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Abstract— This paper presents new results on delay-
dependent stability and stabilization for linear systems with
time-varying delays in a given range. With an appropriate
Lyapunov functional, some delay-dependent criteria for deter-
mining the stability of the time-delay systems are obtained. In
this paper, we propose a new state transformation technology
to facilitate controller designing efficiently. The method is also
applicable to the existing stability conditions reported by now,
while the existing technologies may fail to derive computational
control procedures from the stability conditions. Finally, some
numerical examples well illustrate the effectiveness of the
proposed method.

I. INTRODUCTION

During the last decade, there has been a growing inter-

est to analysis and synthesis of time-delay systems, which

widely exist in various engineering systems such as chemical

processes, neural networks and long transmission lines in

pneumatic systems [2], [3], [5], [10]. In the literatures,

Lyapunov-Razumikhin functional and Lyapunov-Krasovskii

functional are widely used approaches for time-delay systems

to obtain a delay-independent or a delay-dependent stability

condition [4]. Basically, delay-dependent conditions may

issue less conservative result than delay-independent ones

especially when the delay is small. Therefor, more attention

is paid on delay-dependent conditions. Currently, the results

of delay-dependent stability mainly focus on time-varying

delay with range zero to an upper bound. In practice, the

range of delay may vary in a range for which the lower

bound is not restricted to be zero [7]. For this reason,

the stability of the systems with such interval time-varying

delays has attracted considerable attention. For example, in

[6], a discretized Lyapunov functional approach is employed

to obtain stability criteria for linear uncertain systems with

interval time-varying delays. By using free-weighting matrix,

[7] presents some less conservative stability conditions. This

result is improved by [11] where a new Lyapunov functional

with fewer matrix variables is constructed and the convex

analysis method is applied. Recently, these results are further

extended in [12] by proposing a new type of augmented

Lyapunov functional containing some triple-integral terms.

Nevertheless there still exists some room for further improve-

ment, which is one of the motivation of this paper.

On the other hand, control problems for time-delay sys-

tems are important issues. In [14], an integral-inequality

method is proposed for the delay-dependent stabilization
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problem of linear systems with time-varying state and input

delays. For constant but unknown time-delay, by introducing

a state-transformation to discribe the delay-dependence dy-

namics, some control design schemes based on quadratic H2

performance, H∞ criteria and simultaneous H2/H∞ synthe-

sis are established in [9]. For a stabilizable and detectable

linear system with an arbitrarily large delay in the input chan-

nel, by explicit construction of stabilizing feedback laws, [8]

shows that the system can be asymptotically stabilized by

either linear state or output feedback as long as all the open-

loop poles are on the closed left-half plane. However, to the

best of the authors’ knowledge, few results are reported in the

existing literature on the control designing problem for linear

system with interval time-varying input delay. It is not easy

to apply the results in [6], [7], [11], [12] to obtain control

procedures because of the cross terms of matrix variables

[13] involved. This is the other motivation for the study of

this paper.

In the paper, we propose new results on delay-dependent

stability and stabilization for time-delay systems. Using a

new Lyapunov functional, some less conservative delay-

dependent stability conditions are derived for the linear sys-

tems with time-varying delay in a range. As pointed above,

the existing stability results may be difficultly to obtain

computational controller design procedure. For linear system

with time-varying input delay, by carefully selecting the

matrix variables, and choosing a nonsingular transformation

matrix T which transforms the state x of origin system to a

new auxiliary state x̄ = Tx, the cross terms coming from the

stability condition can be removed. Assisted by this technol-

ogy, a less conservative designing procedure is obtained from

the stability conditions. The technology is also applicable

to the existing stability conditions reported. Finally, some

numerical examples well demonstrate the effectiveness of

the proposed method.

Notation: Throughout the paper, Rn denotes the n dimen-

sional Euclidean space with vector norm ‖ · ‖, R
n×m is the

set of all n × m real matrices, I is the identity matrix with

appropriate dimensions, and the superscripts “−1” and “T ”

stand for the inverse and transpose of a matrix, respectively.

The notation X > 0 (respectively, X ≥ 0), for X ∈ R
n×n

means that the matrix X is symmetric and positive definite

(respectively, positive semi-definite).

II. PROBLEM FORMULATION

Consider the following time-delay systems

ẋ(t) = Ax(t) + Bu(t − d(t))
x(θ) = φ(θ), θ ∈ [−d2, 0]

(1)
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where x(t) ∈ R
n denotes the state vector, u(t) ∈ R

m

denotes the control input. A and B are constant real matrices

and the pair (A,B) is assumed to be stabilizable. φ(θ) is a

continuous vector-valued initial function on [−d2, 0]. d(t)
denotes the time-varying delay and satisfies

d1 ≤ d(t) ≤ d2, (2)

ḋ(t) ≤ µ, (3)

where 0 ≤ d1 < d2 and 0 ≤ µ are constants. The controller

takes following form

u(t) = Fx(t), (4)

where F is controller gain matrix with appropriate dimen-

sions. Substituting (4) into (1), we obtain the following

closed-loop system

ẋ(t) = Ax(t) + Adx(t − d(t))
x(θ) = φ(θ), θ ∈ [−d2, 0]

(5)

where Ad = BF . Then the problems considered in this paper

can be formulated as: (i) to set up a delay-dependent stability

for the time-delay system (5) with the given A and Ad; (ii)

to design state feedback controller (4) such that system (1)

asymptotically stable.

At the end of this section, we introduce the following

lemma which is useful in the derivation of our results.

Lemma 1[3] For any constant matrix W > 0, scalars

a < b and vector function ω(s) : [a, b] → R
n such that the

following integrations are well defined, then

(b − a)

∫ b

a

ωT (s)Wω(s)ds ≥

∫ b

a

ωT (s)dsW

∫ b

a

ω(s)ds;

(b − a)2

2

∫ b

a

∫ b

θ

ωT (s)Wω(s)dsdθ

≥

∫ b

a

∫ b

θ

ωT (s)dsdθW

∫ b

a

∫ b

θ

ω(s)dsdθ;

(b − a)2

2

∫ b

a

∫ θ

a

ωT (s)Wω(s)dsdθ

≥

∫ b

a

∫ θ

a

ωT (s)dsdθW

∫ b

a

∫ θ

a

ω(s)dsdθ.

III. STABILITY ANALYSIS

In this section, we consider asymptotic stability of time-

delay system (5). Using a new Lyapunov functional, some

delay-dependent stability criteria are obtained with the con-

sideration of range for the time-varying delay.

Theorem 1 For the given scalars 0 ≤ d1 < d2 and µ,

system (5) with d(t) satisfying (2) and (3) is asymptotically

stable if there exist matrices P = [Pij ]5×5 > 0, Q > 0,

Ri > 0, Si > 0, Zi > 0, i = 1, . . . , 4, and Yj , j = 1, 2, 3
with appropriate dimensions such that

Ξ0 = Γ0PΥT + ΥPΓT
0 + Ψ0

+Λ + YeAe + AT
e Y T

e < 0 (6)

Ξ1 = Γ1PΥT + ΥPΓT
1 + Ψ1

+Λ + YeAe + AT
e Y T

e < 0 (7)

where d12 = d2 − d1,

Γ0 =
[

e1 e4 e6 d1e8 d12e10

]

Γ1 =
[

e1 e4 e6 d1e8 d12e9

]

Υ =
[

e2 e5 e7 e1 − e4 e4 − e6

]

Ψ0 = −d2
12e10S1e

T
10 − (e4 − e3)(2S2 + Z1)(e

T
4 − eT

3 )

−(e3 − e6)S2(e
T
3 − eT

6 )

Ψ1 = −d2
12e9S1e

T
9 − (e4 − e3)S2(e

T
4 − eT

3 )

−(e3 − e6)(2S2 + Z2)(e
T
3 − eT

6 )

Λ = diag

{

R3 + d2
1S3, R4 + d2

1S4 +
d2
1

2
Z3 +

d2
1

2
Z4,

−(1 − µ)Q, Q + R1 − R3 + d2
12S1,

R2 − R4 + d2
12S2 +

d2
12

2
Z1 +

d2
12

2
Z2, −R1,

−R2, −d2
1S3, 0, 0

}

− (e1 − e4)S4(e
T
1 − eT

4 )

−2(e1 − e8)Z3(e
T
1 − eT

8 )

−2(e8 − e4)Z4(e
T
8 − eT

4 )

−2(e4 − e9)Z1(e
T
4 − eT

9 )

−2(e3 − e10)Z1(e
T
3 − eT

10)

−2(e9 − e3)Z2(e
T
9 − eT

3 )

−2(e10 − e6)Z2(e
T
10 − eT

6 )

Ye = e1Y1 + e2Y2 + e3Y3

Ae = AeT
1 − eT

2 + Ade
T
3

and ei ∈ R
10n×n, i = 1, . . . , 10 are block entry matrices,

for example, eT
3 = [0 0 I 0 0 0 0 0 0 0].

Proof: Construct a Lyapunov functional candidate as

V (t) =
3

∑

i=0

Vi(t)

where

V0(t) = ζT (t)Pζ(t)

V1(t) =

∫ t−d1

t−d(t)

xT (s)Qx(s)ds +

∫ t−d1

t−d2

xT (s)R1x(s)ds

+

∫ t−d1

t−d2

ẋT (s)R2ẋ(s)ds

+

∫ t

t−d1

xT (s)R3x(s)ds

+

∫ t

t−d1

ẋT (s)R4ẋ(s)ds

V2(t) = d12

∫

−d1

−d2

∫ t−d1

t+θ

xT (s)S1x(s)dsdθ

+d12

∫

−d1

−d2

∫ t−d1

t+θ

ẋT (s)S2ẋ(s)dsdθ

+d1

∫ 0

−d1

∫ t

t+θ

xT (s)S3x(s)dsdθ

+d1

∫ 0

−d1

∫ t

t+θ

ẋT (s)S4ẋ(s)dsdθ
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V3(t) =

∫

−d1

−d2

∫

−d1

η

∫ t−d1

t+θ

ẋT (s)Z1ẋ(s)dsdθdη

+

∫

−d1

−d2

∫ η

−d2

∫ t−d1

t+θ

ẋT (s)Z2ẋ(s)dsdθdη

+

∫ 0

−d1

∫ 0

η

∫ t

t+θ

ẋT (s)Z3ẋ(s)dsdθdη

+

∫ 0

−d1

∫ η

−d1

∫ t

t+θ

ẋT (s)Z4ẋ(s)dsdθdη

and ζ(t) = col
{

x(t), x(t − d1), x(t − d2),
∫ t

t−d1

x(s)ds ,
∫ t−d1

t−d2

x(s)ds
}

. Doing the time derivative of V (t) along the

trajectory of system (5), we have

V̇ (t) = 2ζT (t)P ζ̇(t) + xT (t)(R3 + d2
1S3)x(t)

+ẋT (t)(R4 + d2
1S4 +

d2
1

2
Z3 +

d2
1

2
Z4)ẋ

T (t)

−(1 − ḋ(t))xT (t − d(t))Qx(t − d(t))

+xT (t − d1)(Q + R1 − R3 + d2
12S1)x(t − d1)

+ẋT (t − d1)

(

R2 − R4 + d2
12S2 +

d2
12

2
Z1

+
d2
12

2
Z2

)

ẋ(t − d1) − xT (t − d2)R1x(t − d2)

−ẋT (t − d2)R2ẋ(t − d2)

−d12

∫ t−d1

t−d2

(xT (s)S1x(s) + ẋT (s)S2ẋ(s))ds

−d1

∫ t

t−d1

(xT (s)S3x(s)ds + ẋT (s)S4ẋ(s))ds

−

∫

−d1

−d2

∫ t−d1

t+θ

ẋT (s)Z1ẋ(s)dsdθ

−

∫

−d1

−d2

∫ t+θ

t−d2

ẋT (s)Z2ẋ(s)dsdθ

−

∫ 0

−d1

∫ t

t+θ

ẋT (s)Z3ẋ(s)dsdθ

−

∫ 0

−d1

∫ t+θ

t−d1

ẋT (s)Z4ẋ(s)dsdθ. (8)

Setting ξ(t) = col

{

x(t), ẋ(t), x(t−d(t)), x(t−d1), ẋ(t−d1),

x(t− d2), ẋ(t− d2),
1
d1

∫ t

t−d1

x(s)ds, 1
d(t)−d1

∫ t−d1

t−d(t)
x(s)ds,

1
d2−d(t)

∫ t−d(t)

t−d2

x(s)ds

}

and α = d(t)−d1

d12

, we have

ζT (t) = ξT (t)Γ(α), ζ̇T (t) = ξT (t)Υ,

where Γ(α) = [e1 e4 e6 d1e8 αd12e9 + (1 − α)d12e10].
According to the expression of system (5), we note that for

any matrices Yi, i = 1, 2, 3 with appropriate dimensions, the

following equality holds

2[xT (t)Y1 + ẋT (t)Y2 + xT (t − d(t))Y3]

×[Ax(t) − ẋ(t) + Adx(t − d(t))] = 0.

Furthermore, it is equivalent to

ξT (t)(YeAe + AT
e Y T

e )ξ(t) = 0. (9)

Using Lemma 1, one can obtain

d1

∫ t

t−d1

xT (s)S3x(s)ds ≥ d2
1ξ

T (t)e8S3e
T
8 ξ(t); (10)

d1

∫ t

t−d1

ẋT (s)S4ẋ(s)ds

≥ ξT (t)(e1 − e4)S4(e
T
1 − eT

4 )ξ(t); (11)
∫ 0

−d1

∫ t

t+θ
ẋT (s)Z3ẋ(s)dsdθ

≥ 2ξT (t)(e1 − e8)Z3(e
T
1 − eT

8 )ξ(t); (12)
∫ 0

−d1

∫ t+θ

t−d1

ẋT (s)Z4ẋ(s)dsdθ

≥ 2ξT (t)(e8 − e4)Z4(e
T
8 − eT

4 )ξ(t). (13)

Noticing that

d12

d(t)−d1

≥ d2−d(t)
d12

+ 1 = 2 − α,

d12

d2−d(t) ≥ d(t)−d1

d12

+ 1 = 1 + α,

we have

∫ t−d1

t−d2

xT (s)S1x(s)ds

=

∫ t−d1

t−d(t)

xT (s)S1x(s)ds +

∫ t−d(t)

t−d2

xT (s)S1x(s)ds

≥ αd12ξ
T (t)e9S1e

T
9 ξ(t)

+(1 − α)d12ξ
T (t)e10S1e

T
10ξ(t) (14)

and

d12

∫ t−d1

t−d2

ẋT (s)S2ẋ(s)ds

= d12

∫ t−d1

t−d(t)

ẋT (s)S2ẋ(s)ds

+d12

∫ t−d(t)

t−d2

ẋT (s)S2ẋ(s)ds

≥ (2 − α)ξT (t)(e4 − e3)S2(e
T
4 − eT

3 )ξ(t)

+(1 + α)ξT (t)(e3 − e6)S2(e
T
3 − eT

6 )ξ(t). (15)

Similarly,

∫

−d1

−d2

∫ t−d1

t+θ

ẋT (s)Z1ẋ(s)dsdθ

=

∫

−d1

−d(t)

∫ t−d1

t+θ

ẋT (s)Z1ẋ(s)dsdθ

+

∫

−d(t)

−d2

∫ t−d(t)

t+θ

ẋT (s)Z1ẋ(s)dsdθ

+(d2 − d(t))

∫ t−d1

t−d(t)

ẋT (s)Z1ẋ(s)ds

≥ 2ξT (t)(e4 − e9)Z1(e
T
4 − eT

9 )ξ(t)

+2ξT (t)(e3 − e10)Z1(e
T
3 − eT

10)ξ(t)

+(1 − α)ξT (t)(e4 − e3)Z1(e
T
4 − eT

3 )ξ(t) (16)
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and
∫

−d1

−d2

∫ t+θ

t−d2

ẋT (s)Z2ẋ(s)dsdθ

=

∫

−d1

−d(t)

∫ t+θ

t−d(t)

ẋT (s)Z2ẋ(s)dsdθ

+

∫

−d(t)

−d2

∫ t+θ

t−d2

ẋT (s)Z2ẋ(s)dsdθ

+(d(t) − d1)

∫ t−d(t)

t−d2

ẋT (s)Z2ẋ(s)ds

≥ 2ξT (t)(e9 − e3)Z2(e
T
9 − eT

3 )ξ(t)

+2ξT (t)(e10 − e6)Z2(e
T
10 − eT

6 )ξ(t)

+αξT (t)(e3 − e6)Z2(e
T
3 − eT

6 )ξ(t). (17)

Applying (3) and adding the left-hand side of (9) into the

right-hand side of (8), from (10)-(17) we obtain

V̇ (t) ≤ ξT (t)Ξ(α)ξ(t),

where Ξ(α) = (1−α)Ξ0+αΞ1. We note that Ξ(α) is convex

in α ∈ [0, 1], thus, it is negative definite only if its vertices

are, i.e. Ξ0 < 0 and Ξ1 < 0. One can see that if (6) and

(7) are satisfied, then V̇ (t) ≤ −ǫ‖x(t)‖2 for a sufficiently

small ǫ > 0, from which we conclude that system (5) is

asymptotically stable according to Lyapunov stability theory

[5]. This ends the proof.

When d1 = 0, Theorem 1 reduces to the following delay-

dependent stability criterion.

Corollary 1 Given scalars d2 > 0, d1 = 0 and µ, system

(5) with time-varying delay d(t) satisfying (2) and (3) is

asymptotically stable if there exist matrices P̃ = [P̃ij ]3×3 >
0, Q > 0, Ri > 0, Si > 0, Zi > 0, i = 1, 2, and Yj ,

j = 1, 2, 3 such that

Ξ̃0 = Γ̃0P̃ Υ̃T + Υ̃P̃ Γ̃T
0 + Ψ̃0

+Λ̃ + YẽAẽ + AT
ẽ Y T

ẽ < 0 (18)

Ξ̃1 = Γ̃1P̃ Υ̃T + Υ̃P̃ Γ̃T
1 + Ψ̃1

+Λ̃ + YẽAẽ + AT
ẽ Y T

ẽ < 0 (19)

where

Γ̃0 =
[

ẽ1 ẽ4 d2ẽ7

]

Γ̃1 =
[

ẽ1 ẽ4 d2ẽ6

]

Υ̃ =
[

ẽ2 ẽ5 ẽ1 − ẽ4

]

Ψ̃0 = −d2
2ẽ7S1ẽ

T
7 − (ẽ1 − ẽ3)(2S2 + Z1)(ẽ

T
1 − ẽT

3 )

−(ẽ3 − ẽ4)S2(ẽ
T
3 − ẽT

4 )

Ψ̃1 = −d2
2ẽ6S1ẽ

T
6 − (ẽ1 − ẽ3)S2(ẽ

T
1 − ẽT

3 )

−(ẽ3 − ẽ4)(2S2 + Z2)(ẽ
T
3 − ẽT

4 )

Λ̃ = diag

{

Q + R1 + d2
2S1, R2 +

d2
2

2
(2S2 + Z1 + Z2),

−(1 − µ)Q, −R1, −R2, 0, 0

}

−2(ẽ1 − ẽ6)Z1(ẽ
T
1 − ẽT

6 )

−2(ẽ3 − ẽ7)Z1(ẽ
T
3 − ẽT

7 )

−2(ẽ6 − ẽ3)Z2(ẽ
T
6 − ẽT

3 )

−2(ẽ7 − ẽ4)Z2(ẽ
T
7 − ẽT

4 )

Yẽ = ẽ1Y1 + ẽ2Y2 + ẽ3Y3

Aẽ = AẽT
1 − ẽT

2 + Adẽ
T
3

and ẽi ∈ R
7n×n, i = 1, . . . , 7 are block entry matrices, for

example, ẽT
3 = [0 0 I 0 0 0 0].

Remark 1 Theorem 1 and Corollary 1 give stability

criteria of system (5) with d(t) satisfying (2)-(3) for d1 ≥ 0
and d1 = 0, respectively. They can be applied to both slow

and fast time-varying delays only if µ is known. However,

the information of delay rate may not be known in many

cases, or d(t) even not be differentiable, then Theorem 1

and Corollary 1 fail to work. Regarding these circumstance,

rate-independent criterions for d(t) only satisfying (2) with

d1 ≥ 0 or d1 = 0 can be derived by choosing Q = 0 in

Theorem 1 or Corollary 1, respectively.

IV. MATRIX TRANSFORMATION FOR STABILIZATION

In this section, we present a computational procedure for

the gain matrix F of the controller (4) such that the system

(1) stable. Noticing Ad = BF in Theorem 1, the controller

gain F appear in the term YeAe and its symmetric one,

that is, the inequalities (6) and (7) involve nonlinear terms

YiBF in unknown matrix variables Yi, for i = 1, 2, 3, and

F , which makes the inequalities listed in Theorem 1 be not

computational for F .

For the sequel development, introduce a matrix transfor-

mation technique to present a computational procedure for

the gain F . Suppose that the rank of the matrix B is r, i.e.

rank(B) = r, satisfying 1 ≤ r ≤ m. Then there exists an

invertible transformation matrix T ∈ R
n×n satisfying

TB =
[

0 B̄T
0

]T
, (20)

where B̄0 ∈ R
r×m and rank(B̄0) = r.

With the help of such matrix T , introducing a new state

x̄(t), x̄(t) := Tx(t) for the closed-loop system (5), then (5)

is equivalent to

˙̄x(t) = Āx̄(t) + B̄F̄ x̄(t − d(t)),
x̄(θ) = φ̄(θ), θ ∈ [−d2, 0]

(21)

where Ā = TAT−1, B̄ = TB, F̄ = FT−1, φ̄(θ) = Tφ(θ).
Then we have the following computational result for F .

Theorem 2 For given scalars 0 ≤ d1 < d2 and 0 ≤ µ, if

there exist matrices P = [Pij ]5×5 > 0, Q > 0, Ri > 0, Si >

0, Zi > 0, i = 1, . . . , 4, and matrices F̂ =
[

0 F̂T
0

]T
with

F̂0 ∈ R
r×m, and Ŷj =

[

Ŷj,11 0

Ŷj,21 Ŷ0

]

with Ŷ0 ∈ R
r×r,

j = 1, 2, 3 such that the following LMIs hold:

Ω0 = Γ0PΥT + ΥPΓT
0 + Ψ0 + Λ + ŶeÂe + ÂT

e Ŷ T
e

+(e1 + e2 + e3)F̂ eT
3 + e3F̂

T (e1 + e2 + e3)
T < 0

(22)

Ω1 = Γ1PΥT + ΥPΓT
1 + Ψ1 + Λ + ŶeÂe + ÂT

e Ŷ T
e

+(e1 + e2 + e3)F̂ eT
3 + e3F̂

T (e1 + e2 + e3)
T < 0

(23)

4881



where Ŷe = e1Ŷ1 + e2Ŷ2 + e3Ŷ3 and Âe = ĀeT
1 − eT

2 , then

system (1) is asymptotically stabilized by controller (4) with

F = F̄ T, (24)

where F̄ is the matrix satisfying

B̄0F̄ = Ŷ −1
0 F̂0. (25)

Proof: Similar to the proof of Theorem 1, we choose

the same Lyapunov functional candidate with state x̄(t) for

system (21). Considering the system (21) and the definition

of Ŷi, we have

ŶiB̄F̄ =
[

0 (Ŷ0B̄0F̄ )T
]T

, i = 1, 2, 3.

Setting F̂0 = Ŷ0B̄0F̄ , from the definition of F̂ , we find that

F̂ = ŶiB̄F̄ , i = 1, 2, 3

which implies

ŶeB̄F̄ eT
3 + e3F̄

T B̄T Ŷ T
e

= (e1 + e2 + e3)F̂ eT
3 + e3F̂

T (e1 + e2 + e3)
T .

Following a similar proof procedure of Theorem 1, we know

that system (21) with F̄ satisfying (25) is asymptotically sta-

ble, if the inequalities (22) and (23) hold. Then equivalently,

system (1) is asymptotically stabilized by (4) with F given

by (24). This ends the proof.

For d1 = 0, similar as the proof of Theorem 2, we have

the following result.

Corollary 2 Given scalars d2 > 0, d1 = 0 and µ, if

there exist matrices P̃ = [P̃ij ]3×3 > 0, Q > 0, Ri > 0,

Si > 0, Zi > 0, i = 1, 2, and matrices F̂ =
[

0 F̂0

]

with

F̂0 ∈ R
r×m, and Ŷj =

[

Ŷj,11 0

Ŷj,21 Ŷ0

]

with Ŷ0 ∈ R
r×r,

j = 1, 2, 3 such that the following LMIs hold:

Ω̃0 = Γ̃P̃ Υ̃T + Υ̃P̃ Γ̃T + Ψ̃0 + Λ̃ + ŶẽÂẽ + ÂT
ẽ Ŷ T

ẽ

+(ẽ1 + ẽ2 + ẽ3)F̂ ẽT
3 + ẽ3F̂

T (ẽ1 + ẽ2 + ẽ3)
T < 0

Ω̃1 = Γ̃P̃ Υ̃T + Υ̃P̃ Γ̃T + Ψ̃1 + Λ̃ + ŶẽÂẽ + ÂT
ẽ Ŷ T

ẽ

+(ẽ1 + ẽ2 + ẽ3)F̂ ẽT
3 + ẽ3F̂

T (ẽ1 + ẽ2 + ẽ3)
T < 0

where Ŷẽ = ẽ1Ŷ1+ẽ2Ŷ2+ẽ3Ŷ3 and Âẽ = ĀẽT
1 −ẽT

2 , then the

system (1) is asymptotically stabilized by controller (4) with

F = F̄ T , where F̄ is the matrix satisfying B̄0F̄ = Ŷ −1
0 F̂0.

Remark 2 It should be noticed that in the stabilization

method proposed above different transformation matrix T
may lead to different result of Theorem 2, which even makes

the inequalities (22) and (23) unsolvable. A significant prob-

lem comes out: how to choose the transformation matrix T ,

making the stabilization problem solvable? In what follows,

we will propose a method to find such T .

Suppose that the transformed matrix Ā in system (21)

takes the form

Ā =

[

Ā11 Ā12

Ā21 Ā22

]

,

where Ā11 ∈ R
(n−r)×(n−r) and Ā22 ∈ R

r×r. Let λmin(A)
denote the minimum real part of A’s eigenvalues. Our

purpose is to choose a nonsingular matrix T satisfying (20)

such that Ā11 is Hurwitz matrix and −λmin(Ā11) small

enough. The following is a procedure to calculate such T .

Step 1: Find a nonsingular T0 satisfying (20). Then we

have the transformed matrices

Â = T0AT−1
0 =

[

Â11 Â12

Â21 Â22

]

,

B̄ = T0B =
[

0 B̄T
0

]T
,

where Â11 ∈ R
(n−r)×(n−r), Â22 ∈ R

r×r and

B̄0 ∈ R
r×m.

Step 2: To construct T̄ satisfying T̄ B̄ = B̄ with the form

T̄ =

[

I 0
T̄21 I

]

, T̄21 ∈ R
r×(n−r) (26)

such that Ā11 = Â11 − Â12T̄21, where Ā =
T̄ ÂT̄−1, is Hurwitz matrix and −λmin(Ā11) small

enough. It can be solved if there exist matrices

Φ−1 > 0 and T̄21 satisfy the following inequalities

Φ−1Ā11 + ĀT
11Φ

−1 < 0
Φ−1Ā11 + ĀT

11Φ
−1 > −δΦ−1,

(27)

for given scalar δ > 0 which is chosen small

enough. Multiplying Φ on the left and the right

side of each inequality in (27) and replacing Ā11

with Â11 − Â12T̄21, it is seen to be equivalent to

the following LMIs by setting T̂21 = T̄21Φ

Â11Φ + ΦÂT
11 − Â12T̂21 − T̂T

21Â
T
12 < 0

Â11Φ + ΦÂT
11 − Â12T̂21 − T̂T

21Â
T
12 > −δΦ.

(28)

Solving the LMIs (28) for matrix variables Φ and

T̂21, we can get T̄21 in (26) by T̄21 = T̂21Φ
−1.

Step 3: Obtain the transformation matrix T = T̄ T0, where

T̄ with T̄21 given by (26) in Step 2.

V. NUMERICAL EXAMPLES

In this section, two examples are given to demonstrate the

effectiveness of the method proposed in this paper.

Example 1 Consider the system (5) with

A =

[

−2 0
0 −0.9

]

, Ad =

[

−1 0
−1 −1

]

.

For various µ and unknown µ, the allowable upper bounds,

d2, which guarantee the asymptotic stability of system (5)

for given lower bounds, d1, are listed in Tables I and II,

respectively. From Table I and Table II, it can be seen that

the stability results obtained in the paper are less conservative

than those in [12].

Example 2 Consider the following system:

ẋ(t) =

[

−0.8 −0.01
1 0.1

]

x(t) +

[

0.4
0.1

]

u(t − d(t)), (29)

where d(t) satisfies (2) with d1 = 0 and µ unknown.

Choosing

T0 =

[

1 −4
0 10

]
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TABLE I

ALLOWABLE UPPER BOUND d2 WITH GIVEN d1 FOR DIFFERENT µ

d1 Methods µ = 0.1 µ = 0.3 µ = 0.5 µ = 0.9
1 [12] 4.1945 3.0538 2.3058 1.9008

Theorem 1 4.3923 3.1208 2.3418 2.0921

2 [12] 4.4932 3.0129 2.5663 2.5663
Theorem 1 4.5705 3.0989 2.6987 2.6987

3 [12] 4.3979 3.3408 3.3408 3.3408
Theorem 1 4.5400 3.4186 3.4186 3.4186

4 [12] 4.1978 4.1690 4.1690 4.1690
Theorem 1 4.2305 4.2097 4.2097 4.2097

5 [12] 5.0275 5.0275 5.0275 5.0275
Theorem 1 5.0440 5.0440 5.0440 5.0440

TABLE II

ALLOWABLE UPPER BOUND d2 WITH GIVEN d1 FOR UNKNOW µ

Methods d1 1 2 3 4 5

[12] d2 1.9008 2.5663 3.3408 4.1690 5.0275
Remark 1 d2 2.0921 2.6987 3.4186 4.2097 5.0440

in Step 1, for different δ, the maximum upper bounds d2

and corresponding matrices F , such that system (29) with

controller (4) is asymptotically stable, are listed in Table III.

As shown in the table, it can be seen that the value of δ
has remarkable influence on the allowable upper bounds and

λmax(A + BF ), which reveal the fact that there exists a

trade-off between upper bounds and λmax(A + BF ) when

designing the stabilizing controller.

TABLE III

ALLOWABLE UPPER BOUND d2 AND F FOR DIFFERENT δ

δ d2 F λmax(A + BF )
0.01 1.6937 [−1.2988 − 0.2619] -0.0020
0.1 1.6873 [−1.2431 − 0.2864] -0.0136
1 1.6102 [−1.0149 − 0.3544] -0.0538
2 1.4596 [−0.9078 − 0.5088] -0.1408
3 1.2566 [−0.9174 − 0.7710] -0.3175
4 1.0614 [−0.9662 − 1.0738] -0.5969
5 0.9190 [−1.4069 − 1.1046] -0.4241
7 0.7495 [−1.9782 − 1.2715] -0.3669

10 0.6099 [−2.4651 − 1.5993] -0.4177

For δ = 4.3 and d2 = 1, we obtain F =
[

−1.1049 −1.0532
]

. Taking d(t) = 0.5sin(t) + 0.5 and

initial state x(0) = [1 1]T , the simulation result of the

resulting closed-loop system is given in Fig.1, which well

show the feasibility of the design procedure proposed above.

VI. CONCLUSION

We have developed new results for delay-dependent sta-

bility and stabilization for time-delay systems. The delay

considered in this paper may vary in a range for which the

lower bound is not restricted to be zero. With a different

Lyapunov functional defined, some new delay-dependent

stability criteria have been derived. By using a new state

transformation method, the cross terms in stability criteria

can be dealt with. Therefor, the criteria can be used to
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Fig. 1. Response of the closed-loop system

solve the problem of stabilizing the linear systems with time-

varying input delay. All the developed results are formulated

as LMIs. Numerical examples well illustrate the design

procedure and the criterion is less conservative than existing

ones.
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