
Decentralized Online Convex Programming with Local Information

Maxim Raginsky, Nooshin Kiarashi, and Rebecca Willett

Abstract— This paper describes a novel approach to de-
centralized online optimization in a large network of agents.
At each stage, the agents face a new objective function that
reflects the effects of a changing environment, and each agent
can share information pertaining to past decisions and cost
functions only with his neighbors. These operating conditions
arise in many practical applications, but introduce challenging
questions related to the performance of distributed strategies
relative to impractical centralized approaches. The proposed
algorithm yields small regret (i.e., the difference between the
total cost incurred using causally available information and the
total cost that would have been incurred in hindsight had all the
relevant information been available all at once) and is robust
to evolving network topologies. It combines a subgradient-
based sequential convex optimization scheme with decentralized
decision-making via approximate dynamic programming.

I. INTRODUCTION

Consider a network of agents who cooperate to accom-
plish a common objective. For instance, the agents may
represent various providers in a power grid, and at each
time must decide how to satisfy the temporally varying
demands for power with minimal expense. Other examples
would include sensor nodes in a wireless sensor network
or various decision-makers in a large organization. In such
settings, decentralized architectures, in which the agents do
not rely on a central facility for relevant information but
must instead communicate with other agents, are preferable
to centralized ones for ensuring robustness against localized
failures and interruptions, as well as for reducing overhead
in data collection, transmission, storage, and processing.

One approach towards designing a strategy for the agents
would be to formulate the problem at hand as a stochastic
multistage decision process with a prescribed sequence of
cost functions and a prescribed information structure [1],
[2]. However, most complex networks are deployed in highly
dynamic and uncertain environments that do not admit easily
identifiable or tractable models. To handle this uncertainty
robustly, we can instead represent the temporal evolution of
the environment by means of an arbitrarily varying sequence
of cost functions, where the cost function for each stage is
revealed only ex post facto, after the relevant decisions had
already been made. The goal then is to minimize regret, i.e.,
the difference between the total cost incurred using causally
available information and the total cost that would have
been incurred in hindsight had all the relevant information
been available all at once. This online optimization approach,
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which has recently gained a lot of popularity in the machine
learning community [3], has not yet been consistently applied
to multiagent decision and control problems.1

In this paper, we consider the problem of decentralized
online optimization in a large network from the viewpoint
of sequential team decisions with nonclassical information
structures. This problem has several salient features:
• Time-varying objective functions – the quantity to be

optimized varies with time due to uncertain environment
dynamics, and the agents must adapt to these variations.

• Additive local costs – the objective at each stage is a
sum of local costs involving a small subset of agents.

• Local information – each agent has only partial and
localized knowledge of past decisions of other agents,
as well as of the past cost functions.

Our contribution is twofold: (1) We develop a general math-
ematical framework for decentralized online optimization,
including the appropriate notion of regret, by extending the
definition of information structure in the sense of Witsen-
hausen [1] to settings involving a sequence of arbitrarily
varying cost functions, where each agent possesses partial
knowledge not only of other agents’ past actions and obser-
vations, but also of past cost functions. To the best of our
knowledge, this is the first time cost functions have been
considered as part of an information structure, although the
need for such a framework had been pointed out before [5].
(2) We focus on a particular information structure, under
which each agent receives information only from agents in
a fixed-radius neighborhood. We give a constructive proof
that, provided the neighborhood radius is sufficiently large
as a function of the planning horizon (but independent of the
number of agents), there exists an efficiently implementable
strategy that achieves essentially the same regret as in the
fully centralized case, and is furthermore robust to changes
in the network topology. This information structure was first
studied by Rusmevichientong and van Roy [6] in the context
of single-stage decentralized optimization over finite decision
spaces, and one of the byproducts of the present work is an
extension of their results to multi-stage decentralized convex
optimization problems over compact Euclidean domains.

A. Related work

The problem of decentralized optimization over a network
has received considerable attention for some time, dating
back to the seminal work of Tsitsiklis et al. [7], [8]. In this
framework, the agents are located at the nodes of a graph,

1However, it has been recently shown that many classical adaptive control
techniques are instances of online convex optimization [4].
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and each agent can communicate only with his neighbors.
Each agent performs local averaging of his current decision
with those of his neighbors, as dictated by a doubly stochastic
matrix that conforms to the topology of the graph. Recent
work by Nedić and Ozdaglar [9] and by Duchi et al. [10]
applies this methodology to the problem of decentralized
convex optimization in networks.

The above work assumes that the function to be minimized
is fixed, and the agents communicate over multiple rounds.
Closer to our own setting, Yan et al. [11] consider the
problem of decentralized online optimization, in which the
objective function changes arbitrarily between rounds. Their
scheme is similar to [9] and [10] in its use of local averag-
ing combined with a descent algorithm. However, methods
that rely on graph-conformant stochastic matrices are only
relatively robust against changes in the network topology
(e.g., the algorithm of [10] is proven to be resilient against
random and independent link failures, but it is not clear how
it can handle nonergodic changes in the network structure).
To handle a dynamic network topology, there must be a way
to adjust the weight matrix in real time and in a decentralized
manner, which may require considerable overhead.

By contrast, the approach developed in the present paper
obviates the need for carefully designed stochastic matrices.
Instead, it highlights the importance of common randomness
in guaranteeing that, at least with certain types of information
structures, the decisions can be made by individual agents
independently of “faraway” agents, yet be almost as good as
the decisions made in a centralized manner. There are some
similarities between our work and that of [9]–[11] in that
we exploit the robustness of subgradient-based sequential
convex optimization schemes in the presence of perturba-
tions. However, unlike these works, but similarly to [6], we
use approximate dynamic programming to decentralize the
decision-making process at each time step.

B. Notation

For any positive integer k, we will denote by [k] the
set {1, . . . , k}. Given two real numbers a and b, we will
write a ∧ b for min{a, b} and a ∨ b for max{a, b}. For any
pair of vectors x, y ∈ Rd, 〈x, y〉 will denote the standard
Euclidean inner product, while ‖x‖ will denote the `2 norm.
All functions between Borel subsets of Euclidean spaces are
assumed to be appropriately measurable. The space of all
bounded measurable functions on a compact domain X ⊂ Rd
will be denoted by Mb(X). For each H ∈ Mb(X), we will
denote by ‖H‖∞ the usual sup norm and by ‖H‖s the span
seminorm [12]

‖H‖s , sup
x∈X

H(x)− inf
x∈X

H(x).

We will use the notion of a subgradient [13]: g ∈ Rd is a
subgradient of a convex function f : Rd → R at x ∈ Rd if

f(y) > f(x) + 〈g, y − x〉, ∀y ∈ Rd.

The set of all subgradients of f at x will be denoted by
∂f(x). Finally, for any two probability measures P,Q on a

measurable space (Ω,B) the total variation distance is

‖P −Q‖TV , 2 sup
B∈B
|P (B)−Q(B)|.

II. THE MODEL

We consider decentralized sequential decision processes
involving a large number n of agents, where the cost func-
tions vary from stage to stage in an arbitrary manner and
the agents’ strategies are based on causally available local
information (in a sense to be made precise shortly).

The centralized version of this problem was first posed and
studied by Zinkevich [14] under the name of Online Convex
Programming (OCP). It can be formulated as a repeated
game between two players, the Agent and Nature. The moves
of the Agent are points in a closed convex set U, while
those of Nature are convex functions f : U → R in some
class F . At each round t ∈ [T ], the Agent plays a point
ut ∈ U, Nature announces ft ∈ F , and the Agent incurs
the cost ft(ut) + ϕ(ut), where ϕ : U → R is a fixed and
known convex regularization function2. It is assumed that the
Agent has perfect recall and can base his choice of ut on all
previous moves ut−1 = (u1, . . . , ut−1) and all previous cost
functions f t−1 = (f1, . . . , ft−1). Thus, we can describe the
Agent’s strategy by a sequence γ = {γt}Tt=1, where γt maps
the information available to the Agent at time t to his move
ut = γt(ut−1, f t−1). The overall performance of the Agent
is measured by the regret

RT (γ, fT ) ,
T∑
t=1

[ft(ut) + ϕ(ut)]− inf
u∈U

T∑
t=1

[ft(u) + ϕ(u)]

– the difference between the Agent’s total cost and the
smallest cost that could have been incurred in hindsight by
using the best single move with full knowledge of fT . The
main quantity of interest is the minimax regret

R∗T (F) , inf
γ

sup
fT∈FT

RT (γ, fT ),

where the infimum is over all admissible strategies and
the supremum is over all possible sequences of Nature’s
moves. The objective is to ensure that R∗T (F) is a sublinear
function of the horizon T . When F is the class of all
convex L-Lipschitz functions on U, a simple strategy based
on projected subgradient descent guarantees that R∗T (F) =
O(
√
T ), where the constant hidden in the O(·) notation

depends on the diameter of U and on L [14], [15]. Moreover,
R∗T (F) = Ω(

√
T ) [16], so we have minimax optimality.

A. Decentralized online convex programming
In this work, we introduce a decentralized generalization

of OCP involving a large number of agents, each of whom
receives only partial information about the past cost func-
tions and the past decisions of the other agents. Specifically,
consider a team of n agents, A1, . . . ,An. The decision of
each agent is a scalar in [0, 1].3 The overall decision space

2Zinkevich considered the case ϕ ≡ 0; the more general regularized
formulation has been analyzed recently by Xiao [15].

3The restriction of the individual decisions to [0, 1] is not essential, and
is imposed mainly for simplicity. Everything just as easily goes through if
each agent makes decisions in a compact convex subset of Rd.
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is U = [0, 1]n. We assume that both the cost and the
regularization functions can be decomposed as

f(u) = f(u1, . . . , un) =
1
n

n−1∑
i=1

fi(ui, ui+1), (1)

ϕ(u) = ϕ(u1, . . . , un) =
1
n

n−1∑
i=1

ϕi(ui, ui+1). (2)

Here, the fi’s are elements of a given class C of convex
functions c : [0, 1]2 → R, while the ϕi’s are fixed and
known convex functions [0, 1]2 → R. The regularization
terms {ϕi} are assumed known to all agents. This is the
simplest nontrivial cost structure, in which each agent’s
decision affects the performance of other agents, and where
partial knowledge of the cost function is synonymous with
knowing some (but not all) of the local terms f1, . . . , fn−1.
We will denote the set of all functions of the form (1) by
Fn(C).

In order to describe the interaction of each agent with
Nature and with other agents, we introduce the notion of
an information structure in the spirit of Witsenhausen’s
framework for decentralized stochastic control [1]:

Definition 1. An information structure I is a specification,
for each i ∈ [n], t ∈ [T ], of the sets

Dt
i ⊆ [n]× [t− 1], F ti ⊆ [n− 1]× [t− 1].

The role of Dt
i (resp., F ti ) is to determine which past

decisions (resp., local cost functions) are visible to Ai at
time t. The information structure I∗ consisting of

Dt
i = [n]× [t− 1] and F ti = [n− 1]× [t− 1]

for each t, i describes the centralized case.
We will consider strategies that allow the agents to make

use of common randomness, which is known to be of help
in decentralized scenarios. To that end, we assume that, for
every i ∈ [n], Ai generates a T -tuple {Wi,t}Tt=1 of i.i.d.
Uniform[0, 1] random variables independently of all other
agents, and that if Ai and Aj share information at time t,
then they also share Wi,t and Wj,t. Then the move of Ai at
time t will itself be a random variable, which we will denote
by Ui,t. These random variables are specified recursively. Let
us define the information state of Ai at time t by

Iti ,
(
Uj,τ , (j, τ) ∈ Dt

i ; fk,σ, (k, σ) ∈ F ti ;

W`,ν , (`, ν) ∈ Dt
i ∪ F ti

)
,

where fk,σ ∈ C is the kth local term in the cost function
fσ ∈ Fn(C) selected by Nature at time σ. The information
state captures all the data Ai can use at time t to form
his decision. Given an information structure I and the
corresponding set of information states Iti , a strategy
for the team is a sequence γ = {γt}Tt=1, where each
γt = (γ1,t, . . . , γn,t) is an n-tuple of mappings, such that
Ui,t = γi,t

(
Iti
)

is the move of Ai at time t. Let Γ(I) denote
the space of all such strategies.

We can now formalize Decentralized OCP (or DOCP,
for short) by means of the following protocol:

Decentralized Online Convex Programming (DOCP)
for t = 1 to T

Nature chooses ft = (f1,t, . . . , fn−1,t) ∈ Fn(C)
for i = 1 to n

Ai observes Iti and computes Ui,t = γi,t
(
Iti
)

end for
the team incurs the cost ft(Ut) + ϕ(Ut)

end for

Now, for each γ ∈ Γ(I) and each choice of fT ∈ Fn(C)T
we can define the expected regret R̄T (γ, fT ) as

E

{
T∑
t=1

ft(Ut) + ϕ(Ut)

}
− inf
u∈U

T∑
t=1

[ft(u) + ϕ(u)] ,

where the expectation is w.r.t. {Wi,t}. The corresponding
minimax regret now depends not only on the base class C,
but also on the underlying information structure I:4

R̄∗T (I, C) , inf
γ∈Γ(I)

sup
fT∈Fn(C)T

R̄T (γ, fT )

III. PROBLEM FORMULATION AND MAIN RESULT

Clearly, depending on how severely the prevailing infor-
mation structure restricts the agents’ capabilities, we may or
may not be able to attain sublinear minimax regret. In this
work, we will show that sublinear minimax regret is, indeed,
attainable under a particular information structure inspired
by the work of Rusmevichientong and van Roy [6]. Under
this information structure, the agents are arranged on a chain
according to their number, and each agent has perfect recall
and can share information with all agents that are at most r
steps away in either direction.

Definition 2. For r 6 n, the r-local information structure
Ir consists of

Dt
i = {(i− r) ∨ 1, . . . , (i+ r) ∧ n} × [t− 1]

F ti = {(i− r) ∨ 1, . . . , (i+ r) ∧ (n− 1)} × [t− 1]

Under Ir, the influence of each agent is localized to a
neighborhood of radius r. Such localization may be desirable
for ensuring robustness to departures, arrivals, or failures of
agents. Another desirable feature of a decentralized strategy,
as explained in [6], is for any two agents to behave similarly
when the cost- and decision-relevant parts of their informa-
tion states are the same. Assuming that the number n of
agents is very large (so boundary effects can be neglected),
this essentially means that the agents will have to make
decisions independently of their position in the chain:

Definition 3. A strategy γ ∈ Γ(Ir) is translation-invariant if
γi,t = γj,t for all t ∈ [T ] and all i, j = r + 1, . . . , n− r.

Our main result can be stated as follows:

4We are abusing the notation somewhat by writing C instead of Fn(C),
but since it is C that determines the cost functions for the team, hopefully
this will not lead to confusion.
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Theorem 1. Let C consist of all functions c : [0, 1]2 → R
that are convex and L-Lipschitz, i.e., |c(x, y) − c(x′, y′)| 6
L
√

(x− x′)2 + (y − y′)2 for all x, x′, y, y′ ∈ [0, 1], and let
the local regularization functions ϕi : [0, 1]2 → R, i ∈ [n],
be convex and Mϕ-Lipschitz. Then, provided

r >
3 log T + log 2

log
(

2T 3/2

2T 3/2 − 1

) , (3)

there exists a translation-invariant strategy γ ∈ Γ(Ir) with

sup
fT∈Fn(C)T

R̄T (γ, fT ) = O(
√
T )⇒ R̄∗T (Ir, C) = O(

√
T )

The significance of this result is that the minimal communi-
cation radius needed to achieve the optimal O(

√
T ) minimax

regret is Ω(T 3/2 log T ), independently of the number of
agents n. This fact has deep implications for designing
information structures in large networks when the typical
planning horizon is known beforehand.

The rest of the paper is devoted to a constructive proof
of the theorem. To that end, we first develop an explicit
strategy in Sections IV and V, and then present the proof
itself in Section VI. Although our results pertain to the line
graph, the key concepts can be extended to more general
network topologies (information structures); this extension
is an important element of our ongoing work.

IV. THE PROPOSED SOLUTION

In a nutshell, we will take a deterministic strategy that
attains minimax optimal regret in the centralized case,
specifically the Regularized Dual Averaging (RDA) scheme
of Xiao [15], and then develop a stochastic decentralized
approximation utilizing the agents’ shared randomness.

Let us first explain how RDA works in the centralized
setting. We start by choosing a proximal function Φ : U→ R,
which is assumed to be differentiable and strongly convex
with parameter mΦ > 0, i.e., for all u, v ∈ U

Φ(v) > Φ(u) + 〈∇Φ(u), v − u〉+
mΦ

2
‖u− v‖2.

For example, if Φ is twice differentiable and all the eigen-
values of the Hessian ∇2Φ are at least mΦ throughout U,
then Φ is strongly convex. We also assume that Φ(u) > 0 for
all u ∈ U and that Φ(0) = 0. The algorithm maintains two
sequences in Rn: the primal sequence {ut}∞t=0 and the dual
sequence {zt}∞t=0, where u0 = z0 = 0, zt+1 = zt + gt+1 for
t = 0, 1, . . . with gt ∈ ∂ft(ut) an arbitrary subgradient of ft
at ut, and

ut+1 = Πt
βt(zt), t = 0, 1, . . . , (4)

where {βt}∞t=0 ⊂ R is a nondecreasing sequence with β0 =
1, and for any β > 0, z ∈ Rn, u ∈ U,

Πt
β(z) , arg min

u∈U
{〈z, u〉+ tϕ(u) + βΦ(u)}︸ ︷︷ ︸

,Htβ(z,u)

When the functions ft are uniformly Lipschitz, the choice
βt =

√
t+ 1 leads to O(

√
T ) regret [15, Section 3.1].

To adapt this algorithm to the decentralized setting, we
will choose a proximal function Φ of the form

Φ(u) =
1
n

n−1∑
i=1

Φi(ui, ui+1). (5)

We will also assume that ‖Φ‖∞ = CΦ < ∞. Let us write
down the explicit form of the RDA updates when the cost
functions ft are elements of Fn(C) and Φ takes the form (5).
For each τ = 1, . . . , t let gi,τ =

(
g

(1)
i,τ , g

(2)
i,τ

)
∈ R2 denote

an arbitrary subgradient of fi,τ at (ui,τ , ui+1,τ ). Then let
ξt = (ξ1,t, . . . , ξn,t) ∈ Rn be the vector with components

ξi,t =


∑t
τ=1 g

(1)
1,τ , i = 1∑t

τ=1

(
g

(1)
i,τ + g

(2)
i−1,τ

)
, i = 2, . . . , n− 1∑t

τ=1 g
(2)
n−1,τ , i = n

(6)

It is not hard to show that ξt = nzt ≡ n
∑t
τ=1 gτ , where

gτ ∈ ∂fτ (uτ ) for each τ . Hence, the computation of ut+1

in the centralized case entails minimizing the function

Ht
βt(zt, u) =

1
n

n−1∑
i=1

hi,t(ui, ui+1), (7)

where hi,t(ui, ui+1) =
ξi,tui + tϕi(ui, ui+1) + βtΦi(ui, ui+1), 1 6 i 6 n− 2
ξn−1,tun−1 + ξn,tun + tϕn−1(un−1, un)

+βtΦn−1(un−1, un), i = n− 1
(8)

Now let us consider the decentralized scenario with the r-
local information structure. For each i, let us define

Gi = {(i− r + 1) ∨ 1, . . . , (i+ r − 1) ∧ (n− 1)}.

Suppose that the decisions u1, . . . , ut have already been
made. Let us look at the problem faced by Ai at time t,
namely, the computation of ui,t+1. If all of a sudden Ai
were to gain access to all past decisions and cost functions,
then his best action would be to compute the ith component
of Πt

βt
(zt). However, under the r-local information structure,

the information state It+1
i still permits the computation of

hj,t for every j ∈ Gi using (6) and (8). Thus, a reasonable
strategy for Ai would be to try and approximate the ith
component of Πt

βt
(zt) using the local data (ξj,t : j ∈ Gi).

In other words, the overall team strategy is to approximate
the RDA updates (4), where each agent would use only local
information pertaining to the dual sequence {zt}.

This local approximation will be facilitated by a proce-
dure we will refer to as the Local Dynamic Programming
Relaxation (LDPR). This procedure, whose description and
analysis are given in the next section, is an extension of the
methods developed in [6] to decentralized Euclidean opti-
mization problems of the form (7). For now, we represent it
abstractly as a black box function with parameter δ ∈ (0, 1),
inputs h1, . . . , hn−1,W1, . . . ,Wn, and outputs U1, . . . , Un:

(U1, . . . , Un)← LDPRδ
(
{hi}n−1

i=1 , {Wj}nj=1

)
.

5366



Then our proposed strategy will take the following form:

DOCP Under r-Local Information Structure
U1,1 = U2,1 = . . . = Un,1 = 0
for t = 1 to T − 1

for i = 1, . . . , n
Ai observes It+1

i and computes hj,t, j ∈ Gi
end for
(U1,t+1, . . . , Un,t+1) = LDPRδ

(
{hi,t}n−1

i=1 , {Wj,t}nj=1

)
end for

V. LOCAL DP RELAXATION: CONSTRUCTION AND
ANALYSIS

The objective of LDPR is to minimize a cost function

h(u) =
1
n

n−1∑
i=1

hi(ui, ui+1) (9)

using a team of n agents where, for each i ∈ [n], only the
terms hj with j ∈ Gi are revealed to Ai. We assume that
the hi’s are continuous and uniformly bounded,

max
i=1,...,n−1

‖hi‖∞ 6 B. (10)

Our construction of LDPR, which builds on the methods
developed in [6] in the context of combinatorial optimization
over finite decision spaces, involves two steps: first, the de-
terministic minimization problem (9) is relaxed to a Markov
decision process (MDP) with a specific transition law, and
then the dynamic programming (DP) recursion for this MDP
is approximated locally. Crucially, the common randomness
available to the agents is needed to guarantee that the local
approximations are close to the global optimum.

To construct the MDP relaxation, let X = A = [0, 1],
where X will be the state space and A will be the action
(control) space, choose some δ ∈ (0, 1), and consider the
transition kernel Pδ(dx′|x, a) = Pδ(dx′|a), such that

x′ =


a, with probability 1− δ
0, with probability δ/2
1, with probability δ/2

(11)

Let h0 ≡ 0. Given a Markov policy π = (µ0, . . . , µn−1),
where each µi is a (measurable) function from X into A,
consider the total expected cost starting at x0 ∈ X:

Cx0(π) ,
1
n

Eπx0

{
n−1∑
i=0

hi(Xi, µi(Xi))

}
,

where Eπx0
{·} is the expectation w.r.t. the probability measure

induced by π starting at X0 = x0. The connection between
this MDP and mininization of h is revealed by the following
lemma, whose easy proof we omit:

Lemma 1. For any policy π and any initial x0 ∈ X,

1
n

Eπx0

{
n−1∑
i=1

hi(Xi, Xi+1)

}
6 Cx0(π) + 2Bδ

1
n

inf
π

Eπx0

{
n−1∑
i=1

hi(Xi, Xi+1)

}
6 inf
u∈U

h(u) + 4Bδ.

In the centralized setting, the optimal policy π∗ that
minimizes Cx0(π) for all x0 can be computed using DP. We
now show how each agent can implement an approximate DP
recursion based only on locally available information. To that
end, we first define the standard mappings associated with
the DP recursion [17, Chap. 3]: For every i = 0, 1, . . . , n−1
and µ : X → A, define the operators T i and T iµ that map
any H : X→ R to T iH,T iµH : X→ R via

(T iH)(x) , inf
a∈A

{
1
n
hi(x, a) + Eδ {H(X ′)|a}

}
(T iµH)(x) ,

1
n
hi(x, µ(x)) + Eδ {H(X ′)|µ(x)} .

From the vantage point of Ai who only has access to
hi−r+1, . . . , hi+r−1, the cost-to-go given the state Xi−1 =
xi−1 and any policy π = (µ0, . . . , µn−1) is

C(i)
xi−1

(π) = Eπ
{
i+r−1∑
j=i−1

hj(Xj , µj(Xj))

∣∣∣∣∣Xi−1 = xi−1

}
.

The past costs visible to Ai are hi−r+1, . . . , hi−1. Hence,
Ai can implement the DP recursion starting at j = i+ r− 1
and descending to j = i,5

Ji,r ≡ 0; Ji,` = T i+`Ji,`+1, ` = 0, . . . , r − 1

and for ` = −1, . . . , r− 1 compute µ(i)
i+` : X→ A, such that

T i+`
µ

(i)
i+`

Ji,`+1 = T i+`Ji,`+1. (12)

Let µi−1 , µ
(i)
i−1. Since Ai knows hi−r+1, . . . , hi−2, he

can also compute the mappings µi−r+1, . . . , µi−2. Next,
we bring in common randomness. Let {Wj}nj=1 be n i.i.d.
Uniform[0, 1] random variables, where Wj is held by Aj .
Since Ai has access to (Wj : j ∈ Gi), he simply simulates
the controlled Markov chain from j = i−r+1 to j = i start-
ing with the zero initial state and using the truncated policy
(µi−r+1, . . . , µi−1). For W ∼ Uniform[0, 1], let Fδ(a,W )
denote the deterministic realization of the stochastic kernel
Pδ(dx′|a). We can now summarize the entire method:

Local Dynamic Programming Relaxation (LDPR)
Parameter: δ ∈ (0, 1)
Input: h1, . . . , hn−1;W1, . . . ,Wn

Output: (U1, . . . , Un) = LDPRδ
(
{hi}n−1

i=1 ; {Wj}nj=1

)
for i = 1, ..., n

Ai does the following:
observe (hj ,Wj : j ∈ Gi)
compute µj , j ∈ Gi ∩ {i− r + 1, . . . , i− 1}
let `0 = 0 ∨ (i− r + 1), X(i)

`0
= 0

for ` = `0, . . . , i− 1
X

(i)
`+1 = Fδ

(
µ`
(
X

(i)
`

)
,W`+1

)
end for
output Ui = X

(i)
i

end for

5To handle the case i + r > n, we can simply pad the cost functions
h1, . . . , hn−1 with hn = . . . = hn+r−1 = 0.
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Note that LDPR is translation-invariant by construction, since
any two agents facing the same sequence of local cost
functions will implement the same DP recursion and thus
will compute the same truncated policies.

A. Analysis of LDPR performance

Theorem 2. Consider any tuple h1, . . . , hn−1 of continuous
functions satisfying (10). Then

1
n

E

{
n−1∑
i=1

hi(Ui, Ui+1)

}
− inf
u∈U

h(u) 6 B∆(δ, r),

where (U1, . . . , Un) is the output of LDPR, and ∆(δ, r) ,

6
(
δ +

(
1 + 1

δ

) (
1− δ

2

)r)
.

Proof. The proof essentially follows the same steps as in [6],
except for a few modifications that arise because of working
with continuous state and action spaces.

Let π∗ = (µ∗0, . . . , µ
∗
n−1) be the optimal centralized

policy, and let h∗ = infu∈U h(u). Let π = (µ0, . . . , µn−1) be
the policy consisting of the mappings constructed by the n
agents using LDPR and their local information. By Lemma 1,

1
n

Eπ0

{
n−1∑
i=1

hi(Xi, Xi+1)

}
− h∗ 6 C0(π)− C0(π∗) + 6Bδ.

The expected costs of π∗ and π can both be expressed as

C0(π∗) =
[
T 0
µ∗0
T 1
µ∗1
. . . Tn−1

µ∗n−1
J∗n

]
(0)

C0(π) =
[
T 0
µ0
T 1
µ1
. . . Tn−1

µn−1
Jn

]
(0),

where J∗n = Jn = 0, and the respective DP recursions are

J∗i = T iµ∗i J
∗
i+1, Ji = T iµiJi+1 i = 0, . . . , n− 1

Therefore, for any i we have

‖J∗i − Ji‖∞ =
∥∥∥T iµ∗i J∗i+1 − T iµiJi+1

∥∥∥
∞

6
∥∥∥T iµ∗i J∗i+1 − T iµiJ

∗
i+1

∥∥∥
∞

+
∥∥J∗i+1 − Ji+1

∥∥
∞ ,

where we have used the triangle inequality and the fact that
T iµ is a contraction in the ‖ · ‖∞ norm [17]. From (12),
T iµiJi+1,0 = T iJi+1,0, so by Lemma A.1 in the Appendix,∥∥∥T iµ∗i J∗i+1 − T iµiJ

∗
i+1

∥∥∥
∞

6
∥∥J∗i+1 − Ji+1,0

∥∥
s
.

Using Lemma A.2 repeatedly and then Lemma A.3, we get

‖J∗i+1 − Ji+1,0‖s 6
2B
δn

(
1− δ

2

)r
.

Since J∗n = Jn = 0, we finally get

|C0(π∗)− C0(π)| 6 ‖T 0J∗0 − T 0J0‖∞ 6
2B
δ

(
1− δ

2

)r
and therefore

1
n

Eπ0

{
n−1∑
i=1

hi(Xi, Xi+1)

}
− h∗ 6 6Bδ +

2B
δ

(
1− δ

2

)r
.

Let Pi denote the probability law of (Xi, Xi+1) under policy
π and X0 = 0, and let Qi denote the probability law of
(Ui, Ui+1). Then, since ‖hi‖∞ 6 B, we have

|Eπ0{hi(Xi, Xi+1)} − E{hi(Ui, Ui+1)}| 6 B‖Pi −Qi‖TV
6 4B(1− δ)r,

where the last step uses Lemma A.4. Putting everything
together, we get the desired bound.

VI. PROOF OF THEOREM 1
To prove Theorem 1, we will show that if the LDPR-based

strategy is used with δ = 1/T 3/2 and if the communication
radius r satisfies (3), then we can guarantee R̄∗T (Ir, C) =
O(
√
T ). From this point on, γ ∈ Γ(Ir) will denote the

LDPR-based strategy. Note that γ is indeed translation-
invariant because LDPR is.

Given the sequence of decisions {Ut}Tt=1, let us define
another sequence {Ūt}Tt=1 by Ū1 = 0 and

Ūt+1 = Πt
βt(zt) = arg min

u∈U
{〈zt, u〉+ tϕ(u) + βtΦ(u)}

for t > 1, where the zt’s are computed from {gt} according
to (6) using the relation zt = (1/n)ξt. Let u∗ ∈ U be a
minimizer of

∑T
t=1[ft + ϕ]. Then

RT (γ, fT ) =
T∑
t=1

[ft(Ut)− ft(u∗)] +
T∑
t=1

[ϕ(Ut)− ϕ(u∗)]

6
T∑
t=1

[
〈gt, Ūt − u∗〉+ ϕ(Ūt)− ϕ(u∗)

]
︸ ︷︷ ︸

(a)

+
T∑
t=1

K‖Ut − Ūt‖︸ ︷︷ ︸
(b)

with K = L + 2Mϕ, where the second step uses convexity
of the ft’s and Lipschitz continuity of the ft’s and ϕ. This
shows that the regret is bounded by the sum of two terms,
(a) and (b), where term (a) is an optimization term and term
(b) is the additional loss due to decentralization. We now
analyze these two terms.

A. Optimization term
To tackle term (a), we use Proposition 2 in [10]:

Lemma 2. Let {gt}∞t=0 ⊂ Rn be an arbitrary sequence of
vectors, let {βt}∞t=0 be a nondecreasing sequence of positive
reals, and consider the sequence {ūt}∞t=1 defined by

ūt+1 = arg min
u∈U

{
t∑

τ=0

〈gτ , u〉+ tϕ(u) + βtΦ(u)

}
.

Then for any u ∈ U we have
T∑
t=1

[〈gt, ūt − u〉+ ϕ(ūt)− ϕ(u)] 6
T∑
t=1

‖gt‖2

2βt−1
+ βTΦ(u).

With g0 = 0, we can apply the lemma to {Ūt}Tt=1 to get

E

{
T∑
t=1

〈gt, Ūt − u∗〉+ ϕ(Ūt)− ϕ(u∗)

}

6
T∑
t=1

E‖gt‖2

2βt−1
+ βTΦ(u∗) 6

L2

2

T∑
t=1

1
βt−1

+ CΦβT . (13)
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B. Loss due to decentralization

Recall that Ut+1 is an approximation to Πt
βt

(zt), which is
computed from h1,t, . . . , hn−1,t using LDPR. On the other
hand, Ūt+1 is the exact minimizer of Ht

βt
(zt, u) over u ∈ U.

Now, Ht
βt

is a sum of a convex function and a strongly
convex function, and so is itself strictly convex with constant
mΦβt. Therefore, since Ūt+1 minimizes Ht

βt
(zt, u), we have

Ht
βt(zt, Ut+1)−Ht

βt(zt, Ūt+1) >
mΦβt

2
‖Ut+1 − Ūt+1‖2

(cf. Theorem 2.1.8 in [13]), which gives ‖Ut+1 − Ūt+1‖

6

√
2

mΦβt

[
Ht
βt

(zt, Ut+1)− inf
u∈U

Ht
βt

(zt, u)
]
.

To bound the quantity under the square root, we use the fact
that Ut+1 = LDPRδ({hi,t}n−1

i=1 , {Wj,t}nj=1) and appeal to
Theorem 2. Specifically,

Ht
βt(zt, Ut+1) =

1
n

n−1∑
i=1

hi,t(Ui,t+1, Ui+1,t+1),

where the terms hi,t are of the form (8). A simple calcu-
lation shows that ‖hi,t‖∞ 6 (4L + Mϕ)t + CΦβt ≡ Bt.
Consequently, E‖Ut+1 − Ūt+1‖

6

√
2

mΦβt
E
{
Ht
βt

(zt, Ut+1)− inf
u∈U

Ht
βt

(zt, u)
}

6

√
(8L+ 2Mϕ)t+ 2CΦβt

mΦβt
∆(δ, r), (14)

where the first step uses Jensen’s inequality, while the second
uses Theorem 2.

C. Obtaining O(
√
T ) regret

Putting together (13) and (14), we get R̄T (γ, fT )

6 K ′

{√
∆(δ, r)

T∑
t=1

√
t+ βt
βt

+
T∑
t=1

1
βt−1

+ βT

}
, (15)

where K ′ = K ′(L,ϕ,Φ) > 0 is a constant that depends only
on L, Mϕ, mΦ, and CΦ. Taking βt =

√
t+ 1, we get

T∑
t=1

√
t+ βt
βt

= O(T 5/4) and
T∑
t=1

1
βt−1

+ βT = O(
√
T ).

Hence, if we choose δ and r to arrange for ∆(δ, r) =
O(T−3/2), we will obtain O(

√
T ) regret. Simple algebra

shows that if δ = 1/T 3/2 and r satisfies (3), then ∆(δ, r) =
O(T−3/2), and so we indeed obtain O(

√
T ) regret.

APPENDIX

This appendix contains some technical lemmas needed in
the proof of Theorem 2. The proofs of Lemmas A.1–A.3
follow essentially the same steps as in [6]; the statement
and the proof of Lemma A.4 are different from those in [6].
Details are omitted for lack of space.

Lemma A.1. For any two H1, H2 ∈ Mb(X), let µ1, µ2 :
X → A satisfy T iµ1

H1 = T iH1 and T iµ2
H2 = T iH2. Then

‖T iµ1
H1 − T iµ2

H1‖∞ 6 ‖H1 −H2‖s.

Lemma A.2. For any two H1, H2 ∈Mb(X),

‖T iH1 − T iH2‖s 6

(
1− δ

2

)
‖H1 −H2‖s.

Lemma A.3. For each i, ‖J∗i ‖s 6 2B
δn .

Lemma A.4. For each i, let Pi denote the probability law
of the couple (Xi, Xi+1) under the policy π and the initial
state X0 = 0, and let Qi denote the probability law of the
couple (Ui, Ui+1). Then ‖Pi −Qi‖TV 6 4(1− δ)r.
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