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Abstract— This paper presents a novel Iterative Learning
Control (ILC) scheme for linear systems in the presence of
parametric uncertainty. The developed ILC architecture is
comprised of an L1 adaptive feedback controller combined
with an ILC feedforward controller. The learning controller
is designed to compensate for repetitive system uncertainties,
while the adaptive controller compensates for non-repetitive
uncertainties. Simulation results for a simplified motion control
system illustrate the potential benefits of the architecture.

I. INTRODUCTION

The recent increase in technological requirements for

advanced manufacturing continues to drive research in pre-

cision motion control (PMC). PMC processes are controlled

through feedback or feedforward control schemes or a com-

bination of the two in a 2-degree-of-freedom (2DOF) design.

2DOF designs are particularly effective for systems with dis-

tinct combinations of repetitive and non-repetitive exogenous

signals. In these systems, feedback control addresses the non-

repetitive signal content, while feedforward control addresses

the repetitive signal content.

Iterative learning control (ILC) is a feedforward control

design technique for repetitive processes [1]. ILC algorithms

use information from earlier trials of a repetitive process to

improve performance in the current trial. The key design fea-

ture of ILC is the efficient use of past information to improve

tracking performance within a small number of trials, while

ensuring robustness of the process to system uncertainty.

Stability and performance of iterative learning algorithms in

the iteration domain highly depends on the behavior of the

process to be controlled in the time domain. In this sense,

the ability of the feedback controller to compensate for non-

repetitive disturbances and changes in the system dynamics

plays an important role in the design of robust iterative

learning controllers. Substantial research has been focused

on the design of robust ILC methods for systems with high-

frequency modeling uncertainties (see [1], [2] and references

therein). There has also been a considerable research effort

focused on the design of iterative learning algorithms for

processes with large parametric uncertainty (see, for exam-

ple, [3]–[6]). In particular, the development of ILC schemes

providing improved stability robustness and fast convergence

for systems with large parametric variations is of particular

interest, as it may benefit many applications, such as pick and
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place robotic systems, precision motion control systems, and

manufacturing systems with modular components.

In this paper, we propose the use of an inner feedback

control law based on L1 adaptive control in an ILC frame-

work. The L1 adaptive controller is designed to compensate

for non-repetitive, low-frequency (parametric) uncertainty

in the time domain, while the iterative learning controller

compensates for repetitive system uncertainties in the itera-

tion domain. The key feature of L1 adaptive control is the

decoupling of adaptation and robustness, which enables fast

adaptation with guaranteed robustness. In this sense, the fast

and robust adaptation of L1 adaptive controllers is able to

compensate for the undesirable effects of significant low-

frequency uncertainty in the system dynamics and provide a

predictable closed-loop response. From an ILC perspective,

the L1 adaptive control law ensures that the transfer function

from the feedforward ILC input to the plant output remains

close to this nominal-plant sensitivity function regardless of

the change in parameters.

The paper is organized as follows. Section II presents an

L1 adaptive controller for a class of uncertain LTI systems.

Section III gives a brief overview of the ILC problem.

In section IV, the combined feedback-feedforward control

system is introduced. A preliminary stability analysis of

the proposed structure is included in section V. Simulation

results and conclusions are presented in sections VI and VII.

II. L1 ADAPTIVE CONTROL

L1 Adaptive Control Theory [7] appeared recently as a

method for the design of robust adaptive control architectures

using fast estimation schemes. The key feature of L1 adap-

tive control is the decoupling of adaptation and robustness

to unmodeled dynamics, which enables fast adaptation with

guaranteed robustness margins. In L1 adaptive control ar-

chitectures, the speed of adaptation is limited only by the

available hardware (computational power and high-frequency

sensor noise), while the trade-off between L1 performance

and robustness can be addressed via conventional methods

from classical and robust control. The separation of adapta-

tion from robustness is achieved by appropriately inserting

a bandwidth-limited filter into the control structure, which

ensures that the control signal stays in the desired frequency

range and within the bandwidth of the control channel. The

bandwidth and structure of this filter define the trade-off

between L1 performance and robustness. The combination of

the bandwidth-limited filter and high adaptation rates ensures

uniform performance bounds for both system signals, input

and output, without enforcing persistency of excitation or
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resorting to high-gain feedback. The benefits of L1 adaptive

control theory have been verified –consistently with the

theory– in a large number of flight tests and in mid- to high-

fidelity simulation environments (see for example [8]–[10]).

Next, the L1 adaptive control architecture is presented for

a class of single-input single-output uncertain LTI systems

in the presence of uncertain system input gain and unknown

constant parameters. L1 adaptive control theory has been

developed for a broader class of systems, and the reader is

referred to [7] for an account of other L1 adaptive control

architectures and a detailed explanation of the L1 adaptive

controller described in this paper.

A. L1 Adaptive Control for LTI SISO Systems

1) Problem Formulation: Consider the class of systems:

ẋ(t) = Am x(t) + b
(

ω u(t) + θ⊤x(t)
)

, x(0) = x0,

y(t) = c⊤x(t),

where x(t) ∈ R
n is the system state vector (measured);

u(t) ∈ R is the control signal; y(t) ∈ R is the regulated

output; Am is a known Hurwitz n × n matrix that defines

the desired dynamics for the closed-loop system; b, c ∈ R
n

are known constant vectors, (Am, b) controllable, (Am, c⊤)
observable; ω ∈ R is an unknown constant; and θ ∈ R

n is a

vector of constant unknown parameters.

The system above verifies the following assumptions:

Assumption 1 (Boundedness of θ): The parameter vec-

tor θ belongs to a given compact convex set θ ∈ Θ ⊂ R
n.

Assumption 2 (Partial knowledge of ω): The system in-

put gain is assumed to be an unknown constant with known

sign (wihtout loss of generality, we assume ω > 0). Also,

we assume that there exist known conservative bounds ωℓ

and ωu such that ω ∈ [ωℓ, ωu] , Ω, where 0 < ωℓ < ωu.

The control objective is to design an adaptive state feed-

back controller to ensure that y(t) tracks the output response

of a desired system M(s) defined as

M(s) , c⊤ (sIn −Am)−1
b kg(s)

where kg(s) is a feedforward prefilter, to a given bounded

reference signal r(t) both in transient and steady-state, while

all other signals remain bounded.

2) L1 Adaptive Controller: The L1 adaptive controller

used in this paper consists of a fast estimation scheme and

a control law. The fast estimation scheme includes a state

predictor and an appropriately designed adaptation law,

which are used to generate estimates of the uncertainties

present in the plant. Based on these estimates, the control

law generates the control signal as the output of bandwidth-

limited filter. The fast estimation scheme and the control law

of the L1 adaptive controller are introduced below:

State predictor: Consider the following state predictor:

˙̂x(t) = Amx̂(t) + b
(

ω̂(t)u(t) + θ̂⊤(t)x(t)
)

+Ksx̃(t), (1)

with initial condition x̂(0) = x0, and where ω̂(t) ∈ R and

θ̂(t) ∈ R
n are the adaptive estimates, Ks ∈ R

n×n is such

SystemControl
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Adaptive
Law

State
Predictor

L1 Controller

−

r
u x

x̂

x̃

ω̂, θ̂

Fig. 1: Closed-loop system with the L1 adaptive controller

that As , Am +Ks is a Hurwitz matrix, and x̃(t) , x̂(t)−
x(t) is the prediction error.

Adaptation laws: The adaptation laws for ω̂(t) and θ̂(t)
are given by

˙̂ω(t) = ΓProj(ω̂(t),−x̃⊤(t)Xbu(t)), ω̂(0) = ω̂0,

˙̂
θ(t) = ΓProj(θ̂(t),−x̃⊤(t)Xbx(t)), θ̂(0) = θ̂0,

(2)

where Γ > 0 is the adaptation rate, Proj(·, ·) denotes the

projection operator defined in [11], and X = X⊤ > 0 is the

solution to the algebraic Lyapunov equation A⊤
s X+XAs =

−Y for arbitrary Y = Y ⊤ > 0. In the implementation of

the projection operator, we use the compact convex sets Θ
and Ω as given in Assumptions 1 and 2.

Control law: The control signal is generated as the output

of the following (feedback) system:

u(s) = −kL1
D(s)

(

η̂(s)− kg(s)r(s)
)

, (3)

where η̂(s) is the Laplace transform of the signal

η̂(t) , ω̂(t)u(t) + θ̂⊤(t)x(t) , (4)

while kL1
> 0 and D(s) are a feedback gain and a strictly

proper transfer function leading to a strictly proper stable

C(s) ,
ω kL1

D(s)

1 + ω kL1
D(s)

, ∀ω ∈ Ω,

with DC gain C(0) = 1. One simple choice is D(s) = 1

s
,

which yields a first-order strictly proper C(s) of the form

C(s) =
ω kL1

s+ ω kL1

.

The complete L1 adaptive state-feedback controller con-

sists of (1), (2), and (3)-(4), and its design is subject to the

following L1-norm stability condition:

‖G(s)‖
L1

θmax < 1 , (5)

where G(s) and θmax are defined as

G(s) , (sIn −Am)−1b (1− C(s)) , θmax , max
θ∈Θ

‖θ‖1 .

The L1 adaptive control architecture with its main elements

is represented in Figure 1.

If the stability condition in (5) is satisfied, the closed-

loop adaptive system is stable and, moreover, one can derive
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computable uniform performance bounds for both system

input and output, y(t) and u(t) respectively, with respect

to the signals yref(t) and uref(t) of a closed-loop reference

system, which is defined in terms of the ideal nonadaptive

version of the adaptive controller in (3)-(4):

‖y − yref‖L∞
≤ γ̄y , ‖u− uref‖L∞

≤ γ̄u , (6)

where

lim
Γ→∞

γ̄y = lim
Γ→∞

γ̄u = 0 .

This implies that, both in transient and steady-state, one

can achieve arbitrary close tracking performance for both

signals simultaneously by increasing the adaptation rate Γ.

Moreover, one can show that the output of the closed-

loop adaptive system tracks the desired response ydes(t)
both in transient and steady state with uniform performance

bounds that can be systematically improved by increasing

the adaptation gain Γ and properly selecting the low-pass

filter C(s). Details on the stability proof, definition of the

reference system, and derivation of the performance bounds

can be found in [7].

III. ITERATIVE LEARNING CONTROL

ILC is a plug-in type controller in which the ILC input can

be added to an existing control loop, either in a parallel or

series type architecture [1]. While either approach is equally

valid, the work in this paper utilizes the parallel structure

illustrated in Figure 2. The reader should note that the

learning input signal is combined with the feedback signal

in a format often used with feedforward control signals.

System

Control

Control

Learning

Feedbackr ej yj

−

ufb,j

uILC,j

uILC,j−1

Fig. 2: Block diagram of a parallel ILC process

There are several dominant design paradigms in ILC,

linear repetitive process design, internal model design, norm

optimal design, and frequency-domain design. The learning

controller implemented in this work is designed using the

frequency domain framework. One of the advantages of this

approach is that many frequency domain learning controllers

use tunable designs such as proportional controllers, thereby

requiring little a priori knowledge of the system.

A. ILC Update Law

The common continuous-time frequency-domain update

law for ILC is of the form,

uILC,j+1(s) = Q(s)(uILC,j(s) + L(s)ej(s)) , (7)

where

ej(s) = r(s) − yj(s) , (8)

yj(s) = T (s)r(s) + PS(s)uILC,j(s) . (9)

In (7)-(9), ej(s) is the tracking error signal between the

reference r(s) and the system output yj(s), T (s) is the

complementary sensitivity function, and PS(s) is the plant

sensitivity function defined as the relationship between the

current ILC control signal uILC,j(s) and the system output

yj(s), and j = 0, 1, . . . is the iteration index. The design

elements in the update law include the Q-filter and L-

filter. Q(s) is generally designed as a low-pass filter to

limit the learning bandwidth and provide robustness to the

system. L(s), also known as the learning filter, is designed

to maximize the learnable bandwidth and convergence rate.

B. Convergence

The goal in designing Q(s) and L(s) is to ensure con-

traction mapping or monotonic convergence of the control

signal. Substituting (8) and (9) into (7) and rearranging the

terms results in the following control iteration dynamics:

uILC,j+1(s) = Q(s)(1− L(s)PS(s))uILC,j(s)

+Q(s)L(s)r(s) .

A contraction mapping from uILC,j+1(s) to uILC,j(s) is

accomplished by ensuring,

‖Q(s)(1− L(s)PS(s)‖∞ < 1 , (10)

where the infinity norm ‖ • (s)‖∞ is defined as

‖•(s)‖
∞

, max
ω∈R

σ̄[•(iω)|.

Satisfying (10) guarantees monotonic convergence of the

asymptotic control u∞(s) and error signals e∞(s), which

are calculated as

u∞(s) , lim
j→∞

uILC,j(s) =
Q(s)L(s)

1−Q(s)(1− L(s)PS(s))
r(s)

e∞(s) , r(s)− PS(s)u∞(s) .

The authors refer the reader to [1] for more details on

frequency based ILC designs.

IV. L1 ADAPTIVE CONTROL WITH PARALLEL ILC

As mentioned in Section III, there are several dominant

design paradigms in ILC. This paper presents a novel ILC

design paradigm in which an L1 adaptive feedback con-

troller is combined with an ILC feedforward controller. The

learning controller is designed to compensate for repetitive

disturbances within the system in the iteration domain,

while the adaptive controller ensures compensation for low-

frequency non-repetitive disturbances and parametric uncer-

tainties in the time domain. The ILC architecture, comprised

of the L1 adaptive feedback controller combined with the

ILC feedforward controller, is shown in Figure 3. We notice

that, from an architectural viewpoint, this control approach

is similar to the one reported in [5]. From a design perspec-

tive, however, the use of a feedback control law based on
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L1 adaptive control ensures that the transfer function from

the feedforward ILC input to the plant output remains close

to a nominal plant-sensitivity function, which facilitates the

design of the learning algorithm.

System

ILC

L1

Controller

c⊤

r

ej

xj

−

ufb,j

uILC,j

yj

Fig. 3: Parallel ILC architecture, augmenting the (state-

feedback) adaptive control signal

Given the importance of the filters C(s) and Q(s) on the

trade-off between performance and robustness, it is important

to evaluate the effects of combining L1 and ILC controllers

into the same design framework. The next section presents

a preliminary stability analysis of the proposed controller.

V. PRELIMINARY STABILITY ANALYSIS

Assume the learning law (7) and let eref,j(s) , r(s) −
yref,j(s). From L1 adaptive control theory, the error

yref,j(s)−yj(s) can be rendered arbitrarily small by increas-

ing the adaptive gain Γ (see the bound in (6)). This implies

that, for sufficiently high adaptation rates, ej(s) ≈ eref,j(s),
and thus it seems reasonable to assume that the ILC update

law can be designed for the closed-loop reference signal.

Then, the update law in (7) can be rewritten as

uILC,j+1(s) = Q(s) (uILC,j(s) + L(s)eref,j(s)) . (11)

The transfer function from the feedforward ILC input,

uILC,j(s), to the output of the reference system, yref(s),
is given by

PS(s) = c⊤
[

In −G(s)θ⊤
]−1

[sIn −Am]
−1

b ω ,

where θ and ω are the uncertain parameters, and G(s) ,

(sIn −Am)
−1

b (1− C(s)) as illustrated in Section II. De-

fine a nominal plant model Gm(s) , c⊤ (sIn −Am)
−1

b,

and let ω = 1+δω. For low-pass filters C(s) with sufficiently

high bandwidth, PS(s) can be approximated by

PS(s) ≈ c⊤
[

In +G(s)θ⊤
]

[sIn −Am]
−1

b (1 + δω)

≈ c⊤ [sIn −Am]
−1

b+ c⊤ [sIn −Am]
−1

bδω

+ c⊤G(s)θ⊤ [sIn −Am]
−1

b (1 + δω)

= Gm(s) (1− C(s)) θ⊤ [sIn −Am]
−1

b (1 + δω)

+Gm(s) +Gm(s)δω .

Separating Gm(s) from each term, the plant dynamics can

be approximated by,

PS(s) ≈ Gm(s) ·W

where W is defined as

W , 1 + δω + (1− C (s)) θ⊤ [sIn −Am]
−1

b (1 + δω) .

Note that Gm(s) is the nominal plant about which the

learning algorithm is to be designed. In the absence of

any parametric uncertainty (θ = 0;ω = 1), the monotonic

stability condition in the frequency domain for the learning

law in (11) is

‖Q(s) (1− L(s)Gm(s))‖
∞

< 1 .

In the presence of parametric uncertainty, the stability con-

dition is modified to (12).

‖Q(s) (1− L(s)Gm(s)W )‖
∞

< 1 (12)

The weight W is comprised of two uncertain terms and

1. The low-pass filter C(s) can be used to negate the

effect of the parametric uncertainty θ, i.e., by increasing the

bandwidth of the filter C(s) the effect of the uncertainty θ

in (12) can be arbitrarily reduced. It is critical, however,

to remember that this results in a reduction of the stability

margins of the closed-loop adaptive system. The effect of

the input-gain uncertainty δω on the stability of the learning

law can be mitigated by choosing a conservative (smaller)

learning gain. This again results in a trade-off against slower

convergence rates.

VI. SIMULATION RESULTS

To demonstrate the effectiveness of the proposed ILC

architecture on systems with large parametric uncertainty, we

consider a simplified model of a motion control system. In

particular, the plant is modeled as an uncertain mass-spring-

damper system with dynamics

ẋp(t) = Apxp(t) + bpu(t) , xp(0) = x0 ,

y(t) = c⊤p xp(t) ,

where the state vector is xp(t) = [x(t), ẋ(t)]⊤, with x(t)
being the position of the mass, and

Ap =

[

0 1
− k

m
− c

m

]

, bp =

[

0
1

m

]

, cp =

[

1
0

]

.

The nominal values for the parameters m, k, and c are:

m0 = 1 , c0 = 0.6 , k0 = 1 .

The control objective is to design an ILC architecture that

ensures accurate position-trajectory tracking in the presence

of uncertainty in the system parameters.

For this purpose, we consider the following adaptive state-

feedback controller:

ufb(t) = uℓ(t) + uL1
(t) ,

where uℓ(t) is a nonadaptive component of the form

uℓ(t) = −k⊤ℓ xp(t) ,
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Fig. 4: Closed-loop response for the nominal plant with the

two feedback controllers

while uL1
(t) is the L1 adaptive control signal, generated

as detailed in Section II. For the design of this feedback

controller, we select:

kℓ =

[

99.0
16.4

]

, Am =

[

0.0 1.0
−100.0 −17.0

]

,

Ks =

[

0.0 0.0
−201.0 −2.6

]

, Γ = 50, 000 , Y = I2 ,

kL1
= 40 , D(s) = 1

s( s
50

+1)
, kg(s) = 100

s
40

+1
s

100
+1

,

which guarantees a satisfactory tracking performance for the

nominal system with a time-delay margin of 50 msec.
To improve tracking performance, this feedback controller

is then augmented with a parallel ILC control input of the

form presented in (7). The learning controller consists of

L(s), a P-type frequency domain design with a gain of 100,

and Q(s), a low-pass Q-filter of the following form:

Q(s) =
1

( s
30

+ 1)
.

To illustrate the benefits and disadvantages of using an

L1 adaptive controller in the ILC architecture, we also

consider a nonadaptive LQR-PI feedback controller:

ẋI(t) = r(t) − y(t) , xI(0) = 0 ,

uPI(t) = kIxI(t) + k⊤P xp(t) .

For the design of this LQR-PI controller, we choose

k⊤P =
[

−270.4 −22.7
]

, kI = 1581.1 ,

which provides a similar tracking performance for the nom-

inal system as the L1 adaptive controller, and with the same

time-delay margin of 50 msec. Figure 4 shows the closed-

loop response for the nominal plant with the two feedback

controllers to a trapezoidal position trajectory.

For comparison purposes, a series of design scenarios with

varying system dynamics were implemented for both control

architectures, the L1 adaptive and LQR-PI feedback con-

trollers combined with the same ILC feedforward controller.

The different scenarios were designed to evaluate the effect

of parametric uncertainty on the performance and robustness
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(a) ILC architecture with the L1 adaptive controller
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(b) ILC architecture with the LQR-PI controller

Fig. 5: Simulation results for different plant uncertainties

of the combined controllers. The design scenarios presented

in Figure 5 include the following:

• Scenario 1: m = 1, c = 0.6, k = 1.

• Scenario 2: m = 3, c = 10, k = 1.

• Scenario 3: m = 2, c = −10, k = −100.

• Scenario 4: m = 0.5, c = 20, k = 100.

• Scenario 5: m = 3, c = −20, k = −50.

• Scenario 6: m = 2, c = 0, k = 350.

Figure 5a presents the converged Root Mean

Squared (RMS) error signals for the ILC architecture

with the L1 adaptive feedback controller. One can see

that the combined ILC and L1 controller is able to

maintain monotonic convergence in the presence of different

parametric uncertainties. On the other hand, Figure 5b

shows that the ILC with the LQR-PI controller can have

poor performance in the iteration domain for some values

of the uncertain parameters. The presence of such large

transients is not acceptable in most physical systems.

In addition to iteration-invariant parametric uncertainty,

it is important to observe the effects of iteration-varying

parametric uncertainty that is introduced as a disturbance

during the iterative learning process. Figure 6 shows the

response of the two combined controllers to a sudden change

in the mass, which increases by a factor of three with respect

to the nominal value. As can be seen from the figure, the ILC

architecture with the LQR-PI feedback controller responds to

the sudden mass change with a large transient. Although the

system eventually converges, the presence of large transients
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performance

may damage the physical system. On the other hand, the

ILC scheme using an L1 feedback controller exhibits a

small increase in convergence, but still maintains a converged

signal well below the nominal feedback error. These results

demonstrate the enhanced performance of the combined ILC

and L1 adaptive controller in systems with large parametric

uncertainty.

Lastly, Figure 7 illustrates the effect of the bandwidth

of the L1 low-pass filter C(s) on ILC convergence in the

iteration domain. As discussed in Section II, the bandwidth

and structure of the low-pass filter C(s) defines the trade-

off between performance and robustness in the time domain.

In general, a larger filter bandwidth results in improved

performance (higher ability to compensate for low-frequency

system uncertainty and better tracking of the desired behav-

ior ydes(t)), and a reduction in the stability margins of the

closed-loop adaptive system. However, we notice that the

objectives of the adaptive controller and the ILC law are

different; in fact, the adaptive controller tries to track the

output response of a given desired system M(s), whereas

ILC tries to reduce the reference tracking error. While the

ILC law could be easily modified to reduce the tracking error

with respect to the desired system output, this might not be

acceptable in some applications. It would be the case, for

example, of accurate position-trajectory tracking in motion

control systems. In such applications, and as a consequence

of the different control objectives, a larger bandwidth of the

L1 low-pass filter can lead to larger converged ILC errors.

This fact is illustrated in Figure 7, in which the bandwidth of

the L1 filter is reduced by reducing the parameter kL1
. It is

important to emphasize that this improvement in converged

ILC errors in the iteration domain is achieved at the cost

of reduced ability to compensate for low-frequency system

uncertainty in the time domain. The design of the two

controllers to minimize the possible interaction between them

is an issue that needs further investigation.

VII. CONCLUSIONS

The paper proposed the combination of an L1 adaptive

feedback controller with an ILC feedforward controller into

a single framework. The L1 adaptive controller is designed

to compensate for non-repetitive, low-frequency (parametric)

uncertainty in the time domain, while the iterative learning

controller compensates for repetitive system uncertainties in

the iteration domain. The use of a feedback control law based

on L1 adaptive control ensures that the transfer function from

the feedforward ILC input to the plant output remains close

to a nominal plant-sensitivity function, which facilitates the

design of the learning algorithm. Simulation results from a

simplified motion control system demonstrated the benefits

of the proposed ILC architecture for systems with large

parametric uncertainty.

Future work will focus on rigorous stability and perfor-

mance analysis of the L1-ILC controller, and will explore

the benefits of the proposed scheme for nonlinear uncertain

systems.
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