process of polymers). Such
limits exist because the input force profiles used in current
approaches cannot rapidly excite broadband nanomechanical
properties of materials. In this article, we develop an optimal-
input design approach to tackle these challenges. Particularly,
an input force profile with discrete spectrum is optimized
to maximize the Fisher information matrix of the linear
compliance model of the soft material. Both simulation and
experimental results on a PDMS sample are presented to
illustrate the need for optimal input design, and its efficacy
in probe-based nanomechanical property measurements.

I. INTRODUCTION

In this article, an optimal input design approach is pro-

posed to achieve rapid identification of broadband nanome-

chanical properties of soft materials using indentation-based

approach. Indentation-based approach using scanning probe

microscope (SPM) or nanoindentator has become an en-

abling tool to quantitatively measure the nanomechanical

properties of a wide variety of materials both locally and

globally [1]. The current measurement methods [2], [3],

however, are limited in both the frequency range that can

be measured and the time duration that is needed to measure

the (frequency) rate-dependent viscoelasticity of materials.

Such limits of current measurement methods [2], [3], in

both measurement frequency and time, arise as the excitation

input (i.e., the force applied from the probe to the sample

surface) used cannot: (1) compensate for the convolution

effect of the instrument dynamics when the measurement

frequency becomes high [4] and (2) rapidly excite the rate-

dependent nanomechanical behavior of the material when the

material properties are changing during the measurements.

These inabilities of the excitation force profile used in current

nanomechanical measurements, thereby, motivate the work

presented in this paper to meet the challenges in emerging

nanomechanics studies.

Inefficiencies exist in current nanomechanical measure-

ment methods for characterizing the time-elapsing material
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properties. The excitation force used in conventional force-

curve measurements [1] is quasi-static and thereby, does not

contain rich frequency components required to rapidly excite

viscoelastic response of materials. The lack of frequency

components in the excitation force can be alleviated by using

the force modulation technique [2]. The instrument dynamics

effect, however, can be coupled into the measured data, and

the force-modulation is slow to sweep a large frequency

range. The measurement time can be reduced by using the

recently-developed multi-frequency method [3], however, the

frequency components selected are not optimized, and the

measurement frequency range is still limited by the instru-

ment dynamics coupling effect. Evidently, there is a need

to improve the current indentation-based nanomechanical

property measurement approaches.

One main challenge to achieve rapid broadband nanome-

chanical measurement is to ensure that (1) the force applied

shall accurately track the desired force and (2) the indentation

should be accurately measured. Tracking of the desired force

profile is necessary to (1) excite the material behavior in the

measured frequency range, and (2) avoid issues related to low

signal-to-noise ratio and input saturation (due to the force

being too small or too large), while the indentation measured

should capture the material behavior well—as the response to

the force applied. When the measurement frequency range

becomes large (i.e., broadband), however, the dynamics of

the system consisting of the piezo actuator and the probe

can be excited along with the nonlinear hysteresis effect of

the piezo-actuators, resulting in large vibrations of the probe

relative to the sample. Furthermore, substantial dynamics

uncertainties exist in the SPM system due to the thermal

drift and the change of operation condition (e.g., change of

the probe). These adverse effects can be mitigated by using

control techniques, as demonstrated recently by using the

iterative learning control methods [4], [5]. Residual instru-

ment dynamics effect, however, still exists in the indentation

measured. Recently, model-based techniques [4] have been

developed to account for the dynamics convolution effect on

the measured indentation data. These post-processing tech-

nique, however, cannot be used to achieve rapid broadband

nanomechanical measurements, as discussed next.

The other major challenge in rapid broadband nanome-

chanical measurements is to achieve rapid excitation of the

material response in the measured frequency range by the

force applied (from the probe). Rapid excitation (of the

material response) is needed to capture the time-elapsing

nanomechanical properties during the dynamic evolution

of the material, as well as to map the nanomechanical
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properties of the material over the sample surface. Recently a

frequency-rich excitation force with power spectrum similar

to band-limited white noise has been utilized for broadband

nanomechanical measurement [5]. Although the iterative

learning control (ILC) technique has been applied for the

tracking of such a complicated desired trajectory, dynamics

convolution effect discussed above still exists. Thus, these

two major challenges in rapid broadband nanomechanical

measurements are both closely related to the excitation force

applied (from the probe to the sample surface).

The main contribution of this article is the development

of an approach based on the optimal input design to address

the above two challenges in achieving rapid nanomechanical

spectroscopy. First, the measurement of nanomechanical

properties is transformed into a parameter identification

problem by combining the tip-sample contact model with the

mechanics model of the soft material [6]. Then, an optimal

excitation force is sought to minimize the covariance of

the estimation error through the maximization of the Fisher

information matrix [7], [8] of the parameterized mechanics

model. The designed optimal excitation force profile (e.g.,

the cantilever deflection when using SPM) is tracked by

using the recently-developed inversion-based iterative control

technique that compensates for the hardware dynamics con-

volution effect. The proposed approach is illustrated through

both simulation and experimental implementation on the

measurement of viscoelasticity of a Polydimethylsiloxane

(PDMS) sample using a scanning probe microscope. The

simulation and experiment results demonstrate the need of

optimal input design and the efficacy of the proposed ap-

proach in achieving broadband viscoelasticity spectroscopy.

II. OPTIMAL INPUT DESIGN FOR RAPID

NANOMECHANICAL SPECTROSCOPY

We start by transforming the nanomechanical property

measurement into a parameter estimation problem.

A. Parameter Estimation in Nanomechanical Measurement

SPM has become a powerful tool to characterize vari-

ous material properties at nanoscale (e.g., [9]), through the

measurement of the tip-sample interaction force and the

tip indentation on the sample surface, i.e., the force curve

measurement, which is obtained by measuring the tip-sample

interaction force and the vertical displacement of the SPM-tip

during the process when a micro-fabricated cantilever with a

nanometer-radius tip is driven by a piezoelectric actuator to

push against and then retrace from the sample surface (see

Fig. 1(a)). The indentation is obtained from the difference

between the cantilever deflection on the soft sample and that

on a reference hard sample when the same control input

voltage is applied to the piezo actuator during the force

curve measurement of the reference hard material. Such an

indentation-based approach allows the material properties to

be quantitatively measured at desired locations with desired

force amplitude with nanoscale spatial resolutions.

To identify material properties, the measured force and

indentation results are utilized as the input and output data in

an appropriate mechanics model to identify nanomechanical
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Fig. 1. The scheme of force curve measurement by SPM

properties of materials [1]. For example, when the Hertz

contact mechanics model is employed, the creep compliance

of the material, J(·), can be quantified by using the measured

tip-sample interaction force, P(·), and the indentation in the

material, h(·), by

h
3
2 (t) =

9

16
√

R

∫ t

0
J(t − τ)

dP(τ)

dτ
dτ, (1)

where R is the tip radius. The Hertz contact mechanics

model captures the frequency dependent nanomechanical

property of the material [6]. To further characterize the

nanomechanical properties and different response speed of

materials to the excitation force, the parameterized model of

the material complex compliance J(·) has been proposed [6].

In this article, we use a truncated Prony series to model the

creep compliance,

J(t) = J0 −
n

∑
i=1

Ji · e−t/τi , (2)

where J0 is the fully relaxed compliance, Jis are the compli-

ance coefficients, and τis are the discrete retardation times.

Combining Eq. (1) with (2) implies that the creep compli-

ance J(t) can be viewed as a linear time-invariant mapping

between the force P(t) and the effective indentation, h(t),

J(t) : u(t) �
9P(t)

16
√

R
−→ h

3
2 (t) � y(t), (3)

which can be converted into the following autoregressive

exogenous model (ARX) [10]

y(ℓ)+
na

∑
i=1

aiy(ℓ− i) =
nb

∑
i=1

biu(ℓ− i), (4)

where na is the number of poles, nb is the number of zeros

plus 1, ℓ is the ℓth sampling instance, and the unknown

parameters ais and bis are related to the original retardation

time constants τis and compliance coefficients Jis through

J0 = k−
n

∑
i=1

ri

pi

; Ji =
ri

pi

; τi = − 1

pi

. (5)

As in the standard parameter identification [10], the above

discrete model (4) is then rewritten as an affine function of

the unknown parameters θ , y(ℓ) = ϕ T (ℓ)θ , with θ the vector

of unknown parameters θ = [a1, ..., ana , b1, ..., bnb
]T , and

ϕ(ℓ) the sequence of measured input and output data, i.e.,

ϕ(ℓ) = [−y(ℓ−1), ..., − y(ℓ−na), u(ℓ−1), ..., u(ℓ−nb)]
T .

Thus, the least-square estimation of the linear compliance

model parameter, θ̂N , can be obtained by

min
θ

VN(θ ,ZN) = min
θ

1

N

N

∑
ℓ=1

[y(ℓ)− ŷ(ℓ|θ )]2

= min
θ

1

N

N

∑
ℓ=1

[y(ℓ)−ϕT (ℓ)θ ]2,

(6)
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where ZN denotes the set of past inputs and outputs over

the time interval 1 ≤ ℓ ≤ N, and ŷ(ℓ|θ ) denotes the output

computed by the estimated parameters θ , ŷ(ℓ|θ ) = ϕ T (ℓ)θ .

The obtained optimal parameter estimation is given by

θ̂N =

[
N

∑
ℓ=1

ϕ(ℓ)ϕT (ℓ)

]−1
N

∑
ℓ=1

ϕ(ℓ)y(ℓ), (7)

After the discrete ARX model is identified, the unknown

parameters in the linear compliance model (2) can be ob-

tained from the mapping (5) after discrete-to-continuous

conversion and partial fraction expansion.

To utilize the above parameter estimation approach in

nanomechanical measurements, the input force needs to be

carefully designed. Note that the applied force is generated

by the driven voltage sent to the piezoactuator (see Fig. 1(a)),

the convolution of the input with the dynamics from the piezo

actuator to the cantilever can thereby, lead to distortions in

the excitation force. As a result, the distorted force may

fail to excite the nanomechanical properties of interests.

Therefore, optimal input design is proposed to avoid the

instrument dynamics effect, and achieve rapid and accurate

parameter estimations in nanomechanical measurements.

B. Optimal Input Design for Nanomechanical Measurement

Consider the following linear representation of a contact-

mechanics model of the tip-sample interaction dynamics,

ȳ(ℓ) = J∗(zℓ,θ )ū(ℓ)+ v̄(ℓ), (8)

where ū(ℓ) and ȳ(ℓ) are the equivalent input and the output

in nanomechanical measurements, respectively (see Eq. (3)),

v̄(ℓ) is the measurement noise of a normal distribution with

mean value of µv and variance of σ 2, i.e., v̄ ∼ N(µv,σ
2),

and J∗(zℓ,θ ) is the discretized linear compliance model. For

example, when the truncated Prony series (2) is used, the

input-output mapping J ∗(zℓ,θ ) takes the form

J∗(zℓ,θ ) = J0 −
n

∑
i=1

Ji(zℓ −1)

(1+ T
2τi

)zℓ +( T
2τi

−1)
, (9)

where θ is the vector of unknown parameters (see Eq. (2)),

and the measurement frequency ω is related to the z-

transform variable zℓ through Tustin transformation jω =
2(zℓ−1)/T(zℓ + 1).

In the following, the optimal input is obtained through an

iterative process: In each iteration, the designed excitation

force is applied to the nanomechanical experiment, and the

measured force and indentation data are used to estimate

the parameters of the compliance model, which, in turn,

is utilized to seek the input design for the next iteration.

Thus, towards an optimal input, the following linear mapping

from the parameters to the estimation-caused error in output

is obtained from the first-order Taylor series expansion of

the linear compliance model, J(·), around the estimated

parameters obtained in the previous iteration, θk,

∆ȳ(ℓ) � ȳ(ℓ)− J∗(zℓ,θk)ū(ℓ)

= f (ℓ)(θk+1 −θk)+ v̄(ℓ) � f (ℓ)∆θ + v̄(ℓ),
(10)

where f (ℓ) ∈ C
1×m (m = na + nb) is given by

ū(ℓ) [ f1(ℓ), ..., fm(ℓ)], with fi(ℓ) = ∂J∗(zℓ,θk)/∂θi,

and ∆θ is the difference of the estimated parameters

between two successive iterations, i.e., ∆θ = θk+1 − θk =
[∆θk,1, ...,∆θk,m]T .

Similar to the least-square-based parameter estimation

of the ARX model in Sec. II-A, the best linear unbiased

estimate (BLUE) of ∆θ can be obtained as [7]

∆̂θ =



Re

N
2 −1

∑
ℓ=− N

2

f ∗(ℓ)S−1
vv (ℓ) f (ℓ)




−1



Re

N
2 −1

∑
ℓ=− N

2

f ∗(ℓ)S−1
vv (ℓ)∆ȳ(ℓ)



 ,

(11)

where Re(C) denotes the real part of complex number C,

and Svv(ℓ) = E[v∗(ℓ)v(ℓ)] is the autocorrelation function of

the measurement noise. Thus, by combining Eqs. (8, 10) with

the above Eq. (11), an optimal input force can be sought to

minimize the covariance of the parameter estimation error,

Cov
[
∆̂θ

]
, which, can be shown [7], [8], is equivalent to the

inverse of the Fisher information matrix M [7], i.e.,

min
ū(·)

Cov
[
∆̂θ

]
= min

ū(·)
E[(∆̂θ − µ

∆̂θ
)2] = min

ū(·)
M−1, (12)

where µ
∆̂θ

is the expectation of ∆̂θ . Note that for a non-

degenerate input design (i.e., an input with the minimum

number of different frequencies for the transfer function

model with given order [11]), the Fisher information matrix

is nonsingular and thereby invertible [11]. Hence the optimal

input can be obtained by maximizing the Fisher information

matrix, which is equivalent to the minimization of the

Cramer-Rao Lower Bound (CRLB), i.e., the lower bound

of the variance of the estimation error ∆̂θ [8]. In Eq. (12),

the Fisher information matrix, M, is given by [12]

M = N Re

N/2−1

∑
n=−N/2

E[ f ∗(n)S−1
vv (n) f (n)] (13)

From Eq. (13), the Fisher information matrix can be

derived as (see [7] for details)

M(ω) =
π

∑
ω=−π

1

2π

[
∂J∗

∂θ1

, ...,
∂J∗

∂θm

]T

S−1
vv (ω)

[
∂J

∂θ1

, ...,
∂J

∂θm

]
.

(14)

Next, we consider multi-sinusoidal signals for the maximiza-

tion of the Fisher information matrix,

u(ℓ) =
q

∑
i=1

Ai sin(ωiℓ). (15)

Such a choice of input is general as for any amplitude-

normalized input with a mixed (continuous and discrete)

spectrum, an equivalent input with purely discrete spectrum

can be found. Moreover, the required number of distinct

points in the input frequency spectrum is no more than

[m(m + 1)/2 + 1] [7], where m is the number of unknown

parameters. Therefore, one can confine the search of the

optimal input to the search of optimal frequency components

in the sinusoidal input (15).
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Definition 1: For the multi-sinusoidal input u(ℓ) (15), an

input design is to determine a finite set F consisting of pairs

of the input frequency ω i and its associated power spectral

density function p(ωi),

F(ω , p) =
{
(ω1, p(ω1)), · · · ,(ωq, p(ωq))

}
, (16)

such that each power spectral density p(ω i) equals to the

amplitude Ai of that frequency ωi over the mean square

power σ 2
u of the input u(t), i.e., p(ωi) = Ai/(2πσ 2

u ), where

σ2
u is the mean square power of u(t), i.e., σ 2

u = 1
2π ∑

q
i=1 Ai.

With the above definition, the optimal input design F ∗

amounts to the search of the optimal frequency component ω i

through the iteration process. Specifically, after each iteration

k, one candidate optimal frequency ωk will be obtained that

maximizes the following cost function,

max
ω

dk(ω ,F) =
∂J(zℓ,θk)

∂θ
M−1(ωF)

∂J∗(zℓ,θk)

∂θ
→ ωk (17)

where ’∗’ denotes the optimal solution when maximizing

the cost function , and M(ωF ) is the Fisher information

matrix evaluated at the input frequencies ω i selected in

each iteration, M(ωF ) = ∑
q
i=1 M(ωi), where ωis are the input

frequencies in the current input design F(ω , p).
Comparison of the above cost function (17) with Eq. (14)

implies that the maximization of the cost function d(ω ,F)
is equivalent to the maximization of the Fisher information

matrix M(ω) [11]. Various criteria have been proposed to

maximize the Fisher information matrix. In the proposed

optimal input design approach, D-optimal criterion is chosen

for the D-optimality is invariant to the parameter scale and

linear transformations of the output. The D–optimality, in

this paper, is obtained through the one dimensional search

algorithm, where the new candidate optimal frequency ω k is

obtained by computing and then comparing the cost function

dk(ω ,F) at every sampling frequency within the measured

frequency range.

The corresponding power spectral density function for

the optimal candidate frequency ωk, p(ωk), is selected by

choosing the corresponding spectral α i (see Eq. (18)) from

a pre-specified sequence {α1, α2, · · · } satisfying

0 ≤ αk ≤ 1,
∞

∑
k=1

αk = ∞, and lim
k→∞

αk = 0, (18)

and the power spectral density of other frequency compo-

nents already-existing in the input design F(ω) are updated

by adjusting the corresponding amplitude accordingly by

p(ωk) = (1−αk)p(ωk), for k = 1,2, · · · , and k �= j (19)

The above iteration process to optimize the input is con-

ducted until the variation of the identified parameters of the

compliance model is within the chosen threshold.

C. Implementation of the Optimal Excitation Force

To implement the above optimal input force design, con-

trol input to the vertical-axis piezoactuator of the AFM needs

to be obtained so that the applied excitation force (i.e., the

cantilever deflection) will accurately track the desired force

profile. The control input must be able to account for the

instrument dynamics effects. Or, due to the convolution effect

of the input with the instrument dynamics, large distortions in

TABLE I

PARAMETER ESTIMATION RESULTS OBTAINED FROM NUMERICAL

SIMULATIONS. THE UNITS FOR Ji AND τi ARE µPa−1 AND MS.

Pa. Act. Case1 Er.% Case2 Er.% Case3 Er.%

J0 9.11 9.11 0 7.73 15.1 9.13 -0.25
J1 2.08 2.08 0 -1.03 150 2.10 -1.14
J2 1.53 1.53 0 3.87 -147 1.68 -10.1
J3 1.51 1.50 0.66 2.07 -37 5.51 265
τ1 25.28 25.2801 0.12 -34.79 238 26.25 -3.85
τ2 2.9 2.9004 0.01 3.71 -28 2.71 6.7
τ3 0.474 0.4767 -0.57 -0.05 110 0.944 -99.1

the excitation force occur [4]. Iterative learning control (ILC)

is ideal to achieve precision tracking of the desired optimal

excitation force. In this paper, we utilized the modeling-

free inversion-based iterative control (MIIC) [13] to track

the desired force profile.

III. SIMULATION AND EXPERIMENTAL EXAMPLE:

FREQUENCY-DEPENDENT VISCOELASTICITY

MEASUREMENTS OF PDMS

The proposed optimal input design approach is illustrated

through the nanomechanical property measurement of a

PDMS sample using SPM. Both simulation and experiment

were conducted to demonstrate the need and the efficacy of

the proposed method.

A. Simulation Study of Input Force Design

The goal of the simulation studies was two folds: (1)

To evaluate the parameter estimation of a given linear

compliance model in nanomechanical measurements; and

(2) to evaluate and demonstrate the need and efficacy of

optimal input design in the identification with or without

adding noise to the output data. Specifically, a 3 rd order

Prony series model, J(t), of a PDMS sample was used as the

target system to be identified. The parameters of the model,

as listed in the second column of Table I, were chosen as

those obtained recently in [5]. Since there were 7 unknown

parameters in this model, a multi-sinusoidal signal with four

frequency components was used as the effective input force

(Unit: nano Newton), i.e., u(ℓ) = A ∑4
i=1 αi sin(2π fiℓ), where

the amplitude of each frequency component was chosen to

be the same at A.

Three different scenarios were considered in the sim-

ulation. Case 1: The input design based on the a priori

knowledge of PDMS viscoelasticity [5] was used in the iden-

tification, and no noise was augmented to the effective output

of the “true” compliance model when the output was used

in the identification; Case 2: the input design was the same

as in Case 1) but a band-limited white noise was added to

the output (i.e., to mimic the measurement noise effect); and

Case 3: the optimal input design by the proposed approach

was used and the output noise as in Case 2) was added.

In the first case, the frequencies in the input design F0 =
{(1,0.25),(10,0.25),(100,0.25),(1000,0.25)} was chosen

based on the knowledge of the complex compliance of poly-

mers. For Cases 2) and 3), a band-limited white noise with

signal to noise ratio of 134.3 and 146.7 (with respect to the

desired force profile), respectively, was added to the output.

In Case 3), the initial choice to search the optimal input
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TABLE II

THE FREQUENCY COMPONENTS OF THE OPTIMAL INPUT DESIGN

OBTAINED IN THE SIMULATION STUDY

Fre. (Hz) 1 10 30 60 83 92 79 93

Amp. (%) 25 25 10.7 10.7 7.15 7.15 7.15 7.15

design was set as that used in Case 1) originally, and then

changed to F0 = {(1,0.25),(10,0.25),(30,0.25),(60,0.25)}
for faster convergence when there existed output noise. The

frequency range to search was thereby limited to [1, 100] Hz,

and the coefficient {αk} for updating the input design was

chosen to be 1/(k+3) (where k is the number of iteration).

The sampling frequency was chosen as 8 KHz.

The output of the 3rd-order compliance model to be

identified was used along with the input to identify the

parameters of the discretized linear compliance mapping by

using the ARX least-square method (Eq. (7), see Sec. II-A).

The parameters of the Prony series model were then obtained

from Eq. (5) after discrete-to-continuous conversion. The

estimated parameters in the above three cases are listed in

Table I, and the obtained optimal input design is specified

in Table II. The estimation error of the parameters along the

iteration process in Case 3) (i.e., the proposed optimal input

design) is also shown in Fig. 2.
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Fig. 2. Simulation result: the estimation error of 3rd -order Prony series by
using the proposed optimal input design in the presence of output noise.

The simulation results demonstrate that optimal input de-

sign is needed in nanomechanical measurements. As shown

in Table I, when there was no measurement noise, the para-

meters of the 3rd-order Prony series model can be accurately

estimated by using the input design based on the priori-

knowledge of the material—Case 1. Such a high accurate

estimation, however, was lost when noise was augmented

to the output. As noise is inevitable in real experiment,

the simulation results showed that the input force must be

carefully designed in nanomechanical measurements.

The simulation results also demonstrated that the proposed

optimal input design approach was promising for nanome-

chanical measurements. By using the proposed optimal input

design (Case 3), the estimated parameters converged in five

iterations (see Fig. 2). Particularly, the estimation errors of all

parameters except the two related to the fastest time constant

(J3 and τ3, see Table I) were small. We note that although

the estimation error of the fast part of the compliance model

was relatively large, the estimated value was still within the

TABLE III

PARAMETER ESTIMATION RESULT WITH OPTIMAL INPUT DESIGN

Param. Ite.1 Ite.2 Ite.3 Ite.13 Ite.14 Ite.15

J0 (nPa−1) 261 252 250 252 262 251

J1 (nPa−1) -18 4 -33 24 20 9

J2 (nPa−1) 121 467 51 83 68 90

J3 (nPa−1) 517 185 1800 725 608 310
τ1 (ms) 212.3 171.5 63.9 54.4 81.2 71.0
τ2 (ms) 1.85 0.97 5.93 1.33 1.30 3.32
τ3 (ms) 0.12 0.093 0.16 0.069 0.11 0.11

same decade as the true value. Thus, the simulation results

served references for the experiments well.

B. Experimental Implementation and Discussion

The simulation results were utilized to guide the imple-

mentation of the proposed approach to the nanomechanical

measurement on a PDMS sample in experiments. Based

on the simulation, the initial choice of the input design

used in Case 3) of the simulation was used as the initial

input design in the experiments. The sampling frequency

was further reduced to 2 kHz in the experiments to reduce

the measurement noise effect. An analog filter was also

added to further attenuate the output noise. The desired

cantilever deflection was tracked accurately by using the

recently developed MIIC technique (the 2-norm and infinity-

norm tracking error was below 2% and 5%, respectively).

During each iteration of the search for the optimal input

design, the indentation in the PDMS (produced by the exci-

tation force applied) was needed to identify the parameters

of the 3rd-order Prony series model. The indentation was

obtained from the difference of the deflection measured on

the PDMS sample and that on a hard reference sample

(e.g., a sapphire sample in this experiment) when the same

control input (to drive the piezoactuator) was applied in both

force-curve measurements. To avoid the switching back and

forth between the hard and the soft (PDMS) samples during

the iterations of the optimal input design process, thereby

reduce the measurement errors, the deflection on the hard

reference sample was estimated by applying the same control

input (obtained by using the MIIC technique) to the model

that captures the dynamics from the piezo actuator to the

cantilever deflection on the hard sample.

The force applied from the tip to the sample during the

force measurements can be obtained from the measured

cantilever deflection signal as [1], FS = Kt ×Ct ×dS, where Kt

is the stiffness constant of the cantilever, Ct is the sensitivity

constant of the deflection signal vs. the vertical displacement

of the tip (both can be experimentally calibrated [14]), and

dS denotes the cantilever deflection on the soft sample.

The cantilever stiffness Kt = 0.065 N/m and the deflection-

to-displacement sensitivity Ct = 85 nm/V were calibrated

experimentally. Then, the indentation of the tip into the

PDMS sample was obtained as ZI =Ct ×(dH −dS), where dH

and dS denote the deflection on the sapphire sample and that

on the PDMS sample, respectively, when the same control

input was applied in both force-curve measurements.

In the experiments, specifically, two different scenarios

were considered: (1) experimental results without optimal

input design, and (2) experimental results with optimal input
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TABLE IV

THE OBTAINED OPTIMAL FREQUENCIES BY THE EXPERIMENT ON PDMS

Fre. (Hz) 1 10 30 60 56 61 67 71 73 84 87 89 95 97 98 99

Amp.(%) 25 25 5.54 5.54 2.78 2.78 2.78 2.78 2.78 2.78 5.56 2.78 2.78 2.78 5.56 2.78

design. In the first case, without optimal input design, the

parameter estimation result of the Prony series model was

shown in the second column of Table III. In the second

scenario, after using optimal input design, the parameter es-

timation results of the first and last three iterations are shown

in Table III and Fig. 3. The obtained optimal frequencies are

shown in Table IV.
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Fig. 3. Experimental parameter estimation result with optimal input design

The experiments demonstrated the efficacy of optimal

input design in nanomechanical measurement. For the ex-

periment without optimal input design, as in the second

column of Table III, the three time constants were not evenly

spaced in each decade. Since the frequencies of input were

randomly chosen and the amplitude at each frequency was

chosen to be the same, the input design may not be the

optimal, and thus we need optimal input design. The Table

III shows the experimental results after using optimal input

design. Total 15 iterations were conducted. This table shows

the first and last three iterations. The estimation results of the

time constants were not evenly spaced in the first iteration.

As can be seen, the time constants converged and were

evenly spaced finally. The Fig. 3 shows the convergence

of parameter estimation results after using optimal input

design. According to estimated compliance coefficients, the

instantaneous modulus of PDMS is about 3.98 MPa and it

quickly relaxes to 1.52 MPa. Magnitudes of instantaneous

and fully relaxed modulus compare well with DMA tests

on the same samples. At room temperature, PDMS is above

its glass temperature and displays a clear viscoelastic solid

response. Our proposed control-integrated optimal input de-

sign and parameter estimation approach clearly captures the

rate dependent viscoelastic nature of the PDMS polymer.

Therefore, experimental results demonstrate the efficacy of

our method for rapid broadband viscoelastic characterization.

IV. CONCLUSION

In this paper, a new control-integrated optimal input design

approach was proposed. In the proposed approach, inversion-

based iterative learning control is used to precisely apply the

excitation force on sample. Optimal input design is used to

search for the optimal input to compensate for the adverse

effect of the instrument dynamics, the measurement noise

and disturbance. Numerical simulations are conducted to

verify the parameter estimation and optimal input design. The

proposed approach was also illustrated by implementing it

to identify the linear compliance model of a PDMS sample.

The proposed approach can be used to characterize the rate

dependent viscoelastic nature of soft materials at high speed

and broad frequency range.
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