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Abstract— This paper formulates two stochastic optimal con-
trol problems to determine optimal glider flight management
decisions that include a time-varying selection of glider ground
speed and an amount of time to spend climbing in a randomly-
encountered thermal. In the first problem, the objective is to
maximize the expected glider range while maintaining glider
altitude within given limits. In the second problem, the objective
is to maximize the expected range in which the glider is able
to follow a moving ground vehicle within a prescribed distance
while maintaining glider altitude within given limits. Both prob-
lems are treated using stochastic drift counteraction optimal
control. Simulation results are reported and discussed. The
work has application to glider flight performance improvement,
and to noiseless surveillance by unmanned air vehicles.

I. INTRODUCTION

A. Motivation and Goals

THIS paper examines the glider flight management deci-

sions that maximize gliding range and ground vehicle

surveillance capability in the presence of uncertain thermal

locations and strengths. Gliding range maximization is im-

portant in instances of engine failure of powered small air-

craft, for competition glider flight, and for miniaturized un-

manned air vehicles that utilize gliding to reduce power plant

weight. Gliders are also a noiseless means of conducting

ground vehicle surveillance for border patrol applications,

and for nuclear and chemical plant security. The purpose of

this paper is to apply a recently developed stochastic optimal

control technique [1] to the two problems of gliding range

maximization and ground vehicle surveillance.

B. Technical Approach and Related Literature

The technical approach employed in this work is that

of stochastic drift counteraction optimal control [1], which

maximizes a cost functional reflective of expected time-to-

violate specified constraints or expected total yield before

violation of specified constraints, while in the presence of

significant disturbances that cause system states to drift. Such

an optimal control law may be viewed as providing drift

counteraction; hence, it is referred to as the stochastic drift

counteraction optimal control.

Stochastic optimal control approaches to glider flight

management have been previously described in [2] (using

the theory of [3]) and [4]. The approaches and problems

considered in the above references are different from the

ones treated here. Soaring is itself a well-studied problem,

with many results for dynamic soaring [5]–[10], where flight
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energy is provided by wind velocity gradients, orographic

features and wind gusts, static soaring [11], [12], where

flight energy is influenced by thermals (rising currents of

air caused by uneven solar ground heating), updrafts and

downdrafts (larger regions of lift and sink, respectively), and

trajectory generation and optimization [13]–[20].

C. Paper Outline

The remainder of this paper is as follows. Section II

specifies the two problems that are the focus of this work.

Section III outlines the applicable theory. Section IV dis-

cusses the results obtained for a particular glider model

parameterization. Lastly, Section V presents conclusions and

suggests directions for future research.

II. PROBLEM FORMULATION

A. Range Maximization Problem

We assume that the glider flight path is partitioned into

segments, and we let ∆s denote the distance of a single flight

segment. In each flight segment, the glider can encounter

a thermal with strength (altitude increase rate) w2, and the

glider can spend u2 seconds climbing this thermal. We

also assume that the glider flies each flight segment with

longitudinal speed u1 when outside the thermal. This results

in the altitude change rate ( f (u1)+w1), where f (u1) is the

the polar curve representing the sink rate of the glider in still

air given the glider longitudinal speed u1, and w1 denotes

the time rate of change of the altitude due to the updraft (or

downdraft, if w1 is negative).

The following update equations approximately model the

glider’s flight:

h+ = h+(− f (u1)+w1)
∆s

u1
+w2u2, (1)

t+ = t +u2 +
∆s

u1
, (2)

where h is the altitude at the start of a flight segment, t is

the total time traveled prior to the start of the flight segment,

h+ is the altitude at the end of the flight segment, and s+ is

the total time traveled at the end of the flight segment. The

variables u1 and u2 are control variables.

The variables w1 (thermal strength) and w2 (updraft

strength) are determined by the flight and weather conditions,

and are typically unknown a priori. In this paper, we

employ a Markov Chain model to describe the evolution of

thermal strength and updraft strength along the flight path.

Specifically, we assume that a prediction of the probability

distribution of thermal and updraft strength in the next flight
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segment can be made once a thermal and updraft of certain

strength in a given flight segment is encountered.

The objective of the stochastic range maximization prob-

lem is to determine a control law that maximizes the expected

distance that the glider can travel within a given time, tmax,

i.e., the expected distance that the glider can travel before

the system states exit a prescribed set,

G = {(h, t) : hmin ≤ h ≤ hmax, t ≤ tmax}. (3)

The constraint h ≥ hmin is imposed because the glider has

to execute a landing maneuver upon descending to the

minimum feasible altitude hmin. The altitude of the glider

should also not exceed the maximum feasible altitude, hmax,

that is typically determined by oxygen requirement laws or

airspace ceiling restrictions.

B. Ground Vehicle Surveillance Problem

In this problem, the glider must fly so that a moving

ground vehicle target is kept under observation. The formula-

tion of this problem is similar to the formulation of the range

maximization problem for the glider. The update equations

are

h+ = h+(− f (u1)+w1)
∆s

u1
+w2u2, (4)

d+ = d +w3(u2 +
∆s

u1
)−∆s, (5)

where h is the altitude at the start of a flight segment, d is the

relative distance to the ground vehicle at the start of the flight

segment, h+ is the altitude at the end of the flight segment,

and d+ is the relative distance to the ground vehicle at the

end of the flight segment. The ground vehicle velocity, w3,

varies according to a Markov chain model.

The objective of the stochastic ground vehicle surveillance

problem is to determine the control law that maximizes the

expected range before the system states exit a prescribed set,

G = {(h,d) : hmin ≤ h ≤ hmax, dmin ≤ d ≤ dmax}, (6)

where dmin and dmax are the minimum and maximum relative

distances, respectively, at which surveillance can be reliably

conducted.

C. Markov Chain Uncertainty Modeling

A Markov Chain model is used to represent the evolution

of w1, w2 and w3. The transition probabilities of the Markov

chain are defined as

pi j = Pr[w+ ∈Wi | w ∈Wj], (7)

with Wi, i = 1, . . . ,m, defining a partitioning of the feasible

range of the uncertainty. As an approximation, specific values

of wi ∈Wi may be associated with each Wi.

The Markov chain approach to stochastic uncertainty

modeling permits a prediction of the distribution of updraft

and thermal strength that may be encountered in the next

flight segment given the estimates of the updraft and thermal

strength in the current flight segment. This approach also fa-

cilitates the development of control laws utilizing stochastic

dynamic programming.

III. DRIFT COUNTERACTION OPTIMAL CONTROL LAW

CONSTRUCTION

We consider a class of control problems for discrete-time

nonlinear systems with stochastic disturbances,

x(t +1) = f (x(t),v(t),w(t)), (8)

where x(t) is a vector state, v(t) is a vector control, and

w(t) is a vector disturbance, the value of which is known at

the time instant t ∈Z
+ while future values are unknown. The

control input must satisfy control constraints v(t)∈U , where

U is a specified set, as well as additional state constraints

of the form (w(t),x(t)) ∈ G. Unlike conventional control

systems that are designed to respond to set-points, here the

set G is specified so that if (w(t),x(t)) ∈ G, then the system

performance is acceptable.

If the drift caused by the disturbance is large, there may

exist a time at which constraint violation is unavoidable

regardless of the control law. In such a case, a Stochastic

Drift Counteraction Optimal Control (SDCOC) law can be

constructed [1] to maximize the expected time that the

system operates without violating v(t) ∈U .

The disturbance w(t) is modeled by a Markov chain with

a finite number of states, w(t) ∈ W = {w j, j ∈ J}. The

transition probability from w(t) = wi ∈W to w(t +1) = w j ∈
W is denoted by pi j = P(w(t) = w j|w(t) = wi). In [1], a more

general case of state-dependent transition probabilities is also

considered.

Our objective is to determine a control function u(x,w),
such that with v(t) = u(x(t),w(t)), a cost functional of the

form,

Jx0,w0,u = E x0,w0
[τx0,w0,u(G)], (9)

is maximized. Here, τx0,w0,u(G) ∈ Z
+ represents the first-

time instant when the trajectory of x(t) and w(t), which

is denoted by {xu,wu}, resulting from the application of

the control v(t) = u(x(t),w(t)) with values in the set U

exits the prescribed compact set G. Note that {xu,wu} is

a random process, τx0,w0,u(G) is a random variable, and

E x0,w0
[·] denotes the expectation conditioned on initial values

of x and w, i.e., on x(0) = x0 and w(0) = w0.

A. SDCOC Law Construction

Given a state vector, x−, and disturbance vectors, w−,w+ ∈
W , we define

LuV (x−,w−)
∆
= E x−,w−

[

V
(

f
(

x−,u
(

x−,w−
)

,w−
)

,w+
)]

−V (x−,w−), (10)

= ∑
j∈J

V
(

f
(

x−,u
(

x−,w−
)

,w−
)

,w j
)

· pi, j

−V (x−,w−). (11)

The SDCOC law, u∗(x,w), and its value function, V (x,w),
yield the following set of sufficient conditions [1]:

Lu∗V (x,w)+1 = 0, if (x,w) ∈ G,

LuV (x,w)+1 ≤ 0, if (x,w) ∈ G, u 6= u∗, (12)

V (x,w) = 0, if (x,w) 6∈ G.
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The conditions (12) can be treated numerically using either

a value iteration approach or a linear programming approach.

In this paper, a value iteration approach is used, wherein a

sequence of functions that converge to the value function is

defined using the following iterative process:

V0 ≡ 0,

Vn(x,w
i) = max

v∈U

{

∑
j∈J

Vn−1

(

f
(

x,v,wi
)

,w j
)

pi j +1

}

, (13)

if (x,wi) ∈ G, n > 0.

In [1] it is shown that this sequence of functions {Vn} is

monotonically non-decreasing and converges pointwise to

V∗(x,w
i) = Jx,wi,u∗ ; this convergence is uniform if Jx,wi,u∗ is

continuous.

The value iterations (13) produce a sequence of value func-

tion approximations, Vn, at specified grid-points x ∈ {xk, k ∈
K}, and a stopping criterion is |Vn(x,w

i)−Vn−1(x,w
i)| ≤ ε

for all x ∈ {xk, k ∈ K} and i ∈ J, where ε > 0 is sufficiently

small. In each iteration, once the values of Vn−1 at the grid-

points have been determined, linear or cubic interpolation

may be employed to approximate Vn−1( f (xk,vm,wi),w j) on

the right-hand side of (13), where v ∈ {vm, m ∈ M} is

a specified grid for v. Formally, the approximate value

iterations can be represented as follows,

V0(x
k
,wi) ≡ 0,

Vn(x
k
,wi) = max

vm, m∈M

{

∑
j∈J

Fn−1

(

f
(

xk
,vm

,wi
)

,w j
)

pi j +1

}

,

where Fn−1(x,w
i) = Interpolant[Vn−1](x,w

i), if (x,wi) ∈ G,

and Fn−1(x,w
i) = 0, if (x,wi) 6∈ G.

Once an approximation of the value function, V∗, is

available, an optimal control law may be determined from

the following relation:

u∗(x,w
i) ∈ argmaxv∈U

{

∑
j∈J

V∗

(

f
(

x,v,wi
)

,w j
)

pi j

}

. (14)

IV. GLIDER CONTROL LAW COMPUTATION

A. Glider Description and Model Parameters

The model is parameterized for Schweizer Aircraft’s SGS

2-33A, a common flight trainer in North America that was

manufactured during the late 1960s and throughout the

1970s [21]. In addition to the popularity of this two-seat

glider, our choice is based on the relative inferiority of the

glider’s soaring performance (or glide ratio) when compared

to modern sailplanes and competition gliders; hence, the

optimal stochastic flight management decisions made with

this trainer glider and the above theory may facilitate achiev-

ing comparable cross-country distances to those attained by

skilled hobby glider pilots in high-performance gliders with

artificial aid. A third reason for the choice of aircraft is author

familiarity with glider flight instruction on this aircraft.

The glider polar curve, depicted in Fig. 1 [22], determines

the sink rate, vz = f (u1), in still (no-wind) air versus the

ground speed. In this plot, VS designates the sink rate, vz, and

the airspeed V is taken to be u1 (i.e., we assume a no-wind

condition). The diagram also illustrates a best glide ratio (i.e.,

a best lift/drag ratio or L/D ratio) of 22.25:1, corresponding

to 22.25 m of forward travel for every 1 m of descent, at V

speeds of approximately 20.1 m/sec or 45 mph solo and 23.2

m/sec or 52 mph dual. A minimum sink VS speed of 0.792

m/sec or 2.6 ft/sec is achieved at a V speed of 17.0 m/sec

or 38 mph solo, and VS = 0.945 m/sec or 3.1 ft/sec at V =

18.8 m/sec or 42 mph dual. Current glider data are available

in [23]. The polar curve for the glider was approximated by

a quadratic function of the longitudinal speed,

vz[ft/sec] = 8.2582−0.2870u1[mph]+0.0038u1[mph]2.

Fig. 1. Glide polar curve of the Schweizer SGS 2-33A [22].

The minimum and maximum altitudes for the glider were

prescribed as hmin = 1000 ft and hmax = 3000 ft. For the

value iterations, the altitude grid had a step size of 100

ft. In the maximum range problem, we assumed tmin = 0,

tmax = 1200 s, and a grid step size of 30 s. In the ground

vehicle surveillance problem, we assumed dmin = −1800

m, dmax = 1800 m and a grid step size of 150 m. In the

range maximization problem, two thermal strength values

of 0 and 1.67 ft/sec, and four updraft values of −6.6667,

−3.3333, 0 and 1.6667 ft/sec were considered. The thermal

strength and the updraft were treated as independent and their

corresponding transition probability matrices,

P1 =

[

0.8 0.2

0.8 0.2

]

, P2 =









0.05 0.2 0.7 0.05

0.05 0.2 0.7 0.05

0.05 0.075 0.8 0.075

0.05 0.05 0.8 0.1









,

were combined. The thermal and updraft strength and prob-

abilities were based on values of typical flight conditions

encountered by the authors. Note that these transition prob-

abilities imply that segments with no thermals and no up-

drafts/downdrafts are predominant. The grid points for the

control variables (speed to fly outside the thermal and time

to spend climbing the thermal) were chosen at 34, 39, 42,

45, 48, 54, 60, 66, 72, 78, 84 mph for u1 and 0, 30, 60, 120,

180, 240, 300 sec for u2.
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In the ground vehicle surveillance problem, the ground

vehicle velocity could take values of 39, 54 and 66 mph and

the transition probability matrix has the following form

P3 =





0.5 0.25 0.25

0.25 0.5 0.25

0.25 0.25 0.5



 .

The thermal strength model was the same as the range max-

imization case, with updrafts not considered for simplicity

(the updraft speed was set to zero).

B. Range Maximization Results

The optimal value function (expected time to constraint

violation) in the range maximization problem is in Fig. 2.

Convergence of value iterations occurs after 35 iterations.

Fig. 3 illustrates various cross-sections of the control policy.
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Fig. 2. Value function in the range maximization problem.
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Fig. 3. Cross-sections of the control policy in the range maximization
problem.

The following control policy trends are visible in Fig. 3

and the plots that follow. These trends are intuitive, and

consistent with the general rules-of-thumb that are taught

to glider student pilots for range maximization.

1) Thermals should be taken advantage of, even if located

within a broader region of downdraft or sink (assum-

ing sufficient pilot skill or automation and sufficient

thermal diameter), as long as the glider is not close to

violating the maximum height constraint and there is

enough feasible flying time available.

2) Since greater sink rates can be accommodated at higher

altitudes, speeds that are slightly faster than best L/D

are permissible at these altitudes to increase the gliding

range. If the flight time is close to the maximum flight

time constraint, then an increased speed is desirable to

gain more gliding range. The time at which to begin

this speed increase depends on the available altitude.

3) A greater airspeed is desirable in regions of sink to

quickly traverse these areas. A slower airspeed (i.e.,

the minimum sink speed) is desirable in regions of

updraft to gain altitude.

Two simulation scenarios illustrate the above trends. In

the first simulation scenario, the thermals are encountered

relatively early during the glide, and in the second scenario,

thermals are encountered only later during the glide.

Figs. 4–6 illustrate the time histories of the associated

variables for the first simulation scenario. The red dashed

lines indicate constraints, and the blue dots indicate snap-

shots of the flight conditions during a flight segment. The

glider utilizes the first two thermals it encounters but skips

thermals encountered later in the glide to avoid losing time

in the thermals. Figs. 7–9 illustrate the time histories of

the associated variables for the second simulation scenario.

The glider travels faster through downdrafts, slower through

updrafts, and close to the best L/D longitudinal speed value

in flight segments without updrafts or downdrafts.

To provide additional context for the stated maximum

distance gliding range values in Fig. 4 and Fig. 7, the glider

descends from 2500 ft to 1000 ft in approximately 500

seconds at the best L/D speed of 46 mph without thermals

or updrafts, thus covering a range of 10058.4 m in that time.

2 4 6 8 10 12

1000

1500

2000

2500

3000

h
 f

t

States, Max. Distance=13542.12

2 4 6 8 10 12

0

500

1000

t 
s
e
c

s km

Fig. 4. Altitude and flight time of the glider versus distance in the range
maximization problem, simulation scenario 1.
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Fig. 6. Time to spend in a thermal and speed to fly versus flight segment
number in the range maximization problem, simulation scenario 1.
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Fig. 7. Altitude and flight time of the glider versus distance in the range
maximization problem, simulation scenario 2.
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Fig. 8. Thermal strength and updraft versus flight segment number in the
range maximization problem, simulation scenario 2.
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Fig. 9. Time to spend in a thermal and speed to fly versus flight segment
number in the range maximization problem, simulation scenario 2.

C. Ground Vehicle Surveillance Results

In the simulation, the thermals are encountered relatively

early during the glide (similar to Fig. 5). The time histories

of the relevant variables are shown in Figs. 10–12. The red

dashed lines indicate constraints, and the blue dots indicate

snapshots of the flight conditions during a flight segment.

The distance traveled is 11.42 km and, as expected, is

less than the distance covered by the glider in the range

maximization problem (13.54 km, see Fig. 4). The ground

vehicle is initially behind the glider and moves at high speed

with random speed changes. The glider takes advantage of

two thermals along the flight path to reduce altitude loss. The

ground vehicle moves ahead of the glider when the glider is

delayed in the thermal. The glider chooses not to use three

thermals encountered along the flight path.
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ground vehicle surveillance problem.
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Fig. 11. Thermal strength and ground vehicle speed versus segment number
in the ground vehicle surveillance problem.
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Fig. 12. Time to spend in a thermal and speed to fly versus flight segment
number in the ground vehicle surveillance problem.

V. CONCLUSIONS

This paper has described and analyzed a gliding range

maximization problem and a ground vehicle surveillance

problem utilizing the recently developed technique of

stochastic drift counteraction optimal control and a popular

trainer glider in North America, the SGS 2-33A. The opti-

mization results obtained with this technique from sample

runs are intuitive and plausible.
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