
 

 
Abstract — A robust control scheme for tracking of 

periodic signals, consisting of a finite number of sinusoids, by 
uncertain exponentially stable infinite dimensional linear 
systems is presented. The scheme consists in constructing a 
cascade interconnection of the stable linear system and a 
partitioning filter and augmenting this cascade system with a 
simple internal model based filter. The stable system model is 
presumed to be unknown, but its transfer function gain at the 
frequencies to be tracked is assumed to be known and non-
zero. A theorem guaranteeing the robust stability and 
performance of this scheme while tracking a sinusoidal 
reference is proved. The general theorem for tracking periodic 
signals is stated and can be established analogously. A 
discussion on quantitatively estimating the robustness of this 
scheme is presented. The efficacy of the scheme is 
demonstrated via simulation of an example. The simplicity of 
the proposed scheme, its quantitatively ascertainable 
robustness and a virtual lack of modeling requirements make it 
well suited for industrial applications. 

               
Index Terms—Internal model principle, well-posed linear 

system, regular linear system, exponential stability.  

I. INTRODUCTION 

NTERNAL model principle [1] enables tracking of periodic 
signals with zero steady state error by embedding the 

generator of the signal into the closed-loop system. This 
approach has been used in [2]-[6] for linear finite 
dimensional plants. In these works the plant model is 
assumed to be known. This paper addresses the tracking of 
periodic signals consisting of a finite number of sinusoids 
assuming no knowledge of the plant, other than that it is an 
exponentially stable regular linear system and its transfer 
function (TF) gain at the frequencies to be tracked, readily 
found by experiments, is known and non-zero. Davison [7-
9] provides a solution methodology for a similar problem in 
case of stable finite dimensional plants. This methodology 
has been extended to exponentially stable regular linear 
systems (a large subset of well-posed linear system) in [10] 
(only for step reference), to the class of stable plants with 
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transfer function in Callier-Desoer algebra in [11] and to 
exponentially stable well-posed linear systems in [12]. 

The solution technique proposed in the present paper 
consists in introducing a novel topology obtained by 
cascading the given stable, infinite-dimensional in general, 
system P with a stable finite dimensional partitioning filter 
Q, adding positive and negative feedback paths that cancel 
one another (Fig. 1), and forming an extended loop through 
a path containing an internal model based filter F. The 
resulting system (Fig. 3) is further referred to as the 
augmented system, while the system in Fig. 1 is referred to 
as the unaugmented system. The stability of the augmented 
system and asymptotic tracking of a periodic reference are 
guaranteed by choosing Q and F appropriately. 

The solution technique in this work differs fundamentally 
from those in [7-12] in the topology of the internal model 
introduction. In the present work, a loop augmentation by an 
internal model based filter is structured so that the difference 
between the steady state responses of the augmented and 
unaugmented systems near frequencies to be tracked 
becomes quantifiable, and away from these frequencies 
becomes minimal. This enables guaranteeing stability and 
performance robustness of the augmented system to 
quantifiable variations in plant TF gains near the frequencies 
to be tracked, and to large variations away from these 
frequencies, assuming stability of P. Estimates for the 
quantifiable variations are obtained in Section V. Such 
estimates of practical value are not provided in [7-12].  
Furthermore, the gain based proof technique in the present 
work renders the effect of the small controller parameter (to 
be selected in all approaches) transparent, making it intuitive 
to tune. 

This work is motivated by a longstanding motion 
distortion problem in steel casting mold oscillation systems. 
The problem is recreated on an industrial scale physical 
testbed - a servo consisting of a beam with an electro-
hydraulic actuator attached at one end and a mass at the 
other. This servo can be modeled as a system of coupled 
nonlinear ordinary and linear partial differential equations 
whose input-output behavior resembles that of a nonlinearly 
perturbed stable linear system. Simulations and experiments 
indicate that the control technique in this paper, although 
developed for linear systems, attains rejection of sinusoidal 
disturbance in the servo model. Details of this motivating 
example and the results of controller implementation on the 
testbed can be found in [13] wherein the plant is assumed to 
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be modeled by a nonlinearly perturbed stable linear finite 
dimensional system.  
 The organization of this paper is as follows. Section II 
contains a list of notations. Section III presents the problem 
setting and contains the problem statement. The control 
schemes addressing the problem statement are presented in 
Section IV, while Section V presents the estimates for the 
robustness of these schemes. Section VI demonstrates the 
performance of the control schemes on an example. This is 
followed by a brief conclusion. 

II. NOTATION 

 ,X YL  - Space of bounded linear operators from X  to 

Y . Let    ,X X XL L . 

  2 0, ,L X  - Space of square integrable functions from          

 0,  to X . 

  2 0, ,locL X  - Space of locally square integrable functions 

from  0,  to X . 

 D A  /  A  - Domain / resolvent set of an operator A . 

X
  - Norm in space X . 

/   - Space of real/complex numbers. 

 -   : reals s  �   and 
 -   : reals s  � .  

H
  - Space of analytic functions from    to   bounded 

in the supremum norm. Let 0H H  . 

x  - Complex conjugate of x . 

  2 0, ,L X   -      22 2

0

0, , : t
loc X

f L X f t e dt


      
  

� . 

III. PROBLEM FORMULATION 

This work proposes a control scheme to ensure tracking 
of periodic signals, containing a finite number of sinusoids, 
by uncertain exponentially stable infinite-dimensional 
systems belonging to the class of regular linear systems 
(RLS). The following definitions and background on RLS 
can be found in [14, 15] and references therein, but are 
reproduced here to enhance the clarity of presentation. 

A well-posed linear system is a linear time-invariant 
system such that on any finite time interval the operator 
from the initial state and the input function to the final state 
and the output function is bounded. A detailed definition can 
be found in [15]. The input, state, and output spaces 
considered are Hilbert spaces and the input and output 

functions are of class 2
locL . 

Consider a well-posed linear system   with input space 
U , state space X , and output space Y . Associated with 

every such   is a 0C -semigroup  T   on X  which 

describes the evolution of the state of   with zero input 
function, a control operator  1,B U XL  and a 

observation operator  1,C X YL . Let A  be the generator 

of  T  . The Hilbert spaces 1X  and 1X are defined as 

follows: 1X  is  D A  with the norm  
1X X

x I A x  , 

where  A   is fixed and 1X  is the completion of X  

with respect to the norm  
1

1

X X
x I A x



  . The 

semigroup T  can be extended to a semigroup on 1X  

which is isomorphic to T  and will be denoted by the same 
symbol. Using the above notation, the state of   at time 

0   is expressed as  

         
0

0x T x T s Bu s ds


     , 

where  0x  is the initial state,   2 0, ,locu L U   is the 

input function and  x X  , 0  . Also with 0u   and 

  10x X , the output of   for all 0t  is given by 

     0y t CT t x . 

The  -extension of C  is defined by 

  1
0 0limC x C I A x


  




   

with   real and for all 0x  in the domain  

   0 : the limit above existsD C x X   . 

The input-to-output operator of any well-posed linear 
system can be described by a TF which is an operator valued 
analytic function defined on some right half complex plane 
and bounded on some right half complex plane. Let G 
denote the TF of  . G is called regular if the following limit 
exists v U  , 

 lim ,   realDv G v


 


 . 

Then  ,D U YL  is called the feedthrough operator of G. 

If G is regular,   is called RLS. If   is regular, then 

                           1
G s C sI A B D


                        (1) 

for every s  with real part of s  sufficiently large. 
 , , ,A B C D  as discussed above are referred to as the 

generating operators (GOs) of  . A RLS   is called 
exponentially stable if the associated 0C -semigroup  T   

satisfies    X
T Me 

L
 for all 0  , for some 1M   

and 0  . In this case A is called exponentially stable and 

   , the TF for   belongs to H
 , and is given by (1). 

Consider the RLS P, with GOs  , , ,P P P PA B C D  with PA  

being exponentially stable and let U Y   . Let the TF for 

P,  PG s , satisfy     P PG j G j      . Henceforth, 

in this paper, the linear system P refers to the RLS described 
above satisfying all the assumptions. 
Problem statement: given the linear system P, design a 
controller to ensure that the output py  of P tracks a 
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reference signal r consisting of a finite number of sinusoids, 
such that    py t r t    2 0, ,L    for some 0  . 

A solution to this tracking problem is equally applicable 
to rejecting similar periodic disturbances. This paper, 
considers single-input/single-output (SISO) plants. 
Extension to multi-input/multi-output (MIMO) plants, where 
for each output an input to be tracked is identified, can be 
accomplished by choosing an appropriate set of internal 
model based filters on the basis of the principles expounded 
in the SISO case. As in [10, 12], due to the generality of the 
class of linear systems considered, obtaining 

   lim 0p
t

y t r t


   is unrealistic. 

IV. CONTROLLER DESIGN AND ANALYSIS 

This section presents controllers that address the problem 
statement in Section III. Lemma 1 considers an 
interconnection, referred to as the unaugmented system, of 
the given linear system P with a stable partitioning filter. 
The stability of the augmented system, obtained via 
augmenting the unaugmented system with a simple internal 
model based filter, and the implied tracking of a sinusoidal 
reference under appropriate choice of the filters are 
established in Theorem 1. Theorem 2, which extends this 
result to the tracking of arbitrary periodic signal with a finite 
number of sinusoids, is stated without proof. 

 

 
 

Fig. 1 Unaugmented system obtained via interconnection of P, Q  

 
Lemma 1: Consider an interconnection of the given RLS P 
and Q shown in Fig. 1, referred to as the unaugmented 
system, where Q is the stable finite dimensional SISO linear 
system 

Q Q Q Q

Q Q Q Q

x A x B u

y C x D u

 

 


. 

Let  PG s  and  QG s  be the TFs of P and Q, respectively. 

Let r1-Q+q be the input and yP and m be the outputs of 
interest where the signal r1-Q is defined as the output of the 
stable system 1-Q with input r and zero initial conditions. 
Then the unaugmented system is an exponentially stable RLS 
and the Laplace transforms for yP and m are given by 

 
        
             

1

1

ˆ ˆ ˆ ,

ˆ ˆ ˆ1

Q
P P

Q
P Q P

y s G s q s r s

m s G s G s G s q s r s





 

   
      (2) 

which are valid s   ( for some   ) on which the r.h.s 

are well defined. Hence, the input-output representation of 
the unaugmented system is as shown in Fig. 2. 
Proof: Although the unaugmented system consists of 
positive and negative feedback loops, these cancel one 
another. Therefore the unaugmented system is simply a 
cascade interconnection of two exponentially stable RLS, P 
and Q, and hence is an exponentially stable RLS with TFs 
from r1-Q+q to yP and yQ being   PG s  and    Q PG s G s , 

respectively [14]. Since           1 Q
P Qm t q t r t y t y t     

(2) follows.                                                                            

 
 

Fig. 2 Input-output representation of the unaugmented system 

 

 
 

Fig. 3 Augmented system 

 
   Let  , , ,UA UA UA UAA B C D  be the GOs of the unaugmented 

system with input r1-Q+q and outputs yP and m, and let 
       1UAm P Q PG s G s G s G s   . The following theorem 

presents the controller design to ensure the tracking of a 
single sinusoid.  
Theorem 1: Consider the unaugmented system shown in Fig. 
1 where P, Q and r1-Q are as in Lemma 1. Let Q be chosen 
such that  

                              1 1P Q PG j G j G j                 (3) 

where   is the frequency of r, the reference sinusoid to be 
tracked. Next consider the system shown in Fig. 3, referred 
to as the augmented system. Let F be the linear stable SISO 
system with TF  

                        
2

2 2

2

2F

s
G s

ss s

 
 




 
                  (4) 

where 0 1   is a parameter to be chosen. Then, 

*   , with *  sufficiently small, the augmented system 

is an exponentially stable RLS and Py  tracks r 

asymptotically, i.e.        2 0, ,py t r t L     with 0  . 

Remark 1:  FG s  is a stable TF  whose frequency response 

at   has gain one and phase lag zero. In Fig. 3 it forms a 
positive feedback loop to generate poles at j . 

+ yPr1-Q

+

 
     1

P

P Q P

G s

G s G s G s

 
   

 

q
m 

r1-Q 

+ + - 
yQ 

m q + + 

- 

- 

yP 
P 

Q 
+

+ 
q

-

r1-Q +

yQ 

- 

yP 

m

+ 

- 

P 

Q 

+

F 

+
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Proof: From Lemma 1, the augmented system in Fig. 3 is 
equivalent to the feedback interconnection of two 
exponentially stable RLS, the unaugmented system and 
[0, ] F , as shown in Fig. 4. For this feedback system to be 

well posed,    1 0  
T

F P UAmG G G  =  1 UAm FG G s  must 

have a bounded inverse on   for some  . Since the 

feedthrough operator DF for [0, ] F  is [0, 0], 1-DFDUA =1, 

which is invertible. Moreover, since ,  ,  P UAm FG G G H  , if 

  1
1 UAm FG G H

   , then the augmented system is an 

exponentially stable RLS [14].  
From Lemma 1, AUA is exponentially stable and hence 

GUAm 
1

H
  for some 1 0   with  

1

sup UAm
s

G s M


  


. 

Note that all the TFs considered are continuous on the 
imaginary axis. By (3), ,  0    and the set 

   , ,I                 such that I  , 

  1UAmG j   . There exists *  sufficiently small such 

that *   ,   21 1 1FG j      ,  � and 

   21FG j M   , I  � . For any such  , it 

follows that   21UAm FG G j   ,  �. As s   with 

0s  ,    0UAm FG G s   uniformly. Since  UAm FG G s  is 

analytic on 0
 , by the maximum modulus principle [16], 

  21UAm FG G s    and consequently   21 UAm FG G s    

0s   . This implies that   1
1 UAm FG G H

   . Therefore 

the augmented system is an exponentially stable RLS. Hence 

the TFs from r1-Q to yP and m,   1
1p P UAm FH G G G

   and 

  1
 1m UAm UAm FH G G G

  , respectively, belong to 
2

H
  for 

some 2 0  .  

Assume all initial conditions are zero. Let  0 sinr A t . 

Then    2 2
0r̂ s A s    and        1ˆ ˆ1Q

Qr s G s r s   . 

For the error      0 pe t y t r t  , 

                1
0ˆ ˆ ˆ ˆ1 1 1P P Q UAm Fe s y s r s G G G G r

       

                     11 2 2
0 1 1F UAm UAm FA G G G G s 

    . 

Now,   1FG s   can be written as     2 2 1RG s s s   

where  RG s  is a rational, stable, proper TF corresponding 

to an exponentially stable RLS R. Hence 

            1 1
0 0ˆ 1 1R UAm UAm Fe s A G G G G s      

                     1
0= 0  H 1

T
R P mA G H s  . 

Considering  0e t  to be the response of the cascade 

interconnection of the two exponentially stable RLS, the 
augmented system and  00 A R , to the input te , 

    0 1
0, ,e t L

    for some 1 0   [15]. Now let  z t  be 

the contribution of all the initial conditions to yP. Then the 
total error      0e t e t z t  . Since the augmented system is 

an exponentially stable RLS     
2

0, ,z t L
    for some 

2 0  [15]. Hence the error     0, ,e t L
    for some 

0  .                                                                                     

 
 

Fig. 4 Input-output representation of the augmented system  

 
Theorem 2 addresses the tracking of periodic signals with 
finite number of sinusoids. 
Theorem 2: Let P, unaugmented system, augmented system 
and r1-Q be as in Theorem 1 and let Q be a stable finite 
dimensional SISO system satisfying  

     1 1P i Q i P iG j G j G j      1...i n  , 

where i  are the frequencies of the sinusoids in r, the 

reference signal to be tracked. Let F be a linear stable 
system with TF  FG s  satisfying the following: 

i) 1-  FG s  has zeros at ij , 1...i n  , 

ii) ( ) 1FG j   ,    with 0   and ( )FG j  decays in 

the intervals  1 1,i i        such that for 

 1 1,i i         , 2( )FG j  1... .i n   

Then, for all sufficiently small values of   and 1,2 , the 

augmented system is an exponentially stable RLS and Py  

tracks r asymptotically, i.e.     2 0, ,e t L    for some 

0  . Here  ,x y      stands for 

 ,x y      ,x y      . 

Proof: The proof of Theorem 2 is analogous to that of 
Theorem 1 and is hence omitted. A filter  FG s  satisfying 

the conditions in Theorem 2 can be obtained by considering 
sums of filters of the type (4) with some modifications. The 
example in Section VI shows one such filter when n=2.   
    In Theorem 1, the parameter   localizes the effect of the 

filter F near the frequency to be tracked and can be chosen 
by tuning near zero, since for all sufficiently small values of 
  stability is guaranteed. While applying Theorem 2, F can 

be similarly parameterized and the parameter can be tuned to 
reduce   and 1,2 , thereby localizing F and guaranteeing 

stability.  

+r1-Q

+

 
 

P

UAm

G s

G s

 
 
 

 

q

 0  FG s    

Py

m

 
 
 
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V. ROBUSTNESS ESTIMATES  

The controller design of Section IV addresses tracking of 
periodic references by stable plants with minimal plant 
information. For controller implementation on a physical 
system, it is of interest to understand the controller 
robustness properties. Robustness estimate of the controller 
designed in Theorem 1 is presented below. Estimates for the 
design in Theorem 2 can be obtained similarly.  

In the following analysis, it is assumed that the perturbed 
plant PD = P+D, where the perturbation, D, is an 
exponentially stable RLS. Let the TF of PD be 

D P PP
G G   . Assume that    P Pj j        . The 

robustness properties of the controller depend on the choice 
of the filters Q. For this analysis let Q be chosen so as to 
obtain  

                           1 0P Q PG j G j G j                    (5) 

where   is the frequency of the sinusoid to be tracked. 
From the proof of Theorem 1, stability of the augmented 

system is guaranteed if     1UAm FG j G j   ,   , 

which in turn guarantees asymptotic tracking. This is 
achieved using (3) and appropriately choosing 0 1   in 
(4). For the perturbed plant, stability of augmented system 
and asymptotic tracking are guaranteed if   , 

 
   

        
1

1
P P

F
Q P P

G j j
G j

G j G j j

 


  

    
  
    

. (6) 

From (4),   away from  , i.e.  ,          for 

some small   (proportional to  ),  FG j  is small (again 

proportional to  ) and therefore large perturbation  P j  

at these values of    will not invalidate the inequality (6) 
and hence will not cause instability.  

For    (or  ),  FG j =1 and hence for stability 

           1 1P P Q P PG j j G j G j j           . 

From (5), this is equivalent to     1P Pj G j   . Note 

that this inequality is optimal in the sense that when 

   P Pj G j    ,     1P Pj G j    and   0DP
G j  . 

In this case asymptotic tracking of sinusoid at frequency   
can not be guaranteed by any internal model based feedback 
technique since DP

G  may have multiple zeros at j . Let 

J  be the interval  ,     . Note that, since   is 

proportional to 1  , it is reasonable to assume that on J , 

 QG j  and  PG j  do not vary significantly while 

 FG j  reduces rapidly, by design. Hence from (5), for 1  

small and 2 1  ,        11 P Q PG j G j G j       and 

     21 1Q QG j G j     , J  . In this case it can be 

shown that if      1 21 1P Pj G j       , the inequality 

(6) is not violated and hence the perturbation does not cause 

instability of the augmented system. The above argument 
can be repeated on the interval  ,       . 

 Hence estimates for the admissible magnitude of  P j  

   can be computed. For   away from  ,  P j  

can be large and for   near  ,  P j  must be less than 

 PG j . In practice,  DP
G j  can be monitored to 

recognize scenarios in which stability is at risk.   

VI. EXAMPLE 

In this section the controller of Theorem 2 is applied to an 
exponentially stable RLS to track two different sinusoids. 
Robustness of this controller is estimated based on the 
discussion in Section V. Let the TF representation of the 
RLS be 

 
0.5

1

s
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e

G s
s






. (7) 

Let                     
   

0.2sin 2sin 10 , 0 10

0.4sin 4sin 10 , 10

t t t
r t

t t t

      
 

be the reference to be tracked. The jump in r is induced to 
observe the transient behavior of the augmented loop. The 
TFs  
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s s s s
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2 2
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s ss s s s

 
 

    
 

satisfy the assumptions in Theorem 2. For 1 1  , 2 10   

                    1 0, 1,2P i Q i P iG j G j G j i            (8) 

and FG  satisfies    10 1F FG j G j   and decays to a 

sufficiently lower value fast enough to guarantee stability of 
augmented system (Fig. 3). The output and the tracking 
error obtained by applying the controller of Theorem 2 to 
plant (7) are shown in Fig. 5. As seen, the controller ensures 
asymptotic tracking of r by the plant output and guarantees 
good transient response.  
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Fig. 5 Output of the plant (8) and tracking error using Theorem 2  

 
Since (8) holds, estimates for robustness of the controller 

can be obtained on the basis of the discussion in Section V. 
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It can be shown that, if  s  is an exponentially stable RLS 

satisfying     0.7071,Pj G j       10 10 0.0995Pj G j     

then the augmented loop in Fig. 3 for the  perturbed plant 
     D PP

G s G s s    is stable and asymptotic tracking of r 

is guaranteed under some reasonable assumptions on the 
behavior of the TFs (details in Section V). This implies that 
if delay in the system (7) changes by less than 0.1047, 
stability and asymptotic tracking will be preserved. This has 
been observed in simulations. 

VII. CONCLUSION 

A control scheme is developed for tracking periodic 
signals containing a finite number of sinusoids by 
exponentially stable regular linear systems (RLS). The 
scheme involves augmenting a cascade RLS and a 
partitioning filter interconnection by an internal model based 
filter and requires knowledge of the RLS TF gains only at 
the frequencies of interest. This scheme permits obtaining 
quantitative robustness estimates of practical value. Future 
work involves optimizing the partitioning choices and the 
internal model based filter.  

An equivalent model for the motivating example from 
steel casting would consist of a linear infinite dimensional 
beam system coupled to linearized actuator equations, 
constituting the linear part, with some nonlinear perturbation 
applied to the linearized actuator equations. To be rigorously 
applicable to this case, Theorem 1 must be extended to 
encompass the nonlinearly perturbed RLS and the linear part 
of the servo must be shown to be an RLS. This extension 
will be addressed in the future. 
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