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Abstract— In this paper, we discuss in time domain the con-
vergence of the iterative process for fractional-order nonlinear
systems. The PDα−type iterative learning updating laws are
considered. Most of the classical fractional-order cases for
linear or nonlinear systems fall into the scheme of this paper.
A number of numerical simulations are illustrated to validate
the concepts.
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I. INTRODUCTION

Iterative learning control (ILC), which belongs to the

intelligent control methodology, is an approach for improving

the transient performance of systems that operate repetitively

over a fixed time interval. In details, apply a fixed-length

input signal to a system. After the complete input has been

applied, the system is returned to the same initial state and

the output trajectory that resulted from the applied input

is compared with the desired reference. The error is used

to construct a new input signal of the same length that is

applied to the next iteration. The aim of the ILC algorithm

is to properly refine the input sequence from one trial to

the next trial so that as more and more trials are executed

the output will approach the desired trajectory [1], [2]. The

advantages of the ILC algorithm are shown in its applications

to the nonlinear systems and the systems with uncertainty or

unknown structure information, etc [1], [2], [3], [4], [5], [6].

For the theoretical works on the integer-order ILC schemes,

a number of papers by Professor E. Rogers are cited [7],

[8], [9], [10], [11]. Some other interesting conclusions and

surveys can be found in [12], [13], [14], [15], [16], [17].

Moreover, in the past three years, the applications of the ILC

technique to medical treatments and engineering are getting

more and more popular [5], [6], [10], [11]. Particularly,

some early papers regarding the applications of ILC to

physiotherapy include but not limit to [18], [19].

The definition of fractional calculus was proposed more

than 300 years ago. However, the applications of fractional

calculus was started at 1980′s, in which the representative
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work is its applications to viscoelastic materials [20], [21]. In

the past 30 years, the fractional calculus had been applied to

various domains, such as material, physics, mechanics, biol-

ogy, system and control, etc [22]. Particularly, the application

of fractional calculus in dynamic systems is a meaningful

and up to date work in modern science [22]. Moreover, the

heredity is the typical property of fractional order opera-

tors. And it describes the intermediate processes in physics

and mechanics [23]. Meanwhile, the fact that computation

becomes faster and memory becomes cheaper makes the

application of fractional calculus, in reality, possible and

affordable [24]. For example, in [25], the authors studied

the fractional calculus applications in control systems. In

[26], the author introduced the concept of fractional PID

controller. A fundamental idea of the fractional control

strategy was presented in [27].

The combination of ILC and fractional calculus was

first proposed in 2001. In the following ten years, many

fractional-order ILC problems were presented aiming at

enhancing the performance of ILC scheme for linear or

nonlinear systems [28], [29], [30], [31]. The authors in [32]

were the first to propose the Dα−type iterative learning

control algorithm and the convergence was proved in fre-

quency domain. The PDα−type iterative learning control

to LTI systems was investigated in [30]. The time domain

analysis of fractional-order ILC is shown in [29], [31]. In

recent years, the application of ILC to the fractional-order

system becomes a popular topic. The development of new

fractional-order ILC algorithms, which belongs to a branch

of fractional-order control [22], [33], [34], [35], [36], is

urgently needed.

In our earlier works [29], it was shown that the optimal

iterative learning controller for the αth−order linear system

is also a αth−order one as well. Many numerical simula-

tions are provided to validate this conclusion. Therefore,

motivated by the search for new iterative learning control

algorithms and applying iterative process to the tracking

problem of fractional-order nonlinear systems, in this paper,

the fractional-order ILC scheme is shown as

uk+1(t) = uk(t)+ Kp(t)ek(t)+ Kd(t)e
(α)
k (t),

and the fractional-order nonlinear system is

y(α)(t) = f (t,y(t),u(t)),

where all the variables and coefficients are defined in the

main text. The convergence condition is derived in time-

domain and most of the previous conclusions are special

cases of this one.
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The rest of this paper is organized as follows. Some

preliminaries are introduced in Section II. The PDα−type

iterative learning control and its applications to fractional-

order nonlinear systems are discussed in Section III, which

is the main theoretical part of this paper. In Section IV, a

number of numerical simulations are provided to validate the

theories. Conclusions and future works are shown in Section

V.

II. PRELIMINARIES

In this section, some basic definitions and properties are

introduced, which will be used in the following part of this

paper.

A. Laplace Transform

The Laplace transform of f (t) is defined as

f (s) = L { f (t)} =

∫ ∞

0
e−st f (t)dt,

where f (t) is piecewise continuous on every finite interval

in [0,∞) satisfying | f (t)| ≤ Meat for all t ∈ [0,∞), s > a ≥ 0

and sufficient large constant M > 0.

B. Convolution

The convolution to be used in this paper is defined as

f (t)∗ g(t) =

∫ t

0
f (t − τ)g(τ)dτ =

∫ t

0
f (τ)g(t − τ)dτ,

where f (t) and g(t) are integrable functions on [0,t].

C. Fractional Calculus

Fractional calculus plays an important role in modern

science [35], [36], [22]. In this paper, we use both Riemann-

Liouville and Caputo fractional operators as our main tools.

The unified formula of a fractional-order integral (Riemann-

Liouville fractional-order integral) with order α ∈ (0,1) is

defined as

RL
t0

D
−α
t f (t) =

1

Γ(α)

∫ t

t0

f (τ)

(t − τ)1−α
dτ, (1)

where f (t) is an arbitrary integrable function, t0D
−α
t is the

fractional integral of order α on [t0,t], and Γ(·) denotes the

Gamma function. Especially, when t0 = 0,

RL
0 D

−α
t f (t) =

tα−1

Γ(α)
∗ f (t) =

1

Γ(α)

∫ t

0

f (τ)

(t − τ)1−α
dτ. (2)

For an arbitrary real number p, the Riemann-Liouville and

Caputo fractional derivatives are defined respectively as

RL
t0

D
p
t f (t) =

d[p]+1

dt [p]+1
[ t0D

−([p]−p+1)
t f (t)] (3)

and

C
t0
D

p
t f (t) = t0D

−([p]−p+1)
t [

d[p]+1

dt [p]+1
f (t)], (4)

where [p] stands for the integer part of p, RLD and CD

are Riemann-Liouville and Caputo fractional derivatives,

respectively. It can be proved that, if f (0) = 0,

RL
0 D

−α
t

C
0 D

α
t f (t) = f (t). (5)

D. The λ−norm, maximum norm and induced norm

It is necessary to introduce the λ−norm in the ILC

problems. For a r-vector-valued function e(t) defined on

[0,T ], the λ−norm is defined as:

‖e(t)‖λ = sup
0≤t≤T

{e−λ t‖e(t)‖∞},

where ‖e(t)‖∞ = max
1≤i≤r

{|ei(t)|} denotes the maximum norm

of e(t). Moreover, the induced norm of a matrix A is defined

as:

‖A‖ = sup

{

‖Av‖

‖v‖
: v ∈V with ‖v‖ 6= 0

}

,

where ‖·‖ denotes an arbitrary vector norm. Especially when

‖ · ‖ = ‖ · ‖∞,

‖Av‖∞ ≤ ‖A‖∞‖v‖∞, (6)

where ‖A‖∞ denotes the maximum value of matrix A. Some

other useful results can be found in [37].

III. THE PDα−TYPE ILC SCHEME FOR

FRACTIONAL-ORDER NONLINEAR SYSTEMS

In this section, the PDα−type ILC scheme is applied to

the fractional-order nonlinear systems. A sufficient condition

is derived to guarantee the convergence of the discussed

algorithm. Some classical ILC cases fall into the scheme

of this fractional-order one.

A. The fractional-order nonlinear system and the PDα−type

ILC scheme

The fractional-order nonlinear system can be written as

y(α)(t) = f (t,y,u), (7)

where α ∈ (0,1), y(0) ∈ R
n×1,u ∈ R

m×1, · (α) denotes

the αth-order Caputo derivative with respect to t, and the

continuous differentiable function f satisfies
∥

∥

∥

∥

∂ f

∂y

∥

∥

∥

∥

∞

≤ c‖y‖∞, (8)

where c > 0 and ‖matrix‖∞ and ‖vector‖∞ denote respec-

tively the maximum norm of a matrix and a vector.

Remark 3.1: It follows from (8) and the uniqueness and

existence theorem of the fractional-order differential equa-

tions [35] that, for the fixed y(0) and u(t), there exists an

unique solution of system (7).

Moreover, it has been proved and verified in fractional-

order linear system case that the convergent speed is the

fastest when the system and iterative learning scheme have

the same order [29]. Besides, motivated by the previous

references on fractional-order ILC schemes [32], [30], [29],

[31], the fractional-order PDα−type ILC scheme to be used

in this paper is presented below.

Let the reference be yd(t), where yd(0) = y(0), and the

fractional-order ILC updating law be

uk+1(t) = uk(t)+ Kp(t)ek(t)+ Kd(t)e
(α)
k (t), (9)
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where α ∈ (0,1), Kp(t) and Kd(t) are gain functions, k =
0,1,2, · · · , t ∈ [0,T ], yk(0) = yd(0) = y(0),











y
(α)
k (t) = f (t,yk,uk),

y
(α)
d (t) = f (t,yd ,ud),

ek(t) = yd(t)− yk(t),

(10)

and ud(t) and yd(t) denote the desired control effort and

system output, respectively.

B. The convergence condition

In this subsection, we derive the convergence condition of

the PDα -type ILC scheme for the fractional-order nonlinear

systems which is the main theoretical part of this paper.

Based on the fractional-order nonlinear system (7) and the

fractional-order ILC updating law (9), the following lemmas

are introduced.

Lemma 3.1: For the fractional-order nonlinear system (7),

it follows from (10) that

fd − fk =

{

∂ fi

∂uk j

}

ξi j(t)

δuk(t)+

{

∂ fi

∂yl

}

ηil(t)

ek(t),

where f is a continuous differentiable function, fd =
f (t,yd ,ud), fk = f (t,yk,uk), δuk = ud − uk, and ξi j(t) and

ηil(t), where i, l ∈ {1,2, · · · ,n} and j ∈ {1,2, · · · ,m}, are

defined in the following proof.

Proof: Using (10) yields

fd − fk = f (t,yd ,ud)− f (t,yk,uk)

= f (t,yd ,ud)− f (t,yd ,uk)+ f (t,yd,uk)− f (t,yk,uk)

=

{

∂ fi

∂uk j

}

ξi j(t)

δuk(t)+

{

∂ fi

∂yl

}

ηil(t)

ek(t)

= kA(t)ek(t)+ kB(t)δuk(t),

where there exist functions ξi j(t) and ηil(t) satisfying

fi(t,yd ,ud)− fi(t,yd ,uk) =
m

∑
j=1

∂ fi

∂uk j

∣

∣

∣

∣

uk j=ξi j(t)

δu j(t),

fi(t,yd ,uk)− fi(t,yk,uk) =
n

∑
l=1

∂ fi

∂yl

∣

∣

∣

∣

yl=ηil(t)

δyl(t).

Lemma 3.2: For the fractional-order nonlinear systems

(10), suppose

∥

∥

∥

∂ f

∂u

∥

∥

∥

∞
≤ γ‖u‖∞ then there exists a sufficient

large λ satisfying

‖ek‖λ ≤ O(λ−1)‖δuk‖λ .

Proof: Applying 0D−α
t to both sides of equation (10), it

follows from yk(0)= yd(0), equations (2) and (5) and Lemma

3.1 that

‖ek‖λ = sup
0≤t≤T

{

e−λ t

∥

∥

∥

∥

tα−1

Γ(α)
∗ [ fd − fk]

∥

∥

∥

∥

∞

}

≤ sup
0≤t≤T

∫ t

0
e−λ t (t − τ)α−1

Γ(α)
‖ fd − fk‖∞dτ

≤ sup
0≤t≤T

∫ t

0
e−λ t (t − τ)α−1

Γ(α)
[c‖ek(τ)‖∞ + γ‖δuk(τ)‖∞]dτ

≤ sup
0≤t≤T

∫ t

0

e−λ (t−τ)(t − τ)α−1

Γ(α)
sup

0≤τ≤T

e−λ τ [c‖ek(τ)‖∞

+ γ‖δuk(τ)‖∞]dτ

≤[c‖ek‖λ + γ‖δuk‖λ ] · sup
0≤t≤T

∫ t

0
e−λ (t−τ)dτ

· sup
0≤t≤T

∫ t

0

(t − τ)α−1

Γ(α)
dτ

=
(1− e−λ T)T α

λ Γ(α + 1)
[c‖ek‖λ + γ‖δuk‖λ ].

It follows that ‖ek‖λ ≤ O(λ−1)‖δuk‖λ , where λ is large

enough that λ Γ(α + 1)− c(1− e−λ T)T α > 0, and

O(λ−1) =
γ(1− e−λ T)T α

λ Γ(α + 1)− c(1− e−λ T)T α
.

Lemma 3.3: For the fractional-order nonlinear system (7)

and the PDα−type ILC scheme (9) and (10), suppose δuk =

ud(t)−uk(t), (k = 0,1,2, · · ·) and

∥

∥

∥

∂ f

∂u

∥

∥

∥

∞
≤ γ‖u‖∞, we have

‖δuk+1‖∞ ≤ ρ‖δuk‖∞,

where ρ is defined in the following proof.

Proof: It follows from (6) and Lemma 3.1 that

‖δuk+1‖∞ = ‖ud −uk+1‖∞ = ‖ud −uk −Kp ek −Kd e
(α)
k ‖∞

=‖δuk −Kp ek −Kd [ fd − fk]‖∞

=‖[Im −Kd kB(t)]δuk − kA(t)ek‖∞

≤‖Im −Kd kB(t)‖∞ ‖δuk‖∞ +
∥

∥Kp − kA(t)
∥

∥

∞
‖ek‖∞

Applying the λ−norm to the above equation yields

‖δuk+1‖λ ≤ sup
0≤t≤T

‖δuk+1‖∞

≤ sup
0≤t≤T

{‖Im −Kd kB(t)‖∞ ‖δuk‖∞}

+ sup
0≤t≤T

{∥

∥Kp − kA(t)
∥

∥

∞
‖ek‖∞

}

=ρ‖δuk‖λ + µ‖ek‖λ , (11)

where

ρ = sup
0≤t≤T

‖Im −Kd kB(t)‖∞ ,

µ = sup
0≤t≤T

∥

∥Kp − kA(t)
∥

∥

∞
.

Using Lemma 3.2 and (11), we have

‖δuk+1‖λ ≤ (ρ + µO(λ−1)‖δuk‖λ

so that, let λ → ∞, ‖δuk+1‖∞ ≤ ρ‖δuk‖∞.
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Theorem 3.2: For the fractional-order nonlinear system

(7) with the PDα−type ILC scheme (9) and (10), where

t ∈ [0,T ], suppose f (t,y,u) satisfies (8), and
∥

∥

∥

∥

Im −Kd

∂ f

∂u

∥

∥

∥

∥

∞

< 1, (12)

we have lim
k→∞

yk(t) = yd(t), (t ∈ [0,T ]).

Proof: It follows from Lemma 3.3 and (8) that ‖δuk+1‖λ ≤
[ρ + µO(λ−1)]‖δuk‖λ . Using (12) yields ρ < 1, so that

there exists a sufficient large λ̃ satisfying ρ + µO(λ̃−1) < 1.

Therefore,

lim
k→∞

‖δuk‖λ̃ = lim
k→∞

‖ud −uk‖λ̃ = 0.

In other words, lim
k→∞

uk(t) = ud(t), where t ∈ [0,T ]. It then

follows from the uniqueness and existence theorem for

fractional-order differential equations [35] that lim
k→∞

yk(t) =

yd(t).
Remark 3.3: For the fractional/integer-order state space

system
{

x(α)(t) = A(t)x(t)+ B(t)u(t),

y(t) = C(t)x(t),

where α ∈ (0,1] and t ∈ [0,T ], with the PDα−type ILC

scheme (9), it follows from
∂ [C(t)B(t)u(t)]

∂u(t)
= C(t)B(t) that the

convergence condition is

‖I−Kd(t)C(t)B(t)‖∞ < 1,

which is equivalent to the convergence conditions in [1], [30],

[29].

Remark 3.4: For the fractional-order nonlinear affine sys-

tem

y(α)(t) = f (t,y(t))+ γu(t),

where α ∈ (0,1) and t ∈ [0,T ]. Using the PDα−type ILC

scheme (9), it follows from
∂ [γu(t)]

∂u(t)
= γ that the convergence

condition is

‖I− γKd(t)‖∞ < 1.

IV. SIMULATIONS

Suppose the fractional-order nonlinear system is

y(
9

10 )(t) = y
3
5 (t)+ u(t), (13)

and the PDα−type ILC updating law is

uk+1(t) = uk(t)+
1

2
ek(t)+

9

10
e
( 9

10 )
k (t). (14)

In this case, it can be easily seen that ρ = |1− 9/10| =
1/10 < 1. Therefore, yk(t) is tending to yd(t) as k→∞, where

t ∈ [0,T ]. Moreover, let the initial control input be u0(t) = 0

and the reference be yd(t) = 12t2(1− t) so that y(0) = 0 and

T = 1, the simulation results are shown in Figures 1 and 2. It

can be seen from these two figures that the tracking errors are

very small after the fifth iteration (‖yd(t)−y4(t)‖2 = 0.0454).
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y
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Fig. 1. The system outputs of (13) with ILC updating law (14), where
k = 0,1,2, · · · ,8 and the initial control input is u0(t) = 0, the reference is
yd(t) = 12t2(1− t) and T = 1.
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n
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e
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Fig. 2. For the fractional-order nonlinear system (13) and the ILC updating
law (14), the two norms of yd(t)−yk(t) for different iteration k are shown in
this figure, where k = 0,1,2, · · · ,8 and the reference is yd(t) = 12t2(1− t).

For the fractional-order system (13) and the fractional-

order iterative learning scheme (14), replace the reference

by the squarewave

r(t) =

{

−1, (t ∈ (0, 1
2
)),

1 (t ∈ [ 1
2
,1)),

the simulation results are shown in Figures 3 and 4. It can

be seen that there are some overshoots at the non-smooth

points t = {0, 1
2
,1}. However, the performance is still good

in other domain.

Moreover, suppose the fractional-order nonlinear system

is 1

y(
9
10)(t) = y

3
5 (t)+ u

8
9 (t), (15)

and the PDα−type ILC updating law is

uk+1(t) = uk(t)+ 5ek(t)+
9

10
e
( 9

10 )

k , (16)

where the 1
2

in (14) is replaced by 5. Let the initial control

input be u0(t) = 0 and the reference be yd(t) = 12t2(1− t) so

that y(0) = 0 and t ∈ [0,1], the simulation results are shown

in Figures 5 and 6. It can be seen from these two figures that

the tracking errors are increasing in the first three iterations.

However, it decreases to very small values for k≥ 8 (‖yd(t)−

1Compare (13) with (15), the only difference is that the u(t) is replaced

by u
8
9 (t).
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Fig. 3. The system outputs of (13) with ILC updating law (14), where
k = 3,4,5, · · · ,8 and the initial control input is u0(t) = 0, the reference is
yd(t) = r(t) and T = 1.
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Fig. 4. For the fractional-order nonlinear system (13) and the ILC updating
law (14), the two norms of yd(t)− yk(t) for different iteration k are shown
in this figure, where k = 3,4,5, · · · ,8 and the reference is yd (t) = r(t).

y8(t)‖2 = 0.1401). In other words, Kd influences the tracking

speed of the ILC scheme. But, if the convergence condition

is satisfied, Kd does not the change the fact of convergence.

Lastly, the use of λ−norm permits us to discuss the

perturbed cases. For the perturbed system

y(
9
10)(t) = y

3
5 (t)+ u

8
9 (t)+ n(t), (17)

with ILC strategy (14), where n(t) is a white noise and its

power spectral density and sample time are equal to 0.1,

the simulation results are shown in Figures 7 and 8, where

‖yd(t)− y4(t)‖2 = 0.0704. It can be seen that the tracking

process is working well for k ≥ 4. The reason of robustness

can be summarized as the fractional-order integral itself is a

kind of filter [28], which reduces the influence of n(t).

V. CONCLUSIONS AND FUTURE WORKS

For the fractional-order nonlinear systems, it was proved

that the PDα−type ILC scheme guarantees that

lim
k→∞

yk(t) = yd(t), for all t ∈ [0,T ],

where ‖ ∂ f

∂y
‖∞ ≤ c‖y‖∞ and ‖ ∂ f

∂u
‖∞ ≤ γ‖u‖∞ were required.

This was a sufficient condition to derive the uniqueness

and existence of the system equation and was an important

index for the convergence conditions. Most of the classical

fractional-order ILC schemes fell into the scheme of this

paper. It was shown in the Matlab/Simulink that the PDα
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Fig. 5. The system outputs of (15) with ILC updating law (16), where
k = 0,1,2, · · · ,8 and the initial control input is u0(t) = 0, the reference is
yd(t) = 12t2(1− t) and T = 1.

0 1 2 3 4 5 6 7 8
0

50

100

150

200

250

Iteration k

2
−

n
o

rm
 o

f 
e

k
(t

)

Fig. 6. For the fractional-order nonlinear system (15) and the ILC updating
law (16), the two norms of yd(t)− yk(t) for different iteration k are shown
in this figure, where k = 0,1,2, · · · ,8, the reference is yd(t) = 12t2(1− t)
and T = 1.

algorithm discussed in this paper can be applied to both

continuous and discontinuous references and perturbed sys-

tems. For the discontinuous one, although there were some

overshoots at the truncated points, the tracking performance

on other domains were still good. The tracking speed could

be improved by the terms of u(t) in the system equation and

the ILC scheme as well.

Our future works include the fractional-order and general-

ized fractional-order ILC schemes to the nonlinear systems

and their applications. Moreover, the fractional-order robust

and adaptive ILC schemes will also be included in our future

works.
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