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Abstract— A methodology for the identification of nonlinear
models using constrained particle filters under the scheme of
the expectation-maximization (EM) algorithm is presented in
this paper. Missing or irregularly sampled observations are
commonplace in the chemical industry. In order to circumvent
the difficulties rendered by largely incomplete data set, an
improved EM based algorithm, which uses the expected
value of the log-likelihood function including the missing
observations, is developed. Constrained particle filters are
adopted to solve the expected log-likelihood function in the EM
algorithm. The efficiency of the proposed method in handling
missing data is illustrated through numerical examples and
validated through experiments.
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I. INTRODUCTION

Over the past few decades, the research of parameter

estimation has witnessed rapid progress as it plays a key role

in the development of mathematical models (which describe

the process behavior). Achieving a fairly accurate estimate of

the model parameters is imperative to satisfactorily capture

the system dynamics. Aspects of system identification have

been discussed extensively in literatures [1], [2]. However,

studies of parameter estimation in the presence of missing

observations have been less reported. Missing observations

or irregularly sampled outputs are commonly experienced

in real industry process. Lack of complete process knowl-

edge poses a big challenge to researchers and engineers

in performing model parameters estimation. Some common

approaches in dealing with missing data have been presented

and summarized in Khatibisepehr and Huang (2008) [3],

such as case-wise deletion, mean substitution, regression

imputation, multiple imputation, etc. Nevertheless, as pointed

out in Khatibisepehr and Huang (2008) [3], the variances of

the values may be considerably changed if applying case-

wise deletion, mean substitution, regression substitution, etc.

for missing data treatment.

When dealing with a dynamic system with missing data,

the methods that have been discussed would fail because

of their incapability of handling the dependency of the
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current output or state on the previous ones. While it is

beyond the scope of this paper to thoroughly cover all

types of dynamic models, our special attention is paid to

nonlinear state space models. In fact, quite limited work of

identification of nonlinear dynamic models subject to missing

data has been done.

The expectation-maximization (EM) algorithm [5] is

known as one of the techniques that can elegantly handle

missing outputs. Having long been recognized for its at-

tractive statistical properties as well as the convenience to

implement, some researches have reported its application in

parameter estimation with missing observations. Shumway

and Stoffer (1982) [6] use the EM algorithm in combination

with the conventional Kalman smoothed estimators xn
t =

E(xt|y1, y2, . . . , yn) to perform the smoothing and forecast-

ing for time series with missing observations. However, they

only consider the case without manipulated inputs. In recent

years, particle filters, which are also known as sequential

Monte Carlo (SMC) [7] methods, have been utilized in

combination with the EM algorithm [8], [9]. A maximum

likelihood method of identifying parameters of a nonlinear

process model with missing outputs is reported in Gopaluni

(2008) [8], where the log-likelihood in the EM algorithm is

approximated by particle filters and smoothers. Following the

point-wise state estimation technique, the smoothed density

functions of each state has to be calculated at every iteration

in the EM algorithm, which introduces a large amount of

computing burden. Based on [8], we propose a constrained

Bayesian method with only filtering under the expectation-

maximization (EM) framework to deal with the parameter

estimation problem with missing data, resulting a more

efficient scheme for nonlinear system identification.

Though it is recognized that nonlinear systems subject

to constraints are commonly encountered in practice, the

majority of existing Bayesian estimation methods are im-

plemented by ignoring such constraints. Recently, some

researchers have presented related work dealing with process

constraints using particle filters [14], [15]. By including cer-

tain process constraints into the particle filtering procedure

and performing cautious resampling strategy, particles are

ensured to efficiently represent the true density. Meanwhile,

the diversity of particles can be preserved to certain extent.

The remainder of this paper is organized as follows:

Section 2 states the identification problem of nonlinear

system. Section 3 begins with a revisit of the EM algorithm

and then the derivation of the expression for Q function with

missing data is given. Section 4 provides a brief description

of constrained PF and the details of approximating the Q
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function using constrained PF are presented. Numerical

simulations are illustrated in Section 5 which aim at

demonstrating the effectiveness of the proposed method in

nonlinear system identification with missing output data.

Comparative studies are also performed with the proposed

method and a different missing data treatment method.

Section 6 draws the conclusion based on the results obtained

in this paper.

II. PROBLEM STATEMENT

Consider the state space model given by

xt = f(xt−1, ut−1) + ωt (1)

yt = h(xt) + vt (2)

where the system parameters are Θ. xt, ut, yt, ωt and vt
are state, measured input, measured output, process noise

and measurement noise, respectively; ωt and vt are inde-

pendent and identically distributed Gaussian noises with co-

variance matrices Q, and R respectively. The input sequence

{u1, . . . , ut} is known.

Let X denote the sequence of hidden states {x1, . . . xT }.

Suppose that the outputs are available at time {t1, . . . , tα}
while missing at time {m1, . . . ,mβ}. Yo = {yt1 , . . . , ytα}
and Ym = {ym1

, . . . , ymβ
} stand for the corresponding

observed outputs and missing outputs. It is assumed that

the data is missing completely at random (MCAR). In

other words, the probability that the data is missing does

not depend on any part of the observed data. The process

and measurement model structures in Equation (2) are

assumed to be known a priori. Thus, determination of the

model structure is beyond the scope of this paper. Here

the parameters in the state space model, Θ, are of interest.

In the following section, we show how to formulate the

parameter estimation problem under the framework of the

EM algorithm.

III. EXPECTATION-MAXIMIZATION ALGORITHM

A. EM algorithm revisit

Expectation-maximization (EM) algorithm [5] is a well-

known maximum likelihood based method, which operates

between two steps, the expectation step and maximization

step. The basic principle behind the EM algorithm is that

instead of performing a complicated optimization, one aug-

ments the observed data Yobs with latent data Z to perform

a series of optimizations. Hence both the complete-data log-

likelihood log[(Yobs, Z|Θ)] and the conditional predictive

distribution p(Z|Yobs,Θ) can be calculated. Consisting of

two steps, namely the expectation step (E-step) and the

maximization step (M-step), the EM algorithm proceeds as

follows.

Specifically, let Θk be the current best approximation to

the mode of the observed posterior or the best estimated

parameters using all available data. The E-step is to compute

the Q function which is formally defined by

Q(Θ|Θk) = EZ|Yobs,Θ
k{log[p(Yobs, Z|Θ)]}

=

∫

Z

log[p(Yobs, Z|Θ]p(Z|Yobs,Θ
k)dZ (3)

and the M-step is to maximize the Q function with respect

to Θ to obtain

Θk+1 = argmax
Θ

Q(Θ|Θk) (4)

B. Formulation of the parameter estimation based on the EM

algorithm

Consider the state-space model described above. The ob-

served output data Yobs are Yo = {yt1 , . . . , ytα} while the

hidden states X = {x1, . . . , xT } and the missing outputs

Ym = {ym1
, . . . , ymβ

} can be viewed as the latent data Z.

Let p(x1:T , y1:T |Θ) denote the complete likelihood function

of the hidden states and observations. The Q function is

defined as the expectation of the log-likelihood function

log[p(x1:T , y1:T |Θ)] which is an integral given by

Q(Θ|Θk) = EZ|Yobs,Θ
k{log[p(Yobs, Z|Θ)]}

= EX,Ym|Yo,Θk{log[p(Yo,X, Ym|Θ)]}

=

∫

X,Ym

log[p(Yo,X, Ym|Θ]p(X,Ym|Yo,Θ
k)dXdYm

=

∫

X,Ym

log[p(x1:T , y1:T |Θ)]p(x1:T , ym1:mβ
|yt1:tα ,Θk)

· dx1:T dym1:mβ
(5)

Following the approach of [8], the Q function can be derived.

In Equation (5), the first term which is the joint density

function of states and outputs can be decomposed using the

Markov property as

p(x1:T , y1:T |Θ) = p(x1:T |Θ)p(y1:T |x1:T ,Θ) (6)

which can be further rewritten as

p(x1:T , y1:T |Θ) = p(x1|Θ)
T
∏

t=2

p(xt|xt−1,Θ)

·
T
∏

t=1

p(yt|xt,Θ) (7)

Furthermore, substituting Equation (7) into Equation (5), the

Q-function with missing outputs is given by

Q(Θ|Θk)

=

∫

X,Ym

log[p(x1:T , y1:T |Θ)]p(x1:T , ym1:mβ
|yt1:tα ,Θk)

·dx1:T dym1:mβ

=

∫

X

log[p(x1|Θ)]p(x1:T |yt1:tα ,Θk)dx1:T

+
T
∑

t=2

∫

X

log[p(xt|xt−1,Θ)]p(x1:T |yt1:tα ,Θk)dx1:T

+

tα
∑

t=t1

∫

X

log[p(yt|xt,Θ)]p(x1:T |yt1:tα ,Θk)dx1:T

+

mβ
∑

t=m1

∫

X,Ym

log[p(yt|xt,Θ)]p(x1:T , ym1:mβ
|yt1:tα ,Θk)

·dx1:T dym1:mβ

(8)
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The detailed derivation of the Q-function in (8) can be

found in [8]. Estimation of p(x1:T |yt1:tα ,Θ
k) is a batch

state estimation problem with all available observations.

The speed of the execution with the iterative EM algorithm

is very slow. The method proposed in [8] attempted to

simplify Equation (8) by further marginalization of state and

missing observations, but the end result is still a smoothing

problem. The computation cost remains very high. Thus

in this paper we will solve the problem by recursive state

filtering while taking into account of the system constraints

such that p(x1:T |yt1:tα ,Θ
k) is recursively approximated

by p(xt|yt1:tβ ,Θ
k) for t = 1 : T , where tβ ≤ t. The

lost performance from smoothing to filtering is, to some

extent, compensated by constraining the solution space,

as demonstrated by simulation examples. This proposed

solution can reduce the computation cost while keeping

comparable accuracy in parameter estimation as that of the

existing method, and thus make the solution feasible in

real-time applications.

IV. CONSTRAINED BAYESIAN APPROACH

A. Particle filters revisit

The basic idea of particle filters is to represent the desired

posterior density function by a series of particles with as-

sociated weights, i.e. {xi
t, w

i
t}

N
i=1. Then the density function

of the states given the current estimation of parameters Θk

can be discretely approximated as

p(xt|yt1:tβ ,Θk) ≈
N
∑

i=1

ωi
tδ(xt − xi

t) (9)

where δ(·) is the Dirac delta function, tβ ≤ t; N is the

number of particles; ωi
t is the normalized weight associated

with the ith particle such that
∑N

i=1
ωi
t = 1. Suppose that at

time t − 1, a set of particles {xi
1:t−1}

N
i=1 are available and

we want to obtain N particles which represent the hidden

state for time t. Since it is usually difficult to directly draw

samples from the true posterior density p(xt|yt1:tβ ,Θ
k), the

principle of importance sampling [11] is adopted. The idea is

to use a so called importance density q(·) from which one can

easily draw samples xi
t, i = 1, . . . , N . It has been shown that,

as long as the support region of the posterior density belong

to that of the importance density, the particle approximation

is unbiased [12]. Owing to its simplicity to implement, the

density defined by the state equation is adopted here for

importance sampling, i.e.

q(xt|yt1:tβ ,Θk) = p(xt|xt−1,Θ
k) (10)

With this choice, the unnormalized weight for each particle

can be derived as [10]

ω̃i
t ∝ ωi

t−1p(yt|xi
t,Θ

k) (11)

and the normalized weight can be calculated as

ωi
t =

ω̃i
t

∑N
i=1 ω̃

i
t

(12)

For time instants t = m1, . . . ,mβ , when the outputs are

not available, draw particles from the importance density

p(xt|xt−1,Θ
k) and keep the weights unchanged, i.e.

ωi
t = ωi

t−1 (13)

To avoid the degeneracy problem [10], the importance sam-

pling step is usually followed by a resampling procedure.

The idea is to discard the particles with small weights and

concentrate on those with large weights. After resampling,

each particle’s weight will be reset to ωi
t =

1

N
.

B. Constrained particle filters approximation and cautious

resampling

The problem brought by brutal force resampling is that

it reduces the diversity among particles. One solution is to

resample the particles only when it is necessary instead of

performing it at each step. To be specific, Neff is introduced

to represent the effective particle number [13]

Neff =
1

∑N
i=1(ω

i
t)

2
(14)

where ωi
t is the normalized weight obtained by Equation

(12). It can be implied that, as the variance of the weights

grows very large, the effective sample size decreases to a

small number which indicates a severe degeneracy problem.

In practice, one uses resampling to eliminate useless particles

only when a severe degeneracy problem occurs, say, Neff

falls below the threshold Nthred.

To further ensure the efficiency when generating particles,

constraints are incorporated in the importance sampling step.

A detailed discussion of constrained sequential monte carlo

(SMC) algorithm can be found in Lang et al. (2007) [14].

At each importance sampling step, only those particles that

satisfy the constraints can be accepted, which increases the

proportion of useful particles.

Given the current estimation of parameters, the constrained

particle filter algorithm is summarized as follows:

Step 1. Initialization. Draw initial N particles {xi
0}

N
i=1

from the prior density p(x0|Θ
k) and set each particle’s

weight to 1

N
. Set t=1.

Step 2. Importance sampling. Generate predicted par-

ticles {xi
t}

N
i=1 from the importance density p(xt|xt−1,Θ

k)
when the constraints are satisfied.

Step 3. Assigning weights. Assign the weight to each

particle using Equation (11) and (12) when yt is available.

Otherwise, calculate the weights according to Equation (13).

Step 4. Resampling. Compute the number of effective

particles using Equation (14). If Neff is less than the

threshold Nthred, then perform resampling and replace the

predicted particles in Step 2 with resampled particles. Reset

the weights of resampled particles uniformly as ωi
t = 1

N
.

Otherwise, go to Step 5.

Step 5. Set t = t + 1 and repeat Step 2 to Step 4 for

t ≤ T .

In Equation (8), the density function p(x1:T |yt1:tα ,Θ
k)

and p(x1:T , ym1:mβ
|yt1:tα ,Θ

k) in the Q function can be

98



approximated using particle filters as

p(x1:T |yt1:tα ,Θk) ≈
N
∑

i=1

ωiδ(x1:T − xi
1:T ) (15)

p(x1:T , ym1:mβ
|yt1:tα ,Θk) ≈

N
∑

i=1

ωiδ(x1:T − xi
1:T )δ(ym1 :mβ

− yim1:mβ
) (16)

In Equation (16), for the missing outputs part where the

observations are not available at time {m1, . . . ,mβ}, each

missing output yt is replaced by the sample drawn from the

density function p(yt|xt,Θ
k), t = m1, . . . ,mβ .

Finally, the Q function in Equation (8) can be approxi-

mated as follows

Q(Θ|Θk) ≈
N
∑

i=1

ωilog[p(xi
1|Θ)]

+
T
∑

t=2

N
∑

i=1

ωi
tlog[p(x

i
t|xi

t−1,Θ)]

+

tα
∑

t=t1

N
∑

i=1

ωi
tlog[p(yt|xi

t,Θ)]

+

mβ
∑

t=m1

N
∑

i=1

ωi
tlog[p(yt|xi

t,Θ)] (17)

With the approximated Q function, the EM algorithm can

hence be implemented. In the expectation step, the Q func-

tion is evaluated according to Equation (17) with the current

estimated parameters Θk. In the next maximization step, the

new parameters Θk+1 are obtained by maximizing the Q

function.

To Maximize the Q function over parameters Θ, deriva-

tive operation is performed with respect to each parameter.

Therefore, optimal system parameters at each iteration can be

calculated by equating the derivatives to zero, i.e. ∂Q
∂θi

= 0,

where θi is the ith system parameter.

The EM algorithm is summarized as follows:

Step 1. Initialization. Start with the initial parameters Θ0

and set t=0.

Step 2. Expectation. At time t, calculate the approximate

Q function using Equation (17), given the current estimation

of the system parameters Θk.

Step 3. Maximization. Maximizing the approximated Q

function and get the new parameters Θk+1. Set k=k+1.

Step 4. Repeat Step 2 and Step 3 until the converge

condition is satisfied, i.e. the change of the estimated

parameters between two iterations is less than the tolerance.

V. SIMULATION EXAMPLES

In this section, the proposed approach is evaluated through

both numerical simulations. Its efficiency in handling missing

outputs with less computational cost will be demonstrated.

All the simulations were run on a 3.00 GHz CPU with 4 GB

RAM PC using MATLAB 2009a.

A. A Numerical Simulation Example

A nonlinear process considered in Goodwin et al. (2005)

[16] and Gopaluni (2008) [8] is utilized here to demonstrate

the efficiency of the proposed parameter estimation method.

The process is described by the following equations:

xt = axt−1 + but−1 + ωt (18)

yt = ccos(xt) + vt (19)

where ωt ∼ N(0, Q), vt ∼ N(0, R), u is a random binary

input signal with unity variance, and a = 0.9, b = c = 1,

Q = R = 0.01. State constraints are commonly experienced

in practice. For example, the state of a partial pressure in

a gas-phase reaction is subject to a non-negative constraint

[17]. In a batch reactor system [18], the state of model

fraction must be within the constraints between 0 to 1. In this

example, the system states are subject to the constraint such

that −6 < xi
t < 6 from the prior system knowledge. T=100

measurements are collected from the simulation experiment.

To test the algorithm’s capability in handling the missing

data, different portions of the output data are randomly

removed from the model training data set. With the same

condition as in Gopaluni (2008) [8], the estimation starts

from the initial parameters a0 = b0 = c0 = 0.5. N=150

particles are used for the particle filter approximation. The

constraint is set to the particles {xi
t}

N
i=1 which represent

the state xt such that −6 ≤ xi
t ≤ 6 for all t. The

proposed Bayesian parameter estimation method with the

EM algorithm is performed. In the expectation step, the Q

function is calculated according to Equation (17), where

log[p(xt|xi
t−1,Θ)] = log[

1√
2πQx

exp[−1

2

(xi
t − axi

t−1 − but−1)2

Qx

]

(20)

For t = t1 : tα,

log[p(yt|xi
t,Θ)] = log[

1
√

2πQy

exp[−1

2

(yt − c cos xi
t)

2

Qy

] (21)

For t = m1 : mβ ,

log[p(yt|xi
t,Θ)] = log[

1
√

2πQy

exp[−1

2

(yit − c cos xi
t)

2

Qy

] (22)

where yit = cold cosxi
t.

By taking derivative over the Q function and equating it to

zero, each individual component of the parameters is hence

calculated as

anew =

∑T
t=2

∑N
i=1 ω

i
t(x

i
tx

i
t−1 − boldxi

t−1ut−1)
∑T

t=2

∑N
i=1 ω

i
t(x

i
t−1)

2
(23)

bnew =

∑T
t=2

∑N
i=1 ω

i
t(x

i
tut−1 − aoldxi

t−1ut−1)
∑T

t=2

∑N
i=1 ω

i
tu

2
t−1

(24)

cnew =

∑tα
t=t1

∑N
i=1 ω

i
tyt cos x

i
t +

∑mβ

t=m1

∑N
i=1 ω

i
tc

old(cos xi
t)

2

∑T
t=1

∑N
i=1 ω

i
t(cos x

i
t)

2

(25)

The trajectories of the estimated parameters are shown in

Figure 1, Figure 2 and Figure 3. The estimated parameter

values after 40 iterations are given in Table I.
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TABLE I

ESTIMATED PARAMETERS AFTER 40 ITERATIONS

Proportion of missing output a b c

10% 0.8925 1.0224 0.9960
25% 0.8903 0.9967 1.0180
50% 0.8878 0.9801 1.0021
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Fig. 1. Estimated parameters trajectories when 10% observations are
missing. Blue solid line represents the trajectory of a; red star line represents
the trajectory of b; green dotted line is the trajectory of c.
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Fig. 2. Estimated parameters trajectories when 25% observations are
missing. Blue solid line represents the trajectory of a; red star line represents
the trajectory of b; green dotted line is the trajectory of c.
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Fig. 3. Estimated parameters trajectories when 50% observations are
missing. Blue solid line represents the trajectory of a; red star line represents
the trajectory of b; green dotted line is the trajectory of c.

TABLE II

ESTIMATED PARAMETERS AFTER 40 ITERATIONS WHEN 25% OUTPUTS

ARE MISSING

True parameters Proposed Comparison
method method in [8]

a 0.9000 0.8965 0.9047
b 1.0000 0.9893 1.0073
c 1.0000 1.0177 0.9817

CPU time (s) N/A 2.585 × 10 1.304× 103

It can be seen from the above estimation result that,

all parameters converge to the neighborhood of the true

values after certain iterations. As the proportion of missing

output increases, more iterations are needed for the EM

algorithm to achieve the convergency. In Figure 1 where 10%

observations are missing, estimated parameters barely change

after about 15 iterations. However, as it is shown in Figure 3,

nearly 25 iterations are needed for all parameters to achieve

convergence when 50% observations are missing.

For comparison, the method proposed in Gopaluni

(2008) [8] which uses a point-wise density function

with smoothing in the approximation procedure is also

applied to the same data set where 25% observations are

missing. The estimation results using two methods are

given in Table II. It can be seen from Table II that, the

estimated parameters converge to the neighborhood of the

true values using both methods. However, the approached

method is much more efficient in terms of computation time.

B. Application on the continuous Stirred Tank Reactor

In this section, the popular continuous stirred tank reactor

(CSTR), which has been accepted as a benchmark for process

modeling is investigated. The governing model is given

below [19]

dCA(t)

dt
=

q(t)

V
(CA0(t) − CA(t)) − k0C(A)(t)exp(

−E

RT (t)
) (26)

dT (t)

dt
=

q(t)

V
(T0(t) − T (t)) − (−△H)k0CA(t)

ρCp

exp(
−E

RT (t)
)

+
ρcCpc

ρCpV
qc(t){1 − exp(

−hA

qc(t)ρCp

)}(Tc0(t) − Tt) (27)

The explanations for the components in the above equations

are given in Table III along with their corresponding steady

state values.

The concentration of the reactant CA and the temperature

in the reactor T are the two states of the process. The

inlet flow rate q is considered as the process input. In the

simulation experiment, a multiple level random input signal

is designed. It is assumed that the process and measurement

noise distributions are fairly small compared to the input

variations. The input and output data of the process are

given in Figure 4. The parameters being estimated are θ1 =

(−△H)/ρ and θ2 = (ρcCpCqc)/(ρCpV ). The estimation starts

from the initial guess such that θ1 = 0.5, θ2 = 1× 102. N=150

particles are used for the particle filter approximation. The

nonnegative constraint is set to the particles {xi
t}Ni=1 which
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TABLE III

CSTR MODEL PARAMETERS AND THEIR STEADY STATE VALUES

Parameters Steady state value

Cooling liquid flow rate, qc input
Production concentration of reactant A, CA output1

Temperature of the reactor, T output2
Process flow rate, q 100L/min

Inflow concentration of reactant A, CA0 1mol/L
Inflow temperature, T0 350.0K

Inlet coolant temperature, Tc0 350.0K

Reaction rate constant, k0 7.2× 1010min−1

Specific heats, Cp, Cpc 1 cal/g/K

Density of reactant and the cooling fluid, ρ, ρc 1× 103g/L
Reaction heat, −△H −2× 105cal/mol

Heat transfer term, hA 7× 105cal/(min/K)
The reactor volume, V 100L

Activation energy term, E/R 1× 104K
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Fig. 4. Input-output data of the process, (a): Inlet flow rate (b): Reactor
temperature

represent the state xt for all t. The estimated parameter values

after 50 iterations are given in Table IV.

It can be seen from the above estimation result that, all

parameters converge to the neighborhood of the true values

after certain iterations.

VI. CONCLUSION

This paper described a constrained Bayesian approach

for identifying nonlinear state space model within the

framework of the EM algorithm. Constrained particle filters

approximation is performed in the expectation step. The

capability of the proposed algorithm in handling missing

observations is demonstrated through numerical examples.

It has been shown that as the proportion of the missing part

increases, more iterations are needed for the EM algorithm

TABLE IV

ESTIMATED PARAMETERS AFTER 50 ITERATIONS

Proportion of missing output θ1 θ2 × 10−2

10% 0.9703 1.9894
20% 0.9719 2.1002
30% 0.9709 1.9801

to achieve the convergence. In terms of computational

efficiency, the proposed algorithm requires less CPU time

than the comparative method.
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