
  

 

Abstract—Flexible structures containing a large number of 

modes can benefit from adaptive control techniques which are 

well suited to applications that have unknown modeling 

parameters and poorly known operating conditions. In this 

paper, we focus on a direct adaptive control approach that has 

been extended to handle adaptive rejection of persistent 

disturbances. We extend our adaptive control theory to 

accommodate troublesome modal subsystems of a plant that 

might inhibit the adaptive controller. 

In some cases the plant does not satisfy the requirements of 

Almost Strict Positive Realness. Instead, there maybe be a 

modal subsystem that inhibits this property. This section will 

present new results for our adaptive control theory. We will 

modify the adaptive controller with a Residual Mode Filter 

(RMF) to compensate for the troublesome modal subsystem, or 

the Q modes. Here we present the theory for adaptive 

controllers modified by RMFs, with attention to the issue of 

disturbances propagating through the Q modes. We apply the 

theoretical results to a flexible structure example to illustrate 

the behavior with and without the residual mode filter. 

I. INTRODUCTION 

lexible structures containing a large number of modes 

can benefit from adaptive control techniques which
 
are 

well suited to applications that have unknown modeling 

parameters and poorly known operating conditions. Creating 

an accurate model of the dynamic characteristics of a 

structure can be extremely difficult, if not impossible. In this 

paper, we focus on the direct adaptive control (DAC) 

approach developed in [1-2]. This approach has been 

extended to handle adaptive rejection of persistent 

disturbances [3] and applied to wind turbines in [4]. 

In this paper, we extend our adaptive control theory to 

accommodate modal subsystems of a plant that inhibit the 

adaptive controller, in particular those residual modes that 

interfere with the almost strict positive real condition. 

A flexible structure Evolving System is a mechanical 

dynamical system consisting of actively controlled flexible 

structure components that are joined together by compliant 

forces. A practical and well-accepted representation of 

flexible structures is based on the finite element method 

(FEM); see [9] for an extensive survey on flexible structures. 

The FEM of the lumped model in physical coordinates q, for 

a linearized actively controlled flexible structure with M 
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control inputs, and P control outputs is given in matrix form 

as 
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This system can be put into a modal form with the 

transformation  
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Therefore, using the transformation (2), we obtain the 

modal form of (1): 



















00

000

ECy

uBD

p

 (3) 

This system can be put into a modal first-order form with 

the states 












px . 

Note that many kinds of systems have modal forms, and 

the results we are developing here apply to any such system, 

not just flexible structures. 

II. DIRECT ADAPTIVE CONTROL WITH REJECTION OF 

PERSISTENT DISTURBANCES 

We give relevant details of this theory here. The plant is 

assumed to be well modeled by the linear, time-invariant, 

finite-dimensional system: 
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where the plant state, xp is an Np-dimensional vector, the 

control input vector, up, is M-dimensional, and the sensor 

output vector, yp, is P-dimensional. The disturbance input 

vector, uD, is MD-dimensional and will be thought to come 

from the Disturbance Generator: 
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where the disturbance state, zD, is ND-dimensional. All 

matrices in (4)-(5) have the appropriate compatible 

dimensions. Such descriptions of persistent disturbances 

were first used in [5] to describe signals of known form but 

unknown amplitude. Equation (5) can be rewritten in a form 
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that is not a dynamical system, which is sometimes easier to 

use: 



uD zD

zD  LD





 (6) 

where 



D  is a vector composed of the known basis 

functions for the solution of 



uD zD , i.e., 



D  are the 

basis functions which make up the known form of the 

disturbance, and L is a matrix of dimension ND by dim



(D ) . 
The method for rejecting persistent disturbances used in this 

paper requires only the knowledge of the form of the 

disturbance, the amplitude of the disturbance does not need 

to be known, i.e. 



(L,)  can be unknown.  

In much of the control literature, it is assumed that the 

plant and disturbance generator parameter matrices 



(A, B,C,, ,F)

 

are known. This knowledge of the plant 

and its disturbance generator allows the Separation Principle 

of Linear Control Theory to be invoked to arrive at a State-

Estimator based, linear controller which can suppress the 

persistent disturbances via feedback. In this paper, we will 

not assume that the plant and disturbance generator 

parameter matrices 



(A, B,C,, )  are known. But, we 

will assume that we know the disturbance generator 

parameter, F, from (5), i.e., the form of the disturbance 

functions is known.  In many cases, knowledge of F is not a 

severe restriction, since the disturbance function is often of 

known form but unknown amplitude. 

Our control objective will be to cause the output of the 

plant, yp, to asymptotically track zero while accommodating 

disturbances of the form given by the disturbance generator. 

We define the output error vector as: 



ey  yp 0 (7) 

To achieve the desired control objective, we want 



ey t
  0. (8) 

Consider the plant given by (4) with the disturbance 

generator given by (6). The control objective for this system 

will be accomplished by an adaptive control law of the form: 

DDye GeGu   (9) 

where Ge and GD are matrices of the appropriate compatible 

dimensions, whose definitions will be given later. In [8], the 

gain adaptation laws were developed to make asymptotic 

output regulation possible. 

Now we specify the adaptive gain laws, which produce 

asymptotic tracking: 
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The adaptive controller is specified by (9) with the above 

adaptive gain laws (10). See [3] for the stability analysis of 

this controller and proof that the adaptive gains, Ge and GD, 

remain bounded and asymptotic tracking occurs, i.e., 



ey t
  0. 

III. RESIDUAL MODE FILTER AUGMENTATION OF ADAPTIVE 

CONTROLLER 

In some cases the plant in (4) does not satisfy the 

requirements of ASPR. Instead, there may be a modal 

subsystem that inhibits this property. This section will 

present new results for our adaptive control theory. We will 

modify the adaptive controller with a Residual Mode Filter 

(RMF) to compensate for the troublesome modal subsystem, 

or the Q modes, as was done in [6] for fixed gain non-

adaptive controllers. Here we present the theory for adaptive 

controllers modified by RMFs. In a previous paper, we 

examined the RMF with adaptive control, but assumed that 

there was no leakage of the disturbance into the Q modes [7]. 

Here we will deal with the issue of disturbances propagating 

through these modes. 

Let us assume that (4) can be partitioned into the 

following modal form: 
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Define 
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or 



zD  LD  as before in (5)-(6).  

The Output Tracking Error and control objective remain as 

in (7)-(8), i.e. 



ey  yp t
  0.  

However, now we will only assume that the subsystem 



A,B,C  is Almost Strictly Positive Real (ASPR), rather 

than the full un-partitioned plant



Ap ,Bp ,Cp , and the modal 

subsystem 



(AQ ,BQ ,CQ) 
will be known. Also note that this 

subsystem is directly affected by the disturbance input. 

Recall that ASPR means 



CB0  and 



P(s) C(sI A)
1

B  

is minimum phase. So, in summary, the actual plant has an 

ASPR subsystem and a known modal subsystem that is stable 

but inhibits the property of ASPR for the full plant. Hence, 

this modal subsystem must be compensated or filtered away. 

We define the Residual Mode Filter (RMF) with a simple 

Disturbance Estimator: 

2339
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And the compensated tracking error:  



˜ e y  yp  ˆ y Q  (13) 

Note that the Disturbance Estimator only needs to know 

),( F for the disturbance waveform but nothing about the 

plant ),,( CBA . Now we let 

DDDQQQ zzexxe  ˆ and ˆ
 and obtain: 
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Consequently,  
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As in [1]-[2], we define the Ideal Trajectories:  
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where 
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This is equivalent to the Matching Conditions:  

 

(11). from
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which are known to be uniquely solvable when CBBC   

is nonsingular. However, we do not need to know the actual 

solutions for our adaptive control approach. 

Let  
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we have  
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because, from (16), 0* y . Let 
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be rewritten: 
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Now we have the following: 

Lemma:  CBA ,,

 

ASPR if and only if 

phase minimum is )()( and 0 sPsHCB 
  

where 
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is minimum phase and the result is proved # 

From this Lemma, there exists 



Ge
*
 such that 



(A C  A B Ge
*C ,B ,C )

 
is Strictly Positive Real (SPR). 

Consequently, as is well known from the Kalman-Yacubovic 

Theorem: 
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We now use the Adaptive Control Law with RMF and 

Disturbance Estimator: 
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with the adaptive gains: 
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Finally, we have the following stability result: 

Theorem: In (11), assume  

a) ),( and ),,( FCBA QQQ known 

b)
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D  bounded.  

Then the Adaptive Controller with RMF and disturbance 

estimator in (21)-(22) produces 0
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The proof of this result appears in the Appendix.
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This is not necessarily zero unless we add 

 0or  **  QQQQQ SCxCy  

to the Matching Conditions in (17).
 

 

IV. SIMULATION RESULTS WITH RMF 

In this section we will apply the above theoretical results 

to a simple flexible structure example to illustrate the 

behavior with and without the residual mode filter. The 

structure has a rigid body mode and two flexible modes: 
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1
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This plant has non-minimum phase zeros at 0.4220.9543i, 

and thus does not meet the ASPR condition. 

 However, when the middle mode 



PQ (s) 
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is removed, the plant becomes: 
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which is minimum phase and has a state space realization: 
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 The RMF generated by 
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 The adaptive controller (21)-(22) is implemented with  

100,10  De  . The disturbance is a step of size 10. 

Setting 



 1, we obtain Figures 1 and 2 from a 

MatLab/Simulink simulation. The output trace is shown to 

converge in fig. 1 with a bias of 4. The adaptive gains also 

converge in fig. 2. This illustrates the behavior of the 

adaptive controller plus the second order RMF. Without the 

RMF, the plant and adaptive controller are unstable in 

closed-loop. 

V. CONCLUSION 

We have proposed a modified adaptive controller with a 

residual mode filter and a simple disturbance estimator that 

needs no information about (A, B, C). The RMF is used to 

accommodate troublesome modes in the system that might 

otherwise inhibit the adaptive controller, in particular the 

ASPR condition. This new theory accounts for leakage of the 

disturbance term into the Q modes. However, it requires a 

new minimum phase condition on )()( sPsH rather than 

just on )(sP   alone.  A simple three-mode example shows 

that the RMF can restore stability to an otherwise unstable 

adaptively controlled system. This is done without modifying 

the adaptive controller design, but only adding the RMF and 

disturbance Estimator to the original adaptive controller.  
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Fig. 1. Non-dimensional output response with adaptive controller 

augmented with RMF. 
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Fig. 2. Adaptive gains, Ge=error gain, Gd=disturbance gain. 

 

 

  APPENDIX: Proof of Theorem 

From (21), 

DDye GeGu  ~
. So  

2342



  

 
 




w

QQe

D

y

G

DeDDQQe

GeCxCG

e
GGLSGeCxCG

uuu
























)(

~
)()(

*

0

2

**

*



 

 

This can be substituted into (19) to produce:
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Therefore ),( G is bounded. Now using Barbalat’s 

Lemma and  
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Finally, GGG  *  and G is bounded, which makes 

 De GGG  bounded. This ends the proof. 
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