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A General Perspective on Gaussian Filtering and Smoothing:
Explaining Current and Deriving New Algorithms

Marc Peter Deisenroth

Abstract— We present a general probabilistic perspective on
Gaussian filtering and smoothing. This allows us to show that
common approaches to Gaussian filtering/smoothing can be dis-
tinguished solely by their methods of computing/approximating
the means and covariances of joint probabilities. This implies
that novel filters and smoothers can be derived straightfor-
wardly by providing methods for computing these moments.
Based on this insight, we derive the cubature Kalman smoother
and propose a novel robust filtering and smoothing algorithm
based on Gibbs sampling.

I. INTRODUCTION

Filtering and smoothing in latent variable time series mod-
els, including hidden Markov models and dynamic systems,
have played an important role in signal processing, control,
and machine learning for decades [12], [15], [3].

In the context of dynamic systems, filtering is widely used
in control and robotics for online Bayesian state estima-
tion [18], while smoothing is commonly used in machine
learning algorithms for parameter learning [3]. For computa-
tional efficiency reasons, many filters and smoothers approx-
imate appearing probability distributions by Gaussians. This
is why they are referred to as Gaussian filters/smoothers.

In this paper, we discuss Gaussian filtering and Rauch-
Tung-Striebel (RTS) smoothing for nonlinear systems from
a general probabilistic perspective, initially without focusing
on particular implementations. We identify the high-level
concepts for filtering and smoothing, while avoiding getting
lost in computational details of particular algorithms (see, for
example, the standard derivations of the Kalman filter [1],
[18]). Based on these high-level concepts, we show that
Gaussian filters/smoothers for (non)linear systems (including
common algorithms such as the extended Kalman filter
(EKF) [15], the cubature Kalman filter (CKF) [2], or the
unscented Kalman filter (UKF) [11]) can be distinguished
by their means to computing Gaussian approximations of
one/two joint probability distributions. Our results also im-
ply that novel filtering and smoothing algorithms can be
derived straightforwardly, given a method to determining the
moments of these joint distributions. Using this insight, we
present and analyze the cubature Kalman smoother (CKS)
and a filter and an RTS smoother based on Gibbs sampling.
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II. SETUP AND NOTATION

We consider discrete-time stochastic dynamic systems of
the form

X = f(xe—1) + Wy, (D
z; = g(X¢) + Ve, )

where x; € RP is the state, z; € R¥ is the measurement
at time step t = 1,..., 7T, w; ~ N (0,Q) is i.i.d. Gaussian
system noise, v¢ ~ N(0,R) is i.i.d. Gaussian measurement
noise, f is the transition/system function and g is the
measurement function. The noise covariance matrices Q,
R, the system function f, and the measurement function
g are assumed known. If not stated otherwise, we assume
nonlinear functions f and g¢. The initial state x; of the
time series is distributed according to a Gaussian prior
distribution p(x9) = N (pg, EF). The purpose of filtering
and smoothing is to find approximations to the posterior
distributions p(xt|z1.,), where a subscript 1: 7 abbreviates
1,...,7, with 7=t for filtering and 7=1T for smoothing.

In this paper, we consider Gaussian approximations
N (x4 | it} 3),) of the latent state posteriors p(x¢|z1.r).
We use the shorthand notation ag . Where a = p denotes the
mean p and a = X denotes the covariance, b denotes the
time step under consideration, ¢ denotes the time step up to
which we consider measurements, and d € {x,z} denotes
either the latent space (z) or the observed space (2).

IIT. GAUSSIAN FILTERING

Given a prior p(xg) on the initial state and a dynamic
system (e.g., Eqs. (1)—(2)), the objective of filtering is to infer
a posterior distribution p(x¢|z;.¢) of the hidden state x;, t =
1,...,T, incorporating the evidence of the measurements
z1.¢. Specific for Gaussian filtering is that posterior distribu-
tions are approximated by Gaussians [18]. Approximations
are required since generally a Gaussian distribution mapped
through a nonlinear function does not stay Gaussian.

Assume a Gaussian filter distribution p(x;—1|z1.t—1) =
N(“ffl\tfl’ 3¢ 14_1) is given (if not, we employ the prior
p(x0) = p(x0[0) = N(ugp, X)) on the initial state.
Using Bayes’ theorem, the filter distribution at time ¢ is

p(xhzt‘zl:tfl)

P(2t|Z1:4-1) o p(ze[x)p(xie[z1:0-1) - (3)

P(Xt\zht) =

Proposition 1 (Filter Distribution): Gaussian filters ap-
proximate the filter distribution p(xt|z1.;) using a Gaussian
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distribution N (uf‘ " Ef‘ ;). The moments of this approxima-

tion are in general computed through

mie = B+ 2 () T @ - A1), @)
f|t = 2f|t71 - Ef\ifl(zatfl)_lzfﬁfl : &)
Since the true moments of the joint distribution

p(X¢,Z¢|z1..—1) can in general not be computed analytically,
approximations/estimates are used (hence the “-symbols).
Proof: Generally, filtering proceeds by alternating be-
tween predicting (time update) and correcting (measurement
update) [1], [18]:
1) Time update (predictor)
a) Compute the predictive distribution p(x¢|z1.4—1)-
2) Measurement update (corrector)
a) Compute the joint distribution p(x,2¢|z1.t—1) of the
next latent state and the next measurement.
b) Measure z;.
c) Compute the posterior p(x¢|z1.¢).
In the following, we detail these steps to prove Prop. 1.
1) Time Update (Predictor):
(a) Compute the predictive distribution p(x;|z1..—1). The
predictive distribution of state x at time ¢ given the
evidence of measurements up to time ¢t — 1 is

p(xi|z1e1) = / T Y S PR N )

where p(x¢|x¢—1) = N(x¢ | f(x¢—1), Q) is the transition
probability. In Gaussian filters, the predictive distribution
p(X¢|z1:t—1) in Eq. (6) is approximated by a Gaussian
distribution, whose exact mean and covariance are

ll’?‘tfl =y, [Xt|zlzt71] =Ex,_,,w; [f(xtfl)"i'wt‘zl:tfl]

:/f(xt—l)p(xt—1|zlzt—1)dXt—l7 @)
Ef\t—l = /f(thl)f(xtfl)Tp(thl|Z1:t71) dx;—q
T (/v‘f\t—ﬂT +Q, 3

respectively. In Eq. (7), we exploited that the noise term
w; in Eq. (1) has mean zero and is independent. A
Gaussian approximation to the time update p(x;|z1..—1)
is then given by N (x¢ | pj,_y, 2, _,)-
2) Measurement Update (Corrector):
(a) Compute the joint distribution

(€))

In Gaussian filters, a Gaussian approximation to this
joint is an intermediate step toward the desired Gaussian
approximation of the posterior p(x;|z1.;). If the mean and
the covariance of the joint in Eq. (9) can be computed
or estimated, the desired filter distribution corresponds to
the conditional p(x;|z1.;) and is given in closed form [3].
Our objective is to compute a Gaussian approximation

N(l“zl“ P 2 ) (10)
Ky

P(Xu Zt|Z1:t—1) = p(Zt|Xt)p(Xt|Z1:t—1) .

xr Tz
t]t—1 tlt—1
b

b)) b))

zZT z
tlt—1 tlt—1

to the joint p(xy,2¢|z1.4—1) in Eq. (9). Since a Gaus-
sian approximation N (“tﬁt—lﬂzﬁtq) to the marginal
p(X¢|Z1.t—1) is known from the time update, it remains
to compute the marginal p(z¢|z;..—1) and the cross-
covariance Efﬁ_l = COVx, g, [Xt, Z¢|Z1:4—1]-

o The marginal p(z¢|z1.:—1) of the joint in Eq. (10) is

p(zt|21:t71) = /p(zt‘xt)p(xﬂzlztfl)dxta

where the state x; is integrated out according to the
time update p(x¢|z1.;—1). The measurement Eq. (2),
yields p(z|x:) = N(g(x:),R). Hence, the exact
mean of the marginal is

Biji—1 = Eg, [2¢|Z1:0-1] = Ex, [g(x¢)|Z1:4-1]
:/Q(Xt)p(xt\zl:t—l)dxt (11)

since the noise term v; in the measurement Eq. (2) is
independent and has zero mean. Similarly, the exact
covariance of the marginal p(z:|z1.;—1) is

o1 = /Q(Xt)g(xt)Tp(Xt|Z1:t—1)dXt

—pi (Bi) T+ R (12)

Hence, a Gaussian approximation to the marginal
measurement distribution p(z¢|z1.+—1) is

N<Zt | l'l’tz|t715 Ef‘tfl) I (13)

with the mean and covariance given in Eqs. (11)
and (12), respectively.

e Due to the independence of v, the exact cross-
covariance terms of the joint in Eq. (10) are

Ef\i—l = COVx, 7, [X¢, Zt|Z1:0—1]

= //thzp(xtazﬁzl:tfl)dzt dxt

- Hﬁt—l(lﬁfu—l)T

Plugging in the measurement Eq. (2), we obtain
%71 = /th(Xt)Tp(Xt|Z1:t71)dXt

— ()" (14)

(b) Measure z;.

(c) Compute a Gaussian approximation of the posterior
p(x¢|z1.¢). This boils down to computing a conditional
from the Gaussian approximation to the joint distribu-
tion p(x¢,2¢|z1.4+—1) in Eq. (10). The expressions from
Egs. (7), (8), (11), (12), and (14), yield a Gaussian
approximation N (x; | B 23 ;) to the filter distribution

p(x¢|21.¢), where

/v‘f:c\t = Ntm|t—1 + 2%—1(2%—1)_ (z¢ — Ntz|t—1) , (15)
x x Tz z -1 zZT
zt\t = Et\t—l - 2t|t—1<2t|t—1) (16)

tlt—1-
Generally, the required integrals in Egs. (7), (8), (11), (12),
and (14) cannot be computed analytically. Hence, approxi-
mations of the moments are typically used in Eqgs. (15) and
(16). This concludes the proof of Prop. 1. |

1
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A. Sufficient Conditions for Gaussian Filtering

In any Bayes filter [18], the sufficient components to com-
puting the Gaussian filter distribution in Egs. (15) and (16)
are the mean and the covariance of the joint distribution
p(X¢, Zt|21.¢—1). Generally, the required integrals in Egs. (7),
(8), (11), (12), and (14) cannot be computed analytically.
One exception are linear functions f and g, where the ana-
Iytic solutions to the integrals are embodied in the Kalman
filter [12]. In many nonlinear dynamic systems, filtering
algorithms approximate probability distributions (see e.g.,
the UKF [11] and the CKF [2]) or the functions f and g
(see e.g., the EKF [15] or the GP-Bayes filters [6], [13]).
Using the means and (cross-)covariances computed by these
algorithms and plugging them into Egs. (15)—(16), recovers
the corresponding filter update equations for the EKF, the
UKE, the CKF, and the GP-Bayes filters.

IV. GAUSSIAN RTS SMOOTHING

In this section, we present a general probabilistic per-
spective on Gaussian RTS smoothers and derive sufficient
conditions for Gaussian smoothing.

The smoothed state distribution is the posterior distribution
of the hidden state given all measurements

p(xt|z1.7), t=T,...,0. 17

Proposition 2 (Smoothing Distribution): For  Gaussian
smoothers, the mean and the covariance of a Gaussian
approximation to the distribution p(x:|z.7) are generally
computed as

K1 = P11+ e (B — Bij—1) (18)

S e =2 H e (B - Eﬁtq)Jth , (19
Ji_1 = cov[xi_1,X¢|z14—1]coV[X¢ |21 1]

= Etgcfl,t|t71(Etgﬁtq)_l . (20)

Proof: The smoothed state distribution at the ter-

minal time step 7' is equivalent to the filter distribution

p(xr|z1.r) [1]1, [3]. The distributions p(x:—1|z1.7), t =

T,...,1, of the smoothed states can be computed recursively

according to

P(X¢—1|21:7) :/p(xt71|xt7Zl:tfl)p(xt|Z1:T)dxt 21

by integrating out the smoothed hidden state at time step ¢. In
Eq. (21), we exploited that x;_; is conditionally independent
of the future measurements z;.r given X;.

To compute the smoothed state distribution in Eq. (21),
we need to multiply a distribution in x; with a distribution
in x;_1 and integrate over x;. To do so, we follow the steps:
(a) Compute the conditional p(x¢—1|X¢,21.t—1)-

(b) Formulate p(x;_1|x¢,z1.7) as an unnormalized distribu-
tion in x;.

(c) Multiply the new distribution with p(x;|z1.7).

(d) Solve the integral in Eq. (21).

We now examine these steps in detail. Assume a known

(Gaussian) smoothed state distribution p(x¢|z1.7).

(a) Compute a Gaussian approximation to the conditional
p(x¢—1|X¢t,Z1.4—1). We compute the conditional in two
steps: First, we compute a Gaussian approximation to the
joint distribution p(x¢,X¢—1|Z1:t—1). Second, we apply
the rules of computing conditionals to this joint Gaussian.
Let us start with a Gaussian approximation

) (22)

N “%1\#1 % %
Hije—1 (X

to the joint p(xs—_1,X¢|z1.+—1) and have a closer look at
its components: A Gaussian approximation of the filter
distribution p(x;_1|z1..—1) at time step ¢ — 1 is known
and is the first marginal distribution in Eq. (22). The
second marginal N (uf‘FpEfltfl) is the time update
and also known from filtering. To fully determine the
joint in Eq. (22), we require the cross-covariance matrix

2f71,t|t71 = //thlf(xtfl)Tp(thﬂxtq)dXt71
— ()T (23)

where we used the means “f—ll ,_, and uf‘ ., of the
measurement update and the time update, respectively.
The zero-mean independent noise in the system Eq. (1)
does not influence the cross-covariance matrix. The cross-
covariance matrix in Eq. (23) can be pre-computed during
filtering since it does not depend on future measurements.
This concludes the first step (computation of the joint
Gaussian) of the computation of the desired conditional.
In the second step, we apply the rules of Gaussian
conditioning to obtain the desired conditional distribution
p(x¢—1|X¢,Z1.4—1). For a shorthand notation, we define

Ji1 = Effl,t\tfl(zf\tfl)_l ) (24)

T T
t—1|t—1 t—1,t|t—1
T T

)

H )
t—1,t)t—1 tjt—1

and obtain a Gaussian approximation A (x;_1 | m, S) of
the conditional distribution p(x;_1|x¢, Z1.4—1) With

(25)
(26)

m = H’tz—l\t—l +Ji1(xe — H’f\t—l) )
S = Ef—l\t—l - Jt—l(zf—l,tn—ﬂT
(b) Formulate N(x;—1|m,S) as an unnormalized distri-

bution in x;. The square-root of the exponent of
N(x¢—1|m,S) contains

Xp—1—m=r(x1) = J1xy

with r(x¢—1) = X4—1 fuf_w/_l +Jt_1uf|t_1, which is a
linear function of both x;_; and x;. We now reformulate
the conditional Gaussian NV (x;_1 | m, S) as a Gaussian in
J;_1x; with mean r(x;_1) and the unchanged covariance
matrix S. We obtain the conditional

N1 |m,S) = N(x;|a, A),
with ¢y = \/[2m (3] 813, 1)~1|/[2n8]

27)

and a = J; Yr(x; 1),A = (J],S7'J,_1)"". Note
that A (x;—1 | m, S) is an unnormalized Gaussian in x,
see Eq. (27). The matrix J;_; defined in Eq. (24) is
quadratic, but not necessarily invertible, in which case we
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take the pseudo-inverse. However, we will see that this
inversion will be unnecessary to obtain the final result.

(c) Multiply the new distribution with p(x¢|z1.7). To de-
termine p(xX:—1|z1.7), we multiply the Gaussian in
Eq. (27) with the smoothed Gaussian state distribution
N(x; | K7 Ef‘T), which yields the Gaussian approxi-
mation

alN(x|a, A)N (x| i, Bijr) = crc2(a)N (x¢ | b, B)
(28)

of p(x¢—1,%¢|z1.7), for some b, B, where cy(a) is the
inverse normalization constant of A/(x; | b, B).

(d) Solve the integral in Eq. (21). Since we integrate over
x; in Eq. (21), we are solely interested in the parts that
make Eq. (28) unnormalized, i.e., the constants c¢; and
c2(a), which are independent of x;. The constant cz(a)
in Eq. (28) can be rewritten as ca(x;_1) by reversing the
step that inverted the matrix J;_1, see Eq. (27). Then,
ca(x¢—1) is given by

ea(xe-1) = ¢ 'N(x-1 |2 B ) s 29)
K1 = M1 T Je—1 (B — Bie—1) (30)
P =S+ (S -2, )30 6D

Since ¢; cfl = 1 (plug Eq. (29) into Eq. (28)), the desired
smoothed state distribution is

p(Xt—1|Z1:T) = N(Xt—l |Nf_1|T7 Ef_1|T) ; (32)

where the mean and the covariance are given in Eq. (30)
and Eq. (31), respectively.

This result concludes the proof of Prop. 2. [ ]

A. Sufficient Conditions for Smoothing

After filtering, to determine a Gaussian approximation to
the distribution p(x;_1|z1.7) of the smoothed state at time
t — 1, only a few additional ingredients are required: the
matrix J;_; in Eq. (24) and Gaussian approximations to
the smoothed state distribution p(x;|z1.7) at time ¢ and
the predictive distribution p(x¢|2z1.4—1). Everything but the
matrix J;_; can be precomputed either during filtering or in
a previous step of the smoothing recursion. Note that J;_1
can also be precomputed during filtering.

Hence, for Gaussian RTS smoothing it is sufficient to
determine Gaussian approximations to both the joint distri-
bution p(x;,z;|z1.4—1) of the state and the measurement for
the filter step and the joint distribution p(x¢—1,X¢|Z1.t—1) of
two consecutive states.

V. IMPLICATIONS AND THEORETICAL RESULTS

Using the results from Secs. III and IV, we conclude
that for filtering and RTS smoothing it is sufficient to
compute or estimate the means and the covariances of the
joint distribution p(x;_1,X¢|21..—1) between two consecutive
states (smoothing) and the joint distribution p(x;, z¢|z1.4—1)
between a state and the subsequent measurement (filtering
and smoothing). This result has two implications:

1) Gaussian filters/smoothers can be distinguished by their
approximations to these joint distributions.

2) If there exists an algorithm to compute or to estimate
the means and the covariances of the joint distributions
p(x, h(x)), where h € {f, g}, the algorithm can be used
for filtering and RTS smoothing.

In the following, we first consider common filtering
and smoothing algorithms and describe how they com-
pute Gaussian approximations to the joint distributions
p(x¢—1,%X¢|Z1.4—1) and p(x¢, Z¢|z1.¢—1), respectively, which
emphasizes the first implication (Sec. V-A). After that, for
the second implication of our results, we take an algorithm
for estimating means and covariances of joint distributions
and turn this algorithm into a filter/smoother (Sec. V-B).

A. Current Algorithms for Computing the Joint Distributions

Fig. 1(a) gives an overview of how the Kalman fil-
ter, the EKF, the UKEF, and the CKF represent the
means and the (cross-)covariances of the joint distribu-
tions p(xy,Z¢|z1.+—1) and p(x;—1,X¢|z1.+—1). In Fig. 1(a),
we use the shorthand notation a’? = aa'. For example,
we defined (F(X{", ,) — pf, 1)? = (FXy, ) —

Nfﬁﬂ)(ﬂxil—)ut—l) - Nf]t—l)—r'

In the Kalman filter, the transition function f and the
measurement function are linear and represented by the
matrices F and G, respectively. The EKF linearizes f and
g resulting in the matrices F and G, respectively. The
UKF computes 2D + 1 sigma points X and uses their
mappings through f and g to compute the desired moments,
where w,,, and w, are the weights used for computing the
mean and the covariance, respectively (see [18], pp. 65).
The CKF computations are nearly equivalent to the UKF’s
computations with slight modifications: First, the CKF only
requires 2D cubature points X. Thus, the sums run from 1 to
2D. Second, the weights w. = 1/D = wy,, are all equal [2].

Although none of these algorithms explicitly computes the
joint distributions p(x;,z¢|z1.+—1) and p(xi—1,X¢|Z1:4-1)s
they all implicitly do so. Using the means and covariances
in Fig. 1(a) in the filtering and smoothing Egs. (4), (5), (18),
and (19), the results from the original papers [12], [16], [15],
[11], [17], [2] are recovered. To the best of our knowledge,
Fig. 1(a) is the first presentation of the CKS.

B. Gibbs-Filter and Gibbs-RTS Smoother

We now derive a Gaussian filter and RTS smoother based
on Gibbs sampling [9]. In the context of filtering and RTS
smoothing, we use Gibbs sampling for inferring the mean
and the covariance of the distributions p(x;—1,X¢|Z1.4—1)
and p(x¢,Zz¢|z1.+-1), respectively, which is sufficient for
Gaussian filtering and RTS smoothing, see Sec. V.

At each time step, we use Gibbs sampling to infer the
moments of the joint distributions p(x:—1,X¢|z1.+—1) and
p(X¢,Zt|z1.¢—1). Fig. 1(b) shows the graphical model for
inferring the mean g and the covariance ¥ from the joint
data set X using Gibbs sampling. The parameters of the
conjugate hyper-priors on the mean p and the covariance 3
are denoted by m, S and ¥, v, respectively.
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| Kalman filter /smoother | EKF/EKS

| UKF/URTSS and CKF/CKS*

@ (& @ ®

i1 Fui_110-1 Fﬂt 1e—1 Z Ou’")f( t— 1\1 )

ﬂtz\t 1 Gufjy_q Gl‘t\t 1 Zz 0u§,§)q(X§|2 v

Sior | FELyoF Q| B8, F Q[ ST, ) ) Q (1) (®)
zf\t 1 sz\f,—lGTJ"R sz\f 1G'T""R Z ( ( t\t V- ﬂfz,\t—l)2+R

Ef\i—l E?ﬁ—lGT Zt\t 1G'T Z ( f\f “t.\t—l)(g<xiiz—l)7'“‘?\1,—1>T

Ef—l,t\t ZgﬁutleT 2A:;Qutfli?T Z ()(XY 1t—1 “t.—l\t—l)(f(xﬁz—l)7”?\t—1)T e

(a) Approximating the means and the covariances of p(x¢,z¢|z1:4—1) and p(X¢—1,X¢|Z1:4—1).

Fig. 1.

To infer the moments of the joint p(x¢—1,X¢|Z1.t—1)s
we first generate i.i.d. samples from the filter distribution
p(x¢—1|21.t—1) and map them through the transition function
f. The samples and their mappings serve as samples X
from the joint distribution p(x¢—1,X¢|z1..—1). With a con-
jugate Gaussian prior A'(p|m,S) on the joint mean, and
a conjugate inverse Wishart prior distribution ZW(X|¥, v)
on the joint covariance matrix, we infer the hyper-posterior
distributions on p and 3. By sampling from these posterior
distributions, we obtain unbiased estimates of the desired
mean and the covariance of the joint p(x¢—1,X¢|Z1.4—1) as
the sample average (after a burn in).

To infer the mean and the covariance of the joint
p(X¢,Z¢|Z1.¢—1), we proceed similarly: We generate i.i.d.
samples from the distribution p(x¢|z1.t—1), which are sub-
sequently mapped through the measurement function. The
combined data set of i.i.d. samples and their mappings define
the joint data set X. Again, we choose a conjugate Gaussian
prior on the mean vector and a conjugate inverse Wishart
prior on the covariance matrix of the joint p(xy, z¢|Z1.4—1)-
Using Gibbs sampling, we sample means and covariances
from the hyper-posteriors and obtain unbiased estimates for
the mean and the covariance of the joint p(x;,z:|z1.4—1)-

Alg. 1 outlines the steps for computing the joint distribu-
tion p(xy,2z¢|z1.4—1). Since the chosen hyper-priors for the
mean and the covariance are conjugate priors, all updates
of the posterior hyper-parameters can be computed analyt-
ically [10]. The moments of p(x;—1,X¢|Z1.4—1), which are
required for smoothing, are computed similarly by exchang-
ing the pass-in distributions and the mapping function.

VI

As a proof of concept, we show that the Gibbs-RTSS
proposed in Sec. V-B performs well in linear and nonlinear
systems. As performance measures, we consider the expected
root mean square error (RMSE) and the expected negative
log-likelihood (NLL) per data point in the trajectory. While
the RMSE solely penalizes the distance of the true state and
the mean of the filtering/smoothing distribution, the NLL
measures the coherence of the filtering/smoothing distribu-
tions.In our experiments, we chose a time horizon 1" = 50.

NUMERICAL EVALUATION

A. Proof of Concept: Linear System

First, we tested the performance of the Gibbs-filter/RTSS
in the linear system x; = x;_1 +wy, 2, = —2x;+ v, , where
wy ~ N(0,1),v; ~ N(0,10),p(zo) = N(0,5). In a linear

(b) Gibbs-filter/RTSS graphical model.

(a) Summary of how standard filters/smoothers compute joint probabilities. (b) Graphical model for the Gibbs-filter/RTSS.

Algorithm 1 Inferring the mean Ky and the covariance
¥,.» of p(x¢,2¢|z1..—1) using Gibbs sampling

1: pass in marginal distribution p(x;|z1.:—1), burn-in period
B, number L of Gibbs iterations, size N of data set
2: init. hyper-priors on joint mean and covariance
N(pt, . |m,S) and IW(X, .| ¥, v)
3 X =[xy (¢ ),g(xg )) + v( )]l 1 > generate joint data set
4: sample p; ~ N(m,S), sample 31 ~ ZW (¥, v)
5: for j =1to L do > for L Gibbs iterations do
6: update m|X, s X5 > posterior mean of p;
7 update S|X, p;, 3; > posterior cov. of p;
8 sample pt; 1 ~ N (4, |m,S)
9: update W[X, p1; 19, %; > posterior scale of X;
10: update v|X, p; 41, %; > posterior DoF of X;
11 sample X, 11 ~ ZW(X;41|P,v)
12: p, ,=IE[pp 1,;] > unbiased estimate of joint mean
13: 3, . =E[Xp11.1] > unbiased estimate joint cov.
14: return p, 3, . > return inferred statistics

EKF Gibbs-filter* ‘ EKS Gibbs-RTSS*

RMSE | 1.114+0.014 1.12+0.014 | 0.884+0.011 0.89 £0.011

NLL | 1.524+0.012 1.524+0.012 | 1.30£0.013 1.30 £0.012
Fig. 2. Expected performances (linear system) with standard error.

system, the (E)KF is optimal and unbiased [1]. The Gibbs-
filter/RTSS perform as well as the EKF/EKS as shown in
Fig. 2, which shows the expected performances (with the
corresponding standard errors) of the filters/smoothers over
100 independent runs, where xo ~ p(z(). The Gibbs-sampler
parameters were set to (N, L, B) = (1000, 200, 100), Alg. 1.

B. Nonlinear System: Non-stationary Growth Model
As a nonlinear example, we consider the dynamic system

(33)

25x¢—1
1+z7_

zp = 2L 4 -+ 8cos(1.2(t — 1)) +we,

2

2t = 55 + Ur, (34

with exactly the same setup as in [8]: w; ~ N(0,1),
vy ~ N(0,10), and p(xg) = N(z0]0,5). This system is
challenging for Gaussian filters due to its quadratic mea-
surement equation and its highly nonlinear system equation.

We run the Gibbs-RTSS, the EKS, the CKS, and the
URTSS [17] for comparison. We chose the Gibbs parameters
(N,L,B) = (1000,200,100). For 100 independent runs
starting from o ~ p(x), we report the expected RMSE
and NLL performance measures in Fig. 3.
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filters Gibbs-filter* EKF CKF UKF
RMSE 5.04+0.088 11.1£0.29 6.18+0.17 857+0.16
NLL 2.87+0.12 26.1£1.18 9.96+£0.75 13.6 +0.68
smoothers | Gibbs-RTSS* EKS CKS* URTSS
RMSE 4.01+0.085 10.64+0.28 5.66+0.20 8.02+0.16
NLL 278+0.15 90.6+103 289+331 16.3+0.16
Fig. 3. Expected performances (nonlinear system) with standard error.
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(a) Gibbs-filter (Gibbs-RTSS). RMSE: (b) EKF (EKS). RMSE: 11.3 (14.7),
5.56 (4.18), NLL: 2.65 (2.45). NLL: 16.5 (20.8).
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(c) CKF (CKS). RMSE: 5.66 (5.96), (d) UKF (URTSS). RMSE: 7.87
NLL: 7.32 (20.7). (7.18), NLL: 8.66 (9.93).

Fig. 4. Example trajectories of filtering/smoothing in the nonlinear growth
model using (a) Gibbs-RTSS, (b) EKS, (c) CKS, (d) URTSS. The filter
distributions are represented by the shaded areas (95% confidence area),
the smoothing distributions are shown by solid green lines (95% confidence
area). The actual realization of the latent state is the dashed red graph.

Both high expected NLL-values and the fact that smooth-
ing makes them even higher hint at the incoherencies of the
EKF/EKS, the CKF/CKS, and the UKF/URTSS. The Gibbs-
RTSS was the only considered smoother that consistently
improved the results of the filtering step. Therefore, we
conclude that the Gibbs-filter/RTSS is coherent.

Fig. 4 shows example realizations of filtering and
smoothing using the Gibbs-filter/RTSS, the EKF/EKS, the
CKF/CKS, and the UKF/URTSS, respectively. The Gibbs-
filter/RTSS appropriately inferred the variances of the latent
state while the other filters/smoothers did not (neither of
them is moment-preserving), which can lead to incoherent
filtering/smoothing distributions [5], see also Fig. 3.

VII. DISCUSSION

Our Gibbs-filter/RTSS differs from [4], where Gibbs
sampling is used to infer the noise in a linear system.
Instead, we infer the means and covariances of the full
joint distributions p(x¢—1,X¢|Z1.t—1) and p(xy, z¢|z1.4—1) in
nonlinear systems from data. Neither the Gibbs-filter nor the
Gibbs-RTSS require to know the noise matrices R, Q, but
they can be inferred as a part of the joint distributions if
access to the dynamic system is given. Unlike the Gaussian
particle filter [14], the proposed Gibbs-filter is not a particle
filter. Therefore, it does not suffer from degeneracy due to
importance sampling.

Although the Gibbs-filter is computationally more in-
volved than the EKF/UKF/CKEF, it can be used as a baseline
method to evaluate the accuracy and coherence of more

efficient algorithms: When using sufficiently many samples

the Gibbs-filter can be considered a close approximation to

a moment-preserving filter in nonlinear stochastic systems.
The Gibbs-filter/RTSS only need to be able to evaluation

the system and measurement functions. No further require-

ments such as differentiability are needed.
The Gibbs-RTSS code is publicly available at mloss.org
and an extended version of this paper can be obtained from [7].

VIII. CONCLUSION

Using a general probabilistic perspective on Gaussian filtering
and smoothing, we first showed that it is sufficient to determine
Gaussian approximations to two joint probability distributions
to perform Gaussian filtering and smoothing. Computational ap-
proaches to Gaussian filtering and Rauch-Tung-Striebel smoothing
can be distinguished by their respective methods used to determin-
ing two joint distributions.

Second, our results allow for a straightforward derivation and im-
plementation of novel Gaussian filtering and smoothing algorithms,
e.g., the cubature Kalman smoother. Additionally, we presented
a filtering smoothing algorithm based on Gibbs sampling as an
example. Our experimental results show that the proposed Gibbs-
filter/Gibbs-RTSS compares well with state-of-the-art Gaussian
filters and RTS smoothers in terms of robustness and accuracy.
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