
Idempotent Method for Deception Games

William M. McEneaney

Abstract— In recent years, idempotent methods (specifi-
cally, max-plus methods) have been developed for solution
of nonlinear control problems. We extend the applica-
bility of idempotent methods to deterministic dynamic
games through usage of the min-max distributive property.
However, this induces a very high curse-of-complexity.
A representation of the space of max-plus hypo-convex
functions as a min-max linear space is used to obtain
a result which may be used to attenuate this complexity
growth. We apply this approach in a game of deception,
where one player is searching for certain objects, while the
other player may employ deception to hinder that search.
The problem is formulated as a dynamic game, where the
state space is a max-plus probability simplex.

I. INTRODUCTION

In recent years, idempotent methods have been devel-

oped for solution of nonlinear control problems. (Note

that idempotent algebras are those for which a ⊕ a =
a for all a; this class includes the well-known max-

plus algebra.) Most notably, max-plus methods have

been applied to deterministic optimal control problems.

These consist of max-plus basis methods, exploiting

the max-plus linearity of the associated semigroup

[1], [6], [14], and max-plus curse-of-dimensionality-

free methods which exploit the max-plus additivity and

the invariance of the set of quadratic forms under the

semigroup operator [13], [14]. These methods achieved

truly exceptional computational speeds on some classes

of problems.

In this paper, we use some similar, but more abstract,

tools which bring deterministic dynamic game problems

into the realm under which curse-of-dimensionality-free

idempotent methods will be applicable. We will first

recall how one may apply the min-max distributive prop-

erty to develop curse-of-dimensionality-free methods for

discrete-time, deterministic dynamic games (as indicated

in [10]). Following that are the two main topics in the

paper: complexity attenuation and deception games.

The difficulty with idempotent curse-of-dimen-

sionality-free methods for game problems is an extreme

curse-of-complexity. In particular, the solution complex-

ity grows exponentially as one propagates backward in

time via the idempotent distributed dynamic program-

ming principle (IDDPP). An approach for attenuating
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that complexity growth extends from developments in

max-plus convex analysis. Using the IDDPP, one has a

representation of the value function at each time-step

as a pointwise minimum of max-plus affine functionals.

In this setting, the natural ordering on the range space,

IR
.
= IR ∪ {−∞,+∞}, is downward (the reverse

of our normal ordering), and therefore a very natural

space is that which we refer to as the max-plus hypo-

convex functions – the space of functions such that the

hypograph is max-plus convex. (Note that because of

the reversal of ordering, we choose not to refer to the

space as a space of max-plus concave functions.) This

space is a min-max vector space (more exaclty, a min-

max moduloid or semi-module). This implies that our

value function representation is an element of the space

of max-plus hypo-convex functions. Using the results in

[9], one may show that optimal complexity attenuation is

achieved by pruning of the existing expansion. We note

here that one may think of this step as optimal projection

onto a min-max subspace of specified dimension. This

will allow us to determine a surprisingly simple means

by which this may be achieved.

Once we have these tools in hand, we consider the

deception game. We suppose Player 1 is employing one

or more sensing entities (e.g., UAVs, UUVs, humans) to

search for certain assets. Player 2 may employ deception

to hinder that search. Specifically, at a certain cost,

Player 2 may choose to alter Player 1’s observation.

The cost to hide an asset may be different from the cost

to employ a decoy asset. We suppose that the search

domain consists of a finite set of locations. The appro-

priate state-space is the space of max-plus probability

vectors over the set of possible asset configurations. We

will indicate the dynamic program for solution of this

deception game problem, the associated IDDPP, and the

corresponding computations.

II. IDEMPOTENT METHOD FOR GAMES

We briefly describe the idempotent approach. We will

keep all control spaces finite so as to simplify the

analysis. We suppose the dynamics are governed by

ξt+1 = h(ξt, ut, wt), ξs = x ∈ G ⊆ IRI , (1)

where s is the initial time. We suppose ut ∈ U and

wt ∈ W for all t, with W
.
= #W (the cardinality of

W) and U = #U . We assume h(·, u, w) maps G into G

for all u ∈ U , w ∈ W . Time is discrete with t ∈]s, T [
.
=
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{s, s + 1, s + 2, . . . T }, where for integers a ≤ b, we

use ]a, b[ to denote {a, a+1, . . . b} throughout. Also for

simplicity, we assume only a terminal cost, which will

be φ : G → IR. We let U be the minimizing player’s

control set, and W be the maximizing player’s control

set. The payoff, starting from any (t, x) ∈]s, T [×G will

be

Jt(x, u]t,T−1[, w]t,T−1[) = φ(ξT ), (2)

where u]t,T−1[ denotes a sequence of controls,

{ut, ut+1, . . . uT−1}, with similar meaning for w]t,T−1[.

We will work with the upper value. At any time t ∈
]s, T − 1[, this is

Vt(x) = max
w̃t∈W̃ t

min
u]t,T−1[∈UT−t

Jt(x, u]t,T−1[, w̃(u]t,T−1[))

(3)

where W̃ t = {w̃t : UT−t → WT−t, nonanticipative}.

The associated dynamic programming equation (which

we present without proof) is

Vt(x) = min
u∈U

max
w∈W

Vt+1(h(x, u, w)). (4)

Suppose φ takes the form

φ(x) = min
zT∈ZT

gT (x; zT ),

where we let ZT = #ZT <∞. Then,

VT (x) = min
zT∈ZT

gT (x; zT ). (5)

Combining (4) and (5), one has

VT−1(x) = min
u∈U

max
w∈W

min
zT∈ZT

gT (h(x, u, w); zT ). (6)

We now introduce the relevant idempotent algebras.

The max-plus algebra (i.e., semifield) is given by

a⊕ b
.
= max{a, b}, a⊗ b

.
= a+ b,

operating on IR− .
= IR∪{−∞}. In the min-max algebra

(i.e., semiring), the operations are defined as

a ∧ b
.
= min{a, b}, a ∨ b

.
= max{a, b},

operating on IR
.
= IR∪{−∞}∪{+∞}, where we note

that +∞ ∧ b = b for all b ∈ IR and +∞ ∨ b = +∞
for all b ∈ IR (c.f., [7]). We suppose each gT (·; zT )
is max-plus affine. In other words, φ will be formed

as the lower envelope of a finite set of max-plus affine

functions. In fact, we are going to think of φ as a max-

plus convex function. (We will have reason to reverse

the ordering on the range space, and so our definition of

max-plus convex functions will look directly analogous

to the definition of standard-sense convex functions.) We

may write these max-plus affine gT (·; zT ) as

gT (x; zT )= αT,zT ⊙ x⊕ βT,zT

=

[⊕

i∈I

α
T,zT
i ⊗ xi

]
⊕ βT,zT

where I =]1, I[. We will assume that the h(·, u, w) are

max-plus linear. Specifically, we let

h(x, u, w) = A(u,w) ⊗ x,

where here we use ⊗ to emphasize that this is max-plus

matrix-vector multiplication. We see that

VT−1(x) =
∧

u∈U

∨

w∈W

∧

zT∈ZT

[
βT,zT ⊕αT,zT ⊙A(u,w)⊗x

]
.

(7)

Define, for any t ∈]s + 1, T [, Ẑt = {ẑt : W → Zt}.

Applying the min-max distributive property to (7) (and

noting that ⊕ ≡ ∨),

VT−1(x) =
∧

u∈U

∧

ẑT∈ẐT

⊕

w∈W

[
βT,ẑT (w) (8)

⊕αT,ẑT (w) ⊙A(u,w)⊗ x
]
.

Let

α̃
T−1,ẑT
j (u)

.
=

⊕

w∈W

⊕

i∈I

α
T,ẑT (w)
i ⊗Ai,j(u,w) ∀j ∈ I,

β̃T−1,ẑT .
=

⊕

w∈W

βT,ẑT (w).

With these definitions, (8) becomes

VT−1(x) =
∧

u∈U

∧

ẑT∈ẐT

[
β̃T−1,ẑT ⊕ α̃T−1,ẑT (u)⊙ x

]
.

Let ZT−1 = U(ZT )
W , and let ZT−1 =]1, ZT−1[. Let

ΓT−1 be a one-to-one, onto mapping from U × ẐT to

ZT−1, given by zT−1 = ΓT−1(u, ẑT ) for each (u, ẑT ) ∈
U × ẐT . Then,

VT−1(x) =
∧

zT−1∈ZT−1

[
βT−1,zT−1 ⊕ αT−1,zT−1 ⊙ x

]
,

(9)

where

αT−1,zT−1
.
= α̃T−1,ẑT (u), βT−1,zT−1

.
= β̃T−1,ẑT ,

and zT−1 = ΓT−1(u, , ẑT ). Repeating this process, one

easily finds the following.

Theorem 2.1: For any t ∈]s+ 1, T [,

Vt−1(x) =
∧

zt−1∈Zt−1

[
βt−1,zt−1 ⊕ αt−1,zt−1 ⊙ x

]
,

where

α
t−1,zt−1

j

.
=

⊕

w∈W

⊕

i∈I

α
t,ẑt(w)
i ⊗Ai,j(u,w) ∀j ∈ I,

βt−1,zt−1
.
=

⊕

w∈W

βt,ẑt(w),

where (u, ẑt) = Γ−1
t−1(zt−1) for all x ∈ IRI , zt−1 ∈

Zt−1, and Γt−1 is a one-to-one, onto mapping from U×
Ẑt to Zt−1

.
=]1, Zt−1[, with Zt−1 = U(Zt)

W .

4052



This is our IDDPP. The difficulty emerges through

the iteration Zt−1 = U(Zt)
W ; in a naive application of

this approach, the number of max-plus affine functions

defining the value would grow extremely rapidly. This

implies that the second piece of the algorithm must be

complexity reduction in the representation at each step.

III. GENERAL COMPLEXITY REDUCTION PROBLEM

AND CONTEXT

Certain function spaces may be spanned by infima of

max-plus affine functions, that is, any element of the

space may be represented as an infimum of a set of

max-plus affine functions. By definition, any function

in such a space as the above has an expansion, f(x) =
infλ∈Λ ψλ(x), for some index set Λ, where the ψλ are

max-plus affine. If the expansion is guaranteed to be

countably infinite, we would write

f(x) = inf
i∈N

ψi(x) =
∧

i∈N

ψi(x)
.
=

∧

i∈N

[ai ⊕ ψ′
i(x)],

where the ψ′
i are max-plus linear. We will refer to this

as a min-max basis expansion, or simply a min-max

expansion, and we think of the set of such ψ′
i as a min-

max basis for the space.

Now we indicate the complexity reduction problem in

a general form. Suppose we are given f : X → IR with

representation

f(x) =
∧

m∈M

tm(x) = min
m∈M

tm(x) = min
m∈]1,M [

tm(x),

(10)

where X will be a partially ordered vector space. Except

where noted, we will take X = IRI for clarity. We are

looking for {an : X → IR |n ∈]1, N [} with N < M ,

such that

g(x)
.
=

∧

n∈N

an(x) = min
n∈N

an(x) = min
n∈]1,N [

an(x) (11)

approximates f(x) from above. Note that throughout the

paper, we will let M =]1,M [= {1, 2, . . .M}, N =
]1, N [ and I =]1, I[.

A. Min-max spaces

As indicated earlier, it is well-known that it is useful

to apply max-plus basis expansions to solve certain

HJB PDEs and their corresponding control problems.

In particular, the solutions are represented as max-plus

sums of affine or quadratic functions. In fact, the spaces

of standard-sense convex and semiconvex functions have

max-plus bases (more properly, max-plus spanning sets)

consisting of linear and quadratic functions, respectively,

We will be applying the analogous concept, where the

standard algebra will be replaced by the max-plus, and

the max-plus will be replaced by the min-max. On IRI ,

we will define the partial order x � y if xi ≤ yi for

all i ∈ I. Let OI denote the closed first octant, i.e.,

OI = [0,∞)I
.
= {x ∈ IRI

∣∣x ≥ 0}. For δ ∈ OI , let

‖δ‖⊕
.
= maxi∈I δi =

⊕
i∈I δi. Let 1 denote a generic-

length vector all of whose elements are 1’s. Let

S1(IRI)
.
=

{
f : IRI → IR

∣∣∣∣ 0 ≤ f(x+ δ)− f(x) (12)

≤ ‖δ‖⊕, ∀x ∈ IRI , δ ∈ OI

}
,

For a ∈ IR and f, g ∈ S1(IRI), we define the in-

herited operations [f ∧ g](x) = min{f(x), g(x)} and

[a ∨ f ](x) = max{a, f(x)}.

It is not difficult to show that S1(IRI) is also exactly

the space of sub-topical functions [16] from IRI to IR.

We will refer to a space as a min-max vector space if it

satisfies the standard conditions (c.f. [14]).

Theorem 3.1: S1 is a min-max vector space.

One of the most useful aspects of looking at the

spaces of convex and semiconvex spaces as max-plus

vector spaces was that these spaces had countable max-

plus bases. For example the space of convex functions

has the set of (standard-algebra) linear functionals with

rational coefficients as a countable max-plus basis. We

are interested in analogous results here.

We take ψ(x, z) : IRI × IRI → IR to be

ψ(x, z)
.
= z ⊙ x

.
=

⊕

i∈I

zi ⊗ xi = max
i∈I

{zi + xi}. (13)

We will be taking φk(x) = ψ(x, zk) where the zk will

form a countable dense subset of IRI . The result will

follow if we have

f(x) = inf
z∈IRI

{
max[c(z), ψ(x, z)]

}
,

where c has sufficient continuity properties. Note that

this would imply that f was the lower envelope of a set

of functions. Further, note that

c(z) ∨ ψ(x, z) = c(z)⊕ ψ(x, z)

where the ψ(·, z) are max-plus linear. In other words, f

would be an infimum of max-plus affine functions.

B. Min-max basis representation and max-plus convex-

ity

Given x ∈ IRI , let zx̄ ∈ IRI and c(zx̄) be given by

zx̄i = f(x)− xi ∀ i ∈ I, and c(zx̄)
.
= f(x).

Note that this may not define c on all of IRI . However,

the composite mapping x 7→ c(zx̄) is defined on all of

IRI . See [9] for the proofs of the following set of results.

Theorem 3.2: Let {xk}k∈N be a countable dense

subset of IRI . Let φk(x)
.
= ψ(x, ẑk), where ẑk

.
= zxk ,

for all x ∈ IRI and all k ∈ N. For any f ∈ S1,

f(x) =
∧

k∈N

ck ∨ φk(x) ∀x ∈ IRI , (14)
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where ck
.
= c(ẑk) for all k ∈ N.

In [12], a problem similar to that described above

was formulated, but in that case the max-plus algebra

was replaced by the standard field, and the min-max

algebra was replaced by the max-plus algebra. In solving

that problem, we used a certain optimization criterion

which was convex and increasing. Below, we will use

a similar technique. Consequently, we will be dealing

here with the analog of the convex functions – the max-

plus hypo-convex functions; the optimization criterion

will be max-plus hypo-convex. As the min-max algebra

suggests a natural order on the range space, IR, which is

the opposite of the standard order, this will lead us to a

definition of max-plus hypo-convex functions in which

the set below the function is max-plus convex.

We begin with the definition of max-plus convex sets.

A set, C ⊆ IRI is max-plus convex if

λ1 ⊗ x1 ⊕ λ2 ⊗ x2 ∈ C

for all x1, x2 ∈ C and all λ1, λ2 ∈ [−∞, 0] such that

λ1 ⊕ λ2 = 0. See [3], [16]. We now turn to max-plus

hypo-convex functions. We would like the set of such

functions to form a min-max vector space. Consequently,

we define the ordering on the range space, IR, by

y1�Ry2 if y1 ≥ y2, and y1≺Ry2 if y1 > y2; relations

�R and ≻R are defined analogously. We henceforth

refer to this as the range order. Suppose f : IRI → IR,

and define the max-plus epigraph as

epi⊕f
.
= {(x, y) ∈ IRI × IR | y�Rf(x)}. (15)

Alternatively, f may be referred to as the hypograph

[16], but due to the natural reversal of order in the

range space here, the term max-plus epigraph is more

appropriate in this context. Lastly, we say f is max-plus

hypo-convex if epi⊕f is max-plus convex. With some

work, one obtains:

Theorem 3.3: Let Z ⊆ IRI , c : Z → IR, and

f(x) =

∫ ∧

Z

c(z)⊕ ψ(x, z) dz = inf
z∈Z

{c(z)⊕ x⊙ z},

(16)

for all x ∈ IRI .. Then f is max-plus hypo-convex.

Corollary 3.4: Suppose

f(x) =
∧

k∈K

ck ⊕ zk ⊙ x ∀x ∈ IRI , (17)

where K ⊆ N, and ck ∈ IR and zk ∈ IRI for all k ∈ K.

Then, f is max-plus hypo-convex.

Theorem 3.5: f ∈ S1 if and only if f is max-plus

hypo-convex.

C. Complexity reduction

Recall that our originating problem was complexity

reduction in a min-max expansion; see (10),(11). The

an and tm will now be selected from a specified class

of functions, the max-plus linear functions. We take X
.
=

IRI throughout.

We will use a measure of approximation quality which

is monotonic and max-plus hypo-convex. Specifically,

we wish to minimize

J(A)
.
=

∫ ⊕

G

{[
∧

n∈N

αn ⊙ x

]
−

[
∧

m∈M

τm ⊙ x

]}
dx,

(18)

conditioned on

αn · x ≥
∧

m∈M

τm ⊙ x ∀x ∈ IRI , ∀n ∈ N , (19)

where we let A denote the set of coefficients {αn}n∈N .

The following result is obtained by embedding prob-

lem (18)/(19) in a larger class of problems. A proof

appears in [9], and we note that the proof in analogous

(but in a min-max sense) to a proof in [12].

Theorem 3.6: There exists A∗ = {α∗,n}n∈N mini-

mizing (i.e., range-order maximizing) J subject to con-

straints (19). Further, there exist {mn}n∈N ⊂ M such

that A∗ = {τmn}n∈N .

Remark 3.7: Note that the above result covers only

the max-plus linear case. We may extend this to the

affine case on G′ ⊆ IR
I′

with I ′
.
= I − 1 by letting

G = G′×{0}. Then with αn = ([α′]n, β) ∈ IR
I
, for any

x′ ∈ G′ there exists unique x ∈ G given by x = (x′, 0)
such that

[α′]n ⊙ x′ ⊕ β = αn ⊙ (x′, 0) = αn ⊙ x.

With this equivalence, one extends our result to affine

functionals.

D. Application to the game problem

We will now see how this can be used for our game

problem. Recall that using Theorem 2.1, if the value

function for the game at any time, t, took the form

Vt(x) =
∧

zt∈Zt

[
βt,zt ⊕ αt,zt ⊙ x

]
, (20)

then at time t− 1, one had

Vt−1(x) =
∧

zt−1∈Zt−1

[
βt−1,zt−1 ⊕ αt−1,zt−1 ⊙ x

]
,

where the computation of the constants was given there.

Although this avoided the curse-of-dimensionality, there

was a very high “curse-of-complexity”, where in par-

ticular, Zt−1 = #Zt−1 = U(Zt)
W . Consequently,

after each iteration of the algorithm, we approximate

in order to reduce complexity. That is, given any Vt
of the form (20), we seek a smaller set of max-plus

affine functionals that yields the best approximation.

Theorem 3.6 and Remark 3.7 tell us that this is optimally

achieved by pruning of the Zt set (as opposed to using
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a different set of max-plus affine functionals). That is,

in optimally reducing from Zt to some smaller set of

say, N , functionals, we do not need to search over all

possible sets of size N of affine functionals, but only over

subsets of Zt. Further, (18) gives us a criterion by which

we may measure the quality of any pruning option.

To generalize this to the affine case, we use Remark

3.7. For simplicity of notation, we replace Zt =]1, Zt[
with M =]1,M [, and pairs (αt,zt , βt,zt) with (αm, βm).
Also, we let τm

.
= (αm, βm) for m ∈ M. Let Ĝ

.
=

G × {0} ⊆ IRI × {0}, and given x ∈ IRI , let x̂ =
x̂(x)

.
= (x, 0) ∈ Ĝ. Then,

βt,zt ⊕ αt,zt ⊙ x = βm ⊕ αm ⊙ x = τm ⊙ x̂.

Noting that, by Theorem 3.6, the optimal solution of

(18)/(19) is a subset of M, which we will denote by

M′, optimization criterion (18) may be replaced by

Ĵ(M′)
.
=

∫ ⊕

Ĝ

{[
∧

m′∈M′

τm
′

⊙ x̂

]

−

[
∧

m∈M

τm ⊙ x̂

]}
dx. (21)

Using this, we find the solution surprisingly easy to

compute. One can understand, heuristically, why this

might be so, by noting that the maximum vertical

amount that a single max-plus affine function contributes

to the pointwise minimum of a set of max-plus affine

functions always occurs at what we refer to as the “crux”

of the max-plus affine function, where the crux is a

point in IRI+1 where all the hyperplanes comprising

the graph of the function intersect. Due to paper-length

considerations, we do not include the details.

IV. A DECEPTION GAME

We now consider a deception game. Player 1 will

search for what we will refer to as the assets of

Player 2 over a series of time-steps, T − .
=]0, T −

1[
.
= {0, 1, . . . T − 1}. Then, at time T , Player 1 takes

an action, a ∈ A =]1, A[. The true Player 2 asset

configuration is x ∈ X =]1, X [. (In the case of a

single asset hidden among L possible locations, one

would take X =]1, L[.) Given true asset configuration

x, Player 2 would receive a loss, c(x, a). Here, we

use the convention that Player 2 wishes to maximize

(make less negative) the loss, c(x, a). We assume a

zero-sum game. Let C(a) be the vector of length X

with components c(x, a). It is natural to use the max-

plus probability structure (c.f., [2], [4], [5], [15] and the

references therein) for deterministic games.

Suppose that Player 1’s knowledge of the true asset

configuration is described by max-plus probability dis-

tribution, q ∈ S⊕X , where

S⊕X .
=

{
q =∈ [−∞, 0]X

∣∣∣
⊕

x∈X

qx = 0
}
,

where [−∞, 0] denotes (−∞, 0] ∪ {−∞} and the X

superscript indicates outer product X times. (Recall that

[−∞, 0] is analogous to [0, 1] in the standard algebra.)

We may interpret each component, qx, as the (relative)

cost to Player 2 to cause Player 1 to believe that the

asset configuration is x. This will be become more clear

below. The expected payoff for action a ∈ A given

max-plus distribution q at terminal time T , is as fol-

lows. Letting max-plus random variable ξ be distributed

according to q, and E
⊕
q denote max-plus expectation

according to this q, the expected payoff is

Ĵ(q, a) = E
⊕
q [c(a, ξ)] =

⊕

x∈X

c(a, x)⊗ qx = C(a) ⊙ q.

(22)

Given that Player 1 wants to minimize (make more

negative) the loss to Player 2, the value of information

q at time T is

φ(q)
.
= min

a∈A
J(q, a) =

∧

a∈A

[C(a) ⊙ q]. (23)

We see that if information is represented by a max-plus

probability distribution over a finite set (and one has

a finite set of controls), then the value of information

takes the form of a min-max sum of max-plus linear

functionals over a max-plus probability simplex.

We will view φ as the terminal payoff in the deception

game. Now we describe the actual deception game. At

each time, t ∈ T −, Player 1 may task sensing entities.

The possible Player 1 sensing controls at each time

step are denoted by u ∈ U =]1, U [. Each sensing

step results in an observation (or set of observations)

denoted by y ∈ Y . Again, in the max-plus probability

structure, one may associate max-plus probabilities with

costs. Let the max-plus probability of observing y given

sensing control u and true asset state x be denoted by

p⊕(y|x;u) ∈ [−∞, 0]. These may be associated with

Player 2’s deception actions. We suppose that at each

time step, Player 2 may use a combination of decoys,

stealth and “no action”. Here, each use of a decoy or

stealth will have associated costs. (Note that the use of

stealth may be associated with a cessation of activity

which would otherwise be benefiting Player 2.) That is,

we may interpret p⊕(y|x;u) as the (non-positive) cost

to Player 2 to cause Player 1 to observe y given true

state x and sensing control u.

Suppose q(t) is the max-plus probability distribution

after observation at time t. Suppose that at time t +
1, Player 1 employs control u(t + 1) = û ∈ U with

resulting observation y ∈ Y (which we recall may be

4055



at least partially controlled by Player 2). The resulting

cost for any true state x ∈ X would be

q̂x(t+ 1) = p⊕(y|x; û) + qx(t) = p⊕(y|x; û)⊗ qx(t).

In solving the optimization problem, we are concerned

only with the relative costs, and so we may normalize

so that the max-plus sum over x ∈ X is zero. Let

q(t + 1) denote the normalized cost, where we want⊕
x∈X qx(t+ 1) = 0. The normalized cost is

qx(t+ 1)= p⊕(y|x; û)⊗ qx(t)

−
{⊕

ζ∈X

[
p⊕(y|ζ; û)⊗ qζ(t)

]}
(24)

= p⊕(y|x; û)⊗ qx(t)⊘
{⊕

ζ∈X

[
p⊕(y|ζ; û)⊗ qζ(t)

]}
,

where ⊘ indicates max-plus division (standard-sense

subtraction). One sees that this is directly analogous

to Bayes rule in standard-algebra probability. We may

interpret each component of the resulting max-plus

probability at time r, qx(r), as the maximal (least

negative) relative cost to Player 2 for modification

of the observation process to yield observed sequence

{y(0), y(1), . . . y(r)} given true state x.

For simplicity, we assume that the sensing entities

can move from any sensing control to any other in

one time-step. Consequently, the state process for the

game is simply q(t). One may also easily include a

second controller for Player 2 which allows the assets to

change configuration, with an associated cost (analogous

to a Markov chain transition matrix), but we do not

include this here. The payoff will be the terminal value

of information, φ, above plus the deception costs.

One may use the method of Section II to solve this

problem. Although the dynamics of q do not quite fit the

general form given there, we nonetheless obtain a similar

IDDPP due to the max-plus expectation operation. Due

to space limitations, we do not include the details. Fur-

ther, one may use the result in Theorem 3.6 to generate

complexity attenuation algorithms. That is, pruning at

each step is optimal for complexity attenuation, and

the calculations required for the pruning reduce to a

quite small set of max-plus linear (in this case) function

evaluations.

The algorithms have been coded and tested on some

simple examples. A plot of a solution along a three-

dimensional sub-manifold of the max-plus probability

simplex appears in Figure 1. (Recall that the max-plus

probability simplex is different in shape than a standard-

algebra probability simplex; for obvious reasons, we

truncate the figure, extending only to −10 in each

component.) The value at each point is denoted by color.
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Fig. 1. Value on S⊕3 sub-manifold.
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