
  

  

Abstract—A state of charge estimation method for lithium-

ion batteries is presented. First, the problem is formulated, and 

existing literature is reviewed. Then an equivalent circuit is 

used to model the battery, and an indirect nonlinear adaptive 

observer approach is developed to estimate the state of charge. 

Parameter identification and state estimation scheme are 

discussed. Simulation result based on real-world battery test 

data is shown to support the validity of the proposed method. 

Issues related to production code implementation are also 

addressed. 

I. INTRODUCTION  

OR hybrid vehicle technology, one of the key enablers is 

the energy storage system (ESS). While other types of 

hybrid vehicles are being developed, the majority of hybrid 

vehicles are so-called hybrid-electric vehicles, or HEV, 

which use batteries as ESS. The types of batteries in use 

include lithium-ion, NiMH, and lead-acid. Currently an 

increasing number of manufacturers are competing toward 

developing lithium-ion batteries for HEV, PHEV (plug-in 

HEV), and BEV (battery electric vehicle) applications due to 

the facts that lithium-ion batteries have higher power and 

energy densities, higher operating voltages, lower self-

discharge rate, and longer cycle life.  

 

Lithium-ion batteries have limitations: they cannot be 

over-charged or over-discharged; otherwise there may be 

permanent damages to the cells, even fire hazard. Lithium-

ion cells within a battery pack have to be "balanced" using 

advanced methods such as cell balancing. Some useful 

techniques for NiMH cell balancing, for example 

overcharging the battery, can not be used here. In order to 

use lithium-ion battery for automotive propulsion purpose, 

these limitations have to be overcome. 

 

Some fundamental control problems for lithium-ion 

batteries used for PHEV/BEV include:  

• State of Charge (SOC) estimation;  

• Power capability estimation;  
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• Health monitoring; 

• Cell balancing 

 

All these control problems are being dealt with in 

engineering practice by numerous OEMs and suppliers. Still, 

much work needs to be done in order to provide more 

accurate estimation of various battery control related 

variables in order to improve vehicle performance and fuel 

economy, to enhance system safety, to reduce system cost, 

and to improve battery life. One of the key issues to be 

discussed here is the SOC estimation. In this paper a model-

based approach is taken to address this problem for lithium-

ion batteries. 

A. Problem Statement 

SOC is defined as percentage of available charge as 

compared with max charge capacity. For a battery with 

capacity Q, charge/discharge efficiency η, input current I 

(charge current is considered negative), and sample period 

Ts, SOC can be calculated as below: 

 

SOC(k+1)=SOC(k)-Ts* Q

kI )(*η
 (1) 

 

A straightforward method of calculating SOC is to use 

ampere-hour integration (Equation (1)). Unfortunately, due 

to the nature of the method, the SOC as calculated in 

Equation (1) tends to drift from real SOC due to error in 

initial SOC value estimation, current sensor inaccuracy, error 

in charge efficiency estimation, and battery capacity change 

over its life span.  Hence, there are numerous model-based 

SOC estimation methods to overcome these shortcomings. 

Some of the related publications are reviewed below.  

B. Literature Review 

Chiasson et al [1] used an equivalent circuit model of a 

class of electrochemical batteries to perform SOC estimation 

via open circuit voltage (OCV) estimation. Dominico et al 

[2] used an averaged, first principle, electrochemical lithium-

ion battery model for SOC estimation using Extended 

Kalman Filter (EKF). Laig-Horstebrock et al [3] used a 

model consisting of a resistor in series with Warburg 

impedance. Mean voltage across the capacitors of the 

Warburg impedance is chosen as a measure of the SOC. Tate 

et al [4] used an EKF for SOC and hysteresis estimation, for 

NiMH battery with a generic nonlinear system model. Tate et 

al [5] used an equivalent circuit model consisting of a 

voltage source (OCV), a resistor, an RC network and another 
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voltage source (representing hysteresis related to charge and 

discharge activities). The EKF based estimator state consists 

of SOC, ohmic resistance, and double layer voltage. Plett [6] 

used a generic nonlinear system model as equivalent circuit 

model, and used EKF for state variable estimations with 

SOC as one of the states. Plett [7] further developed a 

Sigma-Point KF approach to combine parameter estimation 

and SOC estimation.  Verbrugge et al [8] used an equivalent 

circuit model consisting of a resistor, a RC network and an 

OCV, and used regression method, based on measurement 

history of terminal voltage, input current and temperature, to 

determine the resistor value and the SOC value. Similar work 

can also be found at Verbrugge et al [9] for battery SOC and 

battery state of health estimation. Ashizawa et al [10] used 

an equivalent circuit model and an adaptive filter to estimate 

the model parameters and then the OCV.  

C. Motivation of the Project 

Given that lithium-ion batteries exhibit vastly different 

characteristics compared with lead-acid and NiMH batteries, 

it is clear that most existing model-based SOC estimation 

methods may either be inappropriate, or too complicated in 

terms of CPU utilization and/or memory demand, for 

practical use. To this end, an indirect nonlinear adaptive 

observer approach is developed to estimate lithium-ion 

battery SOC. This approach is based on the understanding of 

the fundamental properties of the lithium-ion batteries, the 

requirement on the accuracy of SOC estimation, and the 

awareness of the limitations of microcontroller used to 

program such control algorithms in automotive engineering 

applications.  

D. Outline of the Paper 

This paper is organized as follows. In section II, some 

lithium-ion battery properties are discussed. In section III, 

the model to be used for SOC estimation purpose, as well as 

the overall architecture are provided. Identification method 

for parameters of the model is discussed. Then, the SOC 

estimation scheme, a nonlinear adaptive observer, is 

presented. In section IV, simulation results are presented to 

show the validity of the proposed method. In section V, 

implementation issues are addressed. Conclusion is provided 

in section VI. 

II. PROBLEM FORMULATION 

In this section the problems are formulated. Models 

associated with the SOC estimation problem are described.  

A. SOC Estimation: SOC  vs. Open Circuit Voltage 

Due to the nature and history of the electrochemical 

reactions within the battery, even when no load is attached 

the measurement of terminal voltage is often not the true 

OCV.  For a given family of batteries, the settling time 

varies. For the lithium-ion batteries studied in this paper, the 

time for the transient to settle is in the range of a few 

hundred seconds. 

 

A sample SOC-OCV curve at given temperature is shown 

below. 

 

 

Figure 1 Sample SOC-OCV Curve 

A key property of lithium-ion batteries is that OCV is a 

monotonically increasing, one-to-one function of SOC, and 

vice versa. The one-to-one mapping between OCV and SOC 

leads to simplification in the modelling and estimation for 

the related battery variables.  In other words, an estimation 

of SOC is equivalent to estimation of OCV and vice versa. 

 

Battery charge efficiency is considered a constant value 

throughout this study. It turns out that the proposed method 

is robust against this assumption. 

B. Plant Model and Related SOC Estimation Problem  

The lithium-ion battery cell is modelled as a nonlinear 

dynamic systems with inputs (current, and temperature), and 

output (cell voltage), and various states, including the OCV. 

The SOC estimation is based on a so-called indirect 

nonlinear adaptive observation scheme: The plant model 

parameters are first identified and the identified parameters 

are fed to the OCV estimator. The estimated OCV is fed 

back to the parameter identifier, as it depends on a known 

value of the OCV.  

III. RESULTS 

A. Model 

There are two main approaches to the modeling of 

lithium-ion batteries, the first principles model approach [2], 

and the equivalent circuit model approach [1]. While there 

are advantages in using first principles model for battery 

controls, due to limited capabilities of microcontrollers used 

in automotive control modules, an equivalent circuit model is 

used. This model consists of a voltage source, known as the 

open circuit voltage of the battery, in series connection with 

a resistor representing the electrolyte and contactor 

resistance, and a number of RC networks representing 

electrochemical kinetics and diffusion relaxation [11]. 

 

First, the following notations are used: 

 

Inputs I R∈  Battery current 

 T R∈  Battery temperature 
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Outputs V
+∈ R  Battery cell voltage 

   

Noise: ε Gaussian noise, zero mean, 

covariance matrix Rε 

 ω Gaussian noise, zero mean, 

covariance matrix Rω 

 ζ Gaussian noise, zero mean, 

covariance matrix Rζ 

   

States Xp
+∈ ,PR  Vector of model parameters 

 OCV
+∈ R  Open circuit voltage 

 Xv
)1( −∈ NR  Voltage of the capacitances 

in the RC networks 

 

P, N: integers 

 

The parameters associated with the battery cell model are 

considered slowly time-varying. As such, they can be 

modelled as follows: 

 

)()()1( kkXkX pp ε+=+  (2) 

 

 

The state-space equation of the overall battery cell is: 
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Remark 1: The assumptions about noises ε. ω, ζ are not 

essential for this study. 

 

Remark 2: For the lithium-ion battery studied in this 

paper, the nonlinear term f is rather mild. Indeed, the vector f 

in Equation (3) only has one nonlinear component, as it can 

be represented as: 
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Within Equation (4), only the input matrix entry for state 

variable OCV has a nonlinear term, the others are linear 

terms dependent on parameter vector )(kX p . 

 

Based on experimental data, the nonlinear term f1 can be 

described as a piecewise linear function: 
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(5) 

 

Where l1, l2, …, lM are constants, and OCV0, OCV1, …, 

OCVM are constant values between OCVmin and OCVmax, the 

minimum and maximum possible values of OCV. M is some 

integer value. 

 

From the above description, the SOC estimation problem 

is actually a state estimation problem for a class of piece-

wise linear systems. Another important factor to consider is 

that the constant values of l1, l2, …, lM, are not too far apart. 

In other words, the nonlinearity is rather mild. 

 

There are many existing results on constructing state 

estimators for this class of systems, for example, [5,6,9,12].  

The proposed approach is to use an indirect nonlinear 

adaptive observer to first obtain parameter estimation, and 

then construct an equivalent nonlinear observation scheme.  

B. Block Diagram 

The overall battery SOC estimation block diagram using 

discrete time domain variables is shown below: 

 

Figure 2 Block Diagram for SOC Estimation 

Here, v(k), i(k) and t(k) are the measurements of cell 

voltage, current and temperature (not used directly)  at the k-

th time instant. The "Identification Block" provides 

estimation of plant parameters. These parameters are fed into 

the OCV estimation block, where the OCV is estimated (and 

translated into SOC after the output phase). Due to the nature 

of the nonlinear function φ: OCV �  SOC, both OCV 

estimation and SOC estimation are interchangeably used in 

this study. 

 

The overall estimation task is allocated in four blocks: 

measurements, parameter identification, OCV estimation, 

and SOC estimation. The measurement block is 

straightforward, while the SOC estimation block is direct 

algebraic transformation. Below only the parameter 
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identification block and the OCV estimation block are 

described. 

C. Parameter Identification Block 

For the parameter identification block, the inputs are the 

current and temperature measurements (the temperature 

measurement is not directly used; rather, it is used for 

initialization purpose only), and the last estimated OCV 

value and other internal state variables; the output is the 

terminal voltage. The state set is the vector of unknown 

parameters.  

 

While there are many ways of identifying the parameters 

based on Equations (2) and (3), a nonlinear algebraic 

transformation g:
^

pp XX → , is used to make the system 

linear in terms of I/O mapping with regard to the transformed 

parameter vector ^

pX . Such a nonlinear algebraic 

transformation performed on the model parameter vector, 

can alleviate the difficulty of dealing with nonlinear terms in 

the parameter identification block directly using KFs[12]. 

The drawback of this approach is that the assumption about 

noise type and covariance may not be valid anymore. 

Further, as it shall be discussed later, identification based on 

Equation (6) may involve higher order derivatives of related 

signals, which may not be easy to obtain.  Consider the 

computational complexity of other methods (for example, 

EKF [5,12]), it is a trade-off well-worth taken. 

 

Based on the transformed parameter vector and Equations 

(2) (3), a generalized Input/Output relationship with regard 

to
^

pX can be established as follows: 

)(*)()(
^

kpXkkY TΦ=  (6) 

 

Where Y(k) is a vector consisting of terminal voltage, 

estimated open circuit voltage, and their derivatives, as well 

as combinations of these variables. )(kΦ  is a matrix with its 

elements made up from other state variables, input and their 

combinations. )(
^

kpX  is the transformed parameter vector to 

be identified. 

 

 Once the linear I/O map (6) is established, it is 

straightforward to use existing method and related software 

(for example, Matlab/Simulink) to perform the parameter 

identification task. The approach taken here is the well-

known KF parameter identification scheme [12, 13].  

D. OCV Estimation Block 

The inputs of the OCV estimation block are current and 

the parameters obtained in parameter identification block. 

The output of this block is the terminal voltage. The state 

variables are the OCV, and a number of internal states, 

which will not be used by vehicle system controller; rather, 

they are used by the parameter identification block. With the 

parameter vector represented by
^

pX , system (3) can be 

written as: 
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(7) 

 

A nonlinear observer (NLO) is constructed for OCV 

estimation purpose. The motivation is as follows. While it is 

true that KF is the optimal observer for linear time-invariant 

systems with Gaussian noise in both state and output 

measurements, the system in this study is neither linear nor 

necessarily having Gaussian type noise in the state and/or 

output measurements. Notice that SOC is a slow-varying 

variable itself, with proper filtering of measurement 

variables, it is possible to alleviate the impact of 

measurement noises without using more computationally 

demanding method such as EKF. Further, in order to use the 

EKF, deliberate calibrations have to be done. One more 

important point to make is that even with proper modelling 

of the nonlinear components in Equation (7), it is not clear 

whether the closed loop is stable. To this end, it is 

meaningful to investigate alternative approach. Starting from 

Equation (7), a Luenberger observer is constructed below. 

With knowledge from real world battery testing regarding 

the model parameters, it is possible to construct feedback 

gain K (see below) such that the closed loop system is stable 

under all operating conditions: 
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(8) 

 

K is an Nx1 real vector to be calibrated. When proper 

model is obtained and parameter identified, the calibration 

task is to ensure that system (8) is stable, which amounts to a 

pole-placement problem for systems (3)(4)(5)(7). The noise 

terms in Equation (7) are omitted in constructing Equation 

(8). 

 

While a stability result for observer has not been 

established yet, extensive simulation results have shown that 

with proper selection of gain matrix K, the observer 

(Equation (8)) converges nicely to target state values with 

reasonable convergence speed for numerous test profiles. 
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Remark 3: One advantage of the NLO (Equation (8)) is 

that it does not depend on assumptions about the noise types 

in measurements so the calibration effort needed will be 

much lighter. It will be very interesting to compare this 

method with KF type observer when other classes of 

measurement noises are introduced. 

 

Remark 4:  Another advantage of this approach is the 

modularity of the battery control software: the parameter 

identification block can be re-used for other battery control 

tasks such as battery power capability estimation and battery 

health management. 

 

Remark 5:  The proposed indirect nonlinear adaptive 

observer method is applicable for other types of batteries 

whose SOC and OCV relationship can be mapped similar to: 

φ: OCV �  SOC, where φ is one-to-one and monotonically 

increasing.  

 

IV. SIMULATION STUDY 

Extensive simulation studies have been carried out. Here 

one example is shown. A Ford internal driving cycle related 

test data from battery lab. is used to test the algorithms.  For 

the drive cycle, the OCV estimation from the NLO is 

obtained, and compared with OCV obtained by reverse 

lookup of φ: OCV �  SOC, where SOC is calculated based 

on ampere-hour integration method.  In order to have a better 

understanding on how this NLO approach works, an OCV 

estimation scheme using an EKF for system (7) is also 

constructed and tested for the same drive cycle. Test results 

are plotted, respectively, for comparison purpose. 

 

 

Figure 3: OCV Estimation for a Ford Drive Cycle  

In Fig. 3, the first subplot is the V-I curve, with current I 

being scaled; the second plot shows an OCV obtained by 

reverse lookup of φ: OCV �  SOC, where SOC is calculated 

based on ampere-hour integration method; the OCV 

estimation via NLO, and the OCV estimation via EKF. For 

both NLO and EKF, initial OCV values are biased from real 

values by 70 mV.  

From the plots in Figure 3, it is clear that for the Ford 

internal drive cycle data based test, the NLO based OCV 

estimation is comparable to the EKF based OCV estimation 

and follows closely with the ampere-hour integration based 

OCV value after certain transient period due to parameter 

learning process and biased initial values in the range of 70 

mV. Both methods show differences with ampere-hour 

integration method based OCV value, which may not be 

exact due to initial value bias and ampere-hour integration 

errors. The maximum difference between OCV from NLO 

estimation and that of the ampere-hour integration method at 

any give time point except for the initial transient response 

period for the entire drive cycle is about 18 mV, or about 3% 

SOC.   

V. IMPLEMENTATION ISSUES 

To implement the above methods into production battery 

control module, a number of issues have to be resolved.  

A. Signal Filtering and Synchronization 

The noises associated with current and voltage 

measurements in a vehicle operating environment are not 

necessarily Gaussian. The measurement noise issue is more 

profound since an indirect nonlinear adaptive observer 

approach is used, wherein parameters have to be identified 

utilizing numerical differentiation [15,16,17] of the 

measured variables. A number of filtering methods is 

investigated. One approach found to be very effective is the 

Savitzky-Golay filter [16]. A lower order SG filter is used 

for all measured signals, and appropriate synchronization 

step is taken to make sure the applied signals or their 

combinations are in synchronization with each other (i.e., 

signals used in Equations (6,8)).  

B. Initial Value Determination 

As it was already discussed, the initial SOC value can be 

obtained rather accurately after extended period of vehicle 

shutdown. The initial values for the related model parameters 

can be difficult to set, however, as most of them depend on 

ambient temperature, state of charge, and stage of life of the 

battery. A consequence of this is that the last estimated 

parameter values are normally not very useful for SOC 

estimation purpose at next vehicle start up, no matter how 

accurate they are. One way to provide reasonably accurate 

initial plant model parameters is to use battery life test data 

and open loop parameter identification technique to 

construct look-up tables for initialization purpose.    

C. Stability and Performance Monitoring 

Since the proposed approach to SOC estimation is 

essentially an indirect nonlinear adaptive observer, it has the 

inherent characteristics of all (nonlinear) adaptive control 

methods [14]. For automotive applications, the following 

questions are of particular interests: Is the closed-loop 

system stable? Is the performance acceptable? What to do if 

the answers are "no"? 
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To improve the robustness of proposed solution, a high-

level supervisor is added to monitor the stability and 

performance of the proposed method. Once it is determined 

that the performance and/or stability of the closed loop 

system is compromised, the system may reset on its own and 

proper control actions are taken so the vehicle does not need 

to be shut down. 

D. Processor Load and Capacity Consideration 

To implement the proposed algorithms in production 

battery control module, one has to consider the limitations of 

the related hardware in terms of processor load (CPU-

utilization ratio) and available RAM/ROM[18] [19]. The 

reason is that SOC is essentially cell level property. For a 

given battery pack with series connection configuration, one 

may have to deal with near 100 cells for lithium-ion battery 

used in PHEV/BEVs. If KFs are used for all these cells for 

parameter identification, the demand for computing power 

(CPU-utilization) as well as RAM/ROM usage will be 

tremendous. In automotive controls design, one has to take 

cost factor into consideration. To this end, some 

investigation has been done to make sure accurate SOC 

estimation is obtained while limitations of battery control 

module are dealt with properly.   

VI. CONCLUSIONS 

In this paper a model-based SOC estimation method is 

presented. The overall approach is an indirect nonlinear 

adaptive observer. KF is used in the parameter identification 

block, while an NLO is constructed for the state observation 

purposes. These algorithms are tested using real world 

battery test data. Simulation results show that OCV 

estimations are consistent with existing non-model based 

algorithms. Issues related to practical implementation of the 

proposed algorithms in real world battery controls hardware 

modules are also addressed.  

 

It would be very interesting to see how the OCV 

estimation compares on a point-to-point basis with true OCV 

if the latter can be experimentally determined. Also, both the 

parameter estimation block and OCV estimation block 

parameters have to be calibrated carefully so better 

performance can be obtained. The other interesting issue to 

be studied is the robustness of this method against charge 

efficiency map inaccuracy and battery capacity change. 

These topics will be investigated in the near future. 
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