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Abstract— During the last two decades, performance assess-
ment of control systems has been receiving wide attention. How-
ever, estimation of the benchmark performance of nonlinear
control systems still remains open. In this work, we consider
an estimation problem of the benchmark performance when
control loops are intervened by the complex non-differentiable
nonlinearity. The considered nonlinearity includes control valve
stiction of the control systems, as well as switching action
involved by protection valves widely used in the safety-related
control systems. Based on the idea of Lebesgue sampling, the
paper proposes a novel threshold autoregressive model for
unbiased estimation of the benchmark performance. Basically,
the proposed method is based on the partitioning of the closed-
loop routine operating data when it reaches certain thresholds.
Modeling each partitioned regime as an autoregressive model,
the prediction error variance as the benchmark performance
can be obtained by the principle of pooled variance. A nu-
merical example well shows the effectiveness of the proposed
method.

I. INTRODUCTION

Research on control loops performance assessment has

been increasing in the last two decades. There are many

researches on performance assessment for linear control

loops. Some literatures in this area were published, see [7],

[8], [12], [13], [17], [16], [21], [27], and the references

therein. The main motivation of this issue is to provide

an online automated procedure for determining whether

specified performance targets and response characteristics

are being met by the controlled process variables or not.

The key step for performance assessment procedure is to

establish the appropriate benchmark performance in order to

obtain reasonable assessment results. The popular benchmark

performance are the minimum variance performance and the

prediction error variance.

It is well-known that the most of industrial processes

are nonlinear in nature. The nonlinearities may come from

process plants, external disturbances, and sensors or actuators

and so on. Because of nonlinearities, the system output

may be nonlinear and non-Gaussion. Moreover, the process

dynamics or disturbances models can not be well charac-

terized by its impulse response, or equivalently by an time

series model. These challenge both in modeling and param-

eter estimation, which may lead to biased estimations of

benchmark performance for nonlinear systems. To obtain the

appropriate benchmark performance of nonlinear systems,

researchers developed a class of analytical nonlinear system
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model. These models are described by the nonlinear process

plus linear output stochastic disturbance [9], [18], in which

disturbance is the output of a time series model driven by

the white noise. Under this kind of models, Harris and Yu

[18] estimated the minimum variance performance bounds

for nonlinear systems using the polynomial approximation

of the nonlinear process.

In many industrial applications, however, the nonlinearity

causing poor control performance is mostly control valve

stiction. In terms of this problem, many researches focused

on stiction detection and quantification methodologies, see

[5], [10], [22], and the references therein. In the reports,

valve stiction is non-differentiable and the loops with valve

stiction exhibit limit cycle behavior. In this case, polynomial

approximation may not sufficiently model the nonlinearity

and will lead to the over-estimation of the benchmark per-

formance for control loops performance assessment. Con-

sidering this issue, [32] proposed two indirect estimation

methods for the benchmark performance. After removing

the nonlinearity from the output by B-spline, the residuals

between the output and B-spline are fitted by a linear time

series model to estimate the benchmark performance. The

other method is that the steady state periods caused by limit

cycle are estimated firstly, then the benchmark performance

is computed by linear models fitting in the given possible

multiple segments of a linear time series.

However, the nonlinear actions of actuators located in the

control loop may sometimes be controlled by other control

system, e.g., the safety-related applications. According to

[19], [20], safety-related systems and control systems are

built separately for the same controlled variable [23], as

shown in Figure 1. There are the control valve and the

protection valve located in the control loop. The nonlinear

action - switching action from the protection valve controlled

by the safety-related control system will be introduced into

the control system. This action is generally characterized by

the non-differentiable or discontinuous function. For the non-

linearities involving the control valve stiction and protection

valve action will make estimation of the benchmark perfor-

mance more challenging. In terms of stochastic protection

valve action, the correlation between the controlled variable

and the persistent exciting control signal may be broken.

Hence the estimation algorithm depending on the correlation

may lead to a biased result.

Moreover, time series modeling based on equidistant sam-

pled data or Riemann sampled data may be not easy to

deal with non-differentiable nonlinear dynamics directly. For

Riemann sampling, benchmark performance may only exist

in some parts of the nonlinear dynamics or some dynamic
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subsystems. In order to obtain benchmark performance,

sufficient removing the non-differentiable nonlinearities is

needed, sometimes even full identifications of process dy-

namics, disturbances and other external nonlinear dynamics,

and more priori knowledge are needed [12].

Fig. 1. Integration example of control system and safety system

Interestingly, Lebesgue sampling or event-based sampling

- an alternative to Riemann sampling can be considered.

Lebesgue sampling, as a class of non-union sampling, is

a technique for time independent event-based sampling [2],

[26]. Actually, the idea of Lebesgue sampling or event-based

trigged sampling is closely related to control systems, e.g.,

relay feedback control system [1], variable structure control

system [31] and multi-rate sampled-data control system [4],

[14], [15] which can be regarded as special cases of Lebesgue

sampling. From the application point of view, Lebesgue

sampling is a natural method to describe functionality of

devices used in industrial control systems. For example, A/D

converters of sigma delta modulator [2]. Moreover, some

nonlinear phenomena can also be viewed as the responses of

some events. For example, the valve stiction and the valve

switching can be considered as abnormal events occurring in

control loops.

For modeling the complex nonlinear time series data

based on the Lebesgue sampling, threshold autoregressive

(TAR) model can be considered, see [28], [29], [30], and

the references therein. The time series data are partitioned

according to the variation of the data value, i.e., thresholds

are imposed on the value. For the data over each partitioned

regime, a time series model is identified.

In this paper, we will explore a new method inspired by

the idea of the Lebesgue sampling to estimate benchmark

performance of nonlinear control systems. Considering the

nonlinearities including the control valve stiction and the

protection valve action, the prediction error variance of

TAR fitting from routine operating data is used to estimate

benchmark performance directly. In this paper, we assume

that the control system is controlled by computer, and the

stiction does not exist in the protection valve. In terms of

control valve stiction, the two-parameter empirical model

developed in [6] is used in the simulation of this work.

A major contribution of this paper is the application of

the idea of Lebesgue sampling and its usage to estimate

the benchmark performance considering the nonlinear action

of the safety-related control system are introduced into the

nonlinear control system. The estimation of the benchmark

performance by the proposed method is better than that

obtained by the method under Riemann sampling. The result

of estimation can be considered as a unbiased benchmark

to establish a better quantification index of performance and

avoid over-estimation or under-estimation.

The remainder of this paper is organized as follows. Prob-

lem formulation on estimation of benchmark performance for

a class of nonlinear system is presented in Section II. Section

III presents the method based on Lebesgue sampling to esti-

mate benchmark performance of nonlinear control systmes.

In Section IV, numerical examples show the effectiveness

of the proposed method. Finally, the conclusion remarks are

given in Section V.

II. PROBLEM FORMULATION

Consider a control system assisted with the safety-related

control system. As shown in Figure 2, if the controller

of safety system receives the fault information, the higher

priority commands will be sent to protection valve located

in the control loop to guarantee the safety of the control

system.

Fig. 2. Schematic of system hardware

Remark 1: In applications, for safety systems, there are

different requirements of the state of the valve on different

occasions. For example, when a steam heating facility en-

counters a electrical or air failure, the steam should be cut off

by closing the valve. When water cooling of system encoun-

ters a fault, the water can not be cut off. However, sometimes

the valve is needed to remain in the original position before

failure. For example, when crystallization process encounters

the air failure, the coolant should maintain a fixed flow rate.

Hence, the protection valve can be used to implement the

fail close, fail open and fail lock [24].

Suppose that this system can be modeled by

yt = q−bT (q−1)Ψ(ut) + N(q−1)at, (1)

as shown in Figure 3, where q−1 is the backward shift

operator, b is the process time delay, ut denotes controller

output and yt denotes measured process output, at denotes

white noise sequence with zero mean and variance σa.

T (q−1) is the delay-free polynomial function in q−1 for

the plant. N(q−1) is the polynomial function in q−1 for

the the stochastic load disturbance occurring in the control

loop, which is driven by white noise sequence at. Such

a disturbance representation can handle the non-stationary

random process, as well as stationary one [3], [25]. N can

be described as N = θ
φ∇h , where ∇ = (1 − q−1) is the
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difference operator and h is a nonegative integer less than

2. θ and φ are polynomials in q−1, and monic and stable.

Ψ(·) is the nonlinear function representing the relationship

between the controller output and the plant input of the

control system. In the Figure 3, S(ut) represents nonlinear

actions of actuators in the control system, e.g., control

valve stiction, and V (st, zt) denotes the nonlinear actions

of actuators located in this control system, but controlled by

the safety-related control system, e.g., protection valve. zt

denotes the control commands from the safety-related control

system. To simplify the sequel development, q−1 is dropped

for Q(q−1), T (q−1) and N(q−1) without losing clarity in

the context.

h - Q(q−1)

ut

- -S(ut)

st

V (st, zt)

Ψ(·)

-
uv

t

q−bT (q−1) - h -yt

Output
?

N(q−1)

?at

Disturbance

u

6

Fig. 3. Closed loop system under consideration

The problems considered are formulated as follows.

Problem 1: Considering the complex nonlinearity, estimate

the benchmark performance of the control loop based on the

idea of Lebesgue sampling.

Problem 2: Verify the effectiveness of the proposed

method by examples.

III. ESTIMATION OF BENCHMARK

PERFORMANCE

If Ψ only includes S in a nonlinear process described as

(1), there exists feedback control invariant or the b-step ahead

prediction error variance as the benchmark performance [18],

[32]. In this paper, when Ψ is composed of S and V , the

benchmark performance is obtained.

Nat in (1) can be denoteed as dt = Nat, and the impulse

coefficients fi, for i = 0, . . . ,∞, of the N can be obtain as

N = 1 + f1q
−1 + · · · + fbq

−b + · · ·

Thus,

yt+b = TΨ(ut) + dt+b

= TΨ(ut) + fbdt

+ (1 + f1q
−1 + · · · + fb−1q

−b+1)at+b,

where dt+b = (1 + f1q
−1 + · · · + fb−1q

−b+1)at+b + fbdt

can be obtained by solving Diophantine equations. The

conditional expectation of yt+b can be obtained [18], [32],

ŷt+b|t = E{yt+b|It} = TΨ(ut) + fbdt,

where It is the information set [18]. The prediction error is

yt+b − ŷt+b|t = (1 + f1q
−1 + · · · + fb−1q

−b+1)at+b,

Hence, under minimum variance control, the ŷt+b|t equals

zero, the process output yMV
t+b will only depend on the recent

b past disturbances,

yMV
t+b = (1 + f1q

−1 + · · · + fb−1q
−b+1)at+b.

The minimum variance performance benchmark, σ2
MV , exists

and equals the prediction error variance,

σ2|mv = Var{yMV
t+b } = (1 + f2

1 + · · · + f2
b−1)σ

2
a.

Although the benchmark performance analytically exists,

it would be estimated from the close-loop routine operat-

ing data. In order to obtain a unbiased estimation of the

benchmark performance as good as possible, we model the

nonlinear close-loop data on the basis of the idea of Lebesgue

sampling, and then obtain the prediction error variance as the

benchmark performance.

Consider the following self-exciting TAR (SETAR)

model which is a basic and popular class of TAR

model. The k-regime SETAR model denoted by

SETAR(k; b; d; p1, p2, . . . , pk) has the following form,

yt =











































φ0,1 +
∑p1

j=1
φj,1yt−b−j + et,1,

if yt−d ≤ r1;
φ0,2 +

∑p2

j=1
φj,2yt−b−j + et,2,

if r1 < yt−d ≤ r2;
...

φ0,k +
∑pk

j=1
φj,kyt−b−j + et,k,

if rk−1 < yt−d,

(2)

where yt is measured output. φpi,i is autoregressive param-

eter, pi, for i = 1, 2, . . . , k, is the autoregressive order in the

i-th regime of the model and k is the number of regimes in

the model. d is the length of threshold. ri, for i = 1, 2, . . . , k,

is the threshold value, satisfying −∞ = r0 < r1 < · · · <
rk = ∞. et,i, for i = 1, 2, . . . , k, is the prediction error in

the i-th regime.

As shown in Figure 4, nonlinear time series are partitioned

by SETAR model. In each regime, a linear autoregressive

process captures the dynamical behavior of the time series.

Remark 2: SETAR model is piece-wise linearization via

the idea of Lebesgue sampling, which can be used to decom-

pose a complex stochastic system into simpler subsystems.

Switching between different linear subsystems depends only

on the levels of the threshold variable. Since the threshold

variable of SETAR model stems from the lagged value of

the process itself, SETAR model appears self-exciting. If the

number of regimes, k = 1, the SETAR model is equivalent

to the AR model, and can be used to model the linear time

series model directly.

Remark 3: SETAR model is able to model some nonlinear

phenomena, e.g., jump resonance, amplitude-frequency de-

pendency, limit cycles, subharmonics, higher harmonics and

so on [30]. Since the control loop with valve stiction exhibit

limit cycle behavior, SETAR model can be used to model

measurements. If the complex nonlinearity composed of the

control valve stiction and the protection valve action is in-

troduced into the control loop, which can be considered that
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the limit-cycle signal caused by the control valve stiction is

multiplied by the subharmonic signal with varying frequency

generated by the protection valve, SETAR modeling is also

available.

Fig. 4. Partition for nonlinear time series with Lebesgue sampling

On SETAR modeling, there is a iterative and heuristic

optimization strategy for determining k, d and ri, for i =
1, 2, . . . , k − 1 and estimating φpi,i, for i = 1, 2, . . . , k.

In each regime, b is a priori knowledge. The modeling

procedure is summarize as following [28], [29], [30].

Step 1. Give the initial value of k, d, and ri, for i =
1, 2, . . . , k − 1. Determine the maximum P of pi, for i =
1, 2, . . . , k, the maximum D of d, and the maximum K of

k. The length of data is N .

Step 2. Set an initial autoregressive order p0 =
max{P, D}.

Step 3. According to the ri, for i = 1, 2, . . . , k − 1,

rearrange the time series data into each regime,

−∞ < {y1,1, y2,1, . . . , yN1,1} ≤ r1,

r1 < {y1,2, y2,2, . . . , yN2,2} ≤ r2,

...

rk−1 < {y1,k, y2,k, . . . , yNk,k} ≤ +∞,

where yt,i, for i = 1, 2, . . . , k, is the t-th measured output in

the i-th regime. Ni, for i = 1, 2, . . . , k is the length of data

in the i-th regime, and
∑k

i=1
Ni = N − p0.

Step 4. Use the least-square method to estimate autoregres-

sive parameter, φpi,i, from 1st to k-th regime. In each regime,

Akaike’s information criterion (AIC) is used to determine

the order of AR model which takes as the following form,

AIC = Nilnσ2
i + 2(pi + 1),

for i = 1, 2, . . . , k, where σ2
i is the variance of residuals from

the fitted model in each regime. Thus the AIC of valid AR

models in each regime is,

AIC(pi) = min
1≤pi≤pk

{Nilnσ2
i + 2(pi + 1)},

for i = 1, 2, . . . , k. The model order pi, for i = 1, 2, . . . , k, is

increased until the AIC value shows no appreciable change.

Step 5. SETAR models are composed of the valid AR

model in each regime as (2) described. The AIC value of

this SETAR models is the sum of the AIC value in each

regime,

AIC(k; b; d; r1, r2, . . . , rk−1) =
k

∑

i=1

AIC(pi).

Step 6. Fixing d and k, using steepest descent method,

optimize ri under the following object function,

AIC(k; b; d; r̂1, r̂2, . . . , r̂k−1) =

min
ri,i=1,2,...,k−1

{AIC(k; b; d; r1, r2, . . . , rk−1)}.

for i = 1, 2, . . . , k − 1.

Repeat step 3 to step 5 to obtain the minimum AIC and

the corresponding optimal r̂1, r̂2, . . . , r̂k−1.

Step 7. Fixing k, repeat step 2 to step 6 to search the

optimal d̂ corresponding to the minimum AIC from d =
d + 1 to d = D. The object function is

AIC(k; b; d̂; r̂1, r̂2, . . . , r̂k−1)

= min
1≤d≤D

{AIC(k; b; d; r̂1, r̂2, . . . , r̂k−1},

where AIC is the normalized AIC, and AIC = AIC/(N−
p0).

Step 8. Repeat step 2 to step 7 to search the optimal k̂
corresponding to the minimum AIC from k = k − 1 to

k = K. The object function is

AIC(k̂; b; d̂; r̂1, r̂2, . . . , r̂k−1)

= min
2≤k≤K

{AIC(k; b; d̂; r̂1, r̂2, . . . , r̂k−1)}.

Remark 4: In actual application, the length of threshold

and the number of regimes can be determined by empirical

value and process knowledge. Thus the optimization pro-

cedure can be simplified only to determine the threshold

value, the autoregressive parameter and the model order of

each regime. Furthermore, if the number of regimes and

the threshold value are determined, the local regimes are

independent with each other. Thus the modeling in the local

regimes can be accomplished by the parallel computing

strategy similar to the parallel multi-way signals processing.

It can be conveniently realized in the computer control

system for industrial process, and significantly improve the

computation efficiency.

Hence, the b-step prediction error variance can be esti-

mated in each regime after the nonlinear time series appro-

priately modeled by the SETAR model,

σ̂2
i |mv = E{eT

t,iet,i},

for i = 1, 2, . . . , k.

However, the global SETAR model is the collection of

every regime over a range of values for the sampling instant.

Reasonable estimation of the b-step prediction error variance

of the global SETAR model can be determined by using

the principle of pooled variance [11], [30]. Pooled variance

is a method for estimating variance given several different

samples taken in different domains where the true variance

is equivalently assumed to remain the same. Thus the b-step
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prediction error variance of the global SETAR model can be

calculated by

σ̂2|mv =
{
∑k

i=1
(Ni − 1)σ̂2

i |mv}
∑k

i=1
Ni − k

. (3)

By now, the global benchmark performance of the nonlinear

control system based on the idea of Lebesgue sampling is

obtained.

IV. NUMERICAL EXAMPLES

Consider a class of complex nonlinearity described as (1).

We present an example to demonstrate the effectiveness of

the proposed method. The nonlinear autoregressive model

based on Riemann sampling, e.g., Polynomial-AR (PAR) or

Polynomial-ARX (PARX) [18], will also be applied to show

the advantageous properties of the proposed method based

on Lebesgue sampling.

A. Example 1

Consider a control system is assisted with the safety

system. As shown in Figure 3, S(ut) denotes the asymmetric

stiction of control valve, i.e., different amounts of stiction

in the upward and downward directions of the valve [6],

which is non-differentiable. The levels of valve stiction for

slip parameter SU = 5 and SD = 3, where SU denotes

stiction in the upward direction (opening) of valve travel and

SD denotes stiction in the downward direction (closing) of

valve travel. The magnitude of slip-jump parameter J = 4.

V (st, zt) denotes the protection valve action.

Considering the process transfer function is

T̃ = q−5 1.45

1 − 0.8q−1
,

the PI controller is

Q =
0.3 − 0.15q−1

1 − q−1
,

disturbance transfer function is N = 1, and an additive white

noise with zero mean and variance 0.05. Thus the true value

of the minimum variance performance benchmark, σ2|mv , is

0.05. The sampling interval is 1s.

In this example, V (st, zt) denotes the process of protection

valve action. V (st, zt) can be described as follows,

uv
t =







st, if 0 < zt ≤ 225;
s|t=225, if 225 < zt ≤ 300;
st, if 300 < zt ≤ 500.

When 0 < t ≤ 225s, the control system is in the normal

operation mode; when 225s < t ≤ 300s, the protection valve

is in action and the control system is in the safety mode, the

controller output and the control valve output are held as

the value at t = 225s; when 300s < t ≤ 500s, protection

valve action is off, the control system returns to the normal

operating mode. zt is the sampling instant, and the sampling

interval is 1s.

In this example, Ψ includes S(ut) and V (st, zt). The time

trend of ut and yt, the yt −ut plot, time trend of ut and uv
t ,

and the uv
t − ut plot are shown in Figure 5. When 225s <

0 100 200 300 400 500
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Fig. 5. Time trend of ut and yt (top left)−the dashed line is ut, the
yt − ut plot (top right), time trend of ut and uv

t
(bottom left)−the dashed

line is ut, and the uv

t
− ut plot (top right)

t ≤ 300s, the controller output is be held as ut = −0.0022
at t = 225s and the position of control valve is held as

uv
t = −0.8491 at t = 225s.

The estimations of the σ2|mv using three models

are shown in Table I and Table II. The compara-

tive box plots of the quality estimations are shown in

Figure 6. In order to show the partitions for close-

loop routine operating data, we consider the 6-Regime

SETAR(6; 5; 1; 16, 12, 21, 28, 30; 35) and the threshold val-

ues with (3.82, 2.06, 0.23,−1.23;−2.55), as shown in Figure

7.

TABLE I

AVERAGE USED TERMS AND σ̂2|mv FOR PAR AND PARX

Linear(y) Quadratic Linear(u)
PAR 16 136 0

PARX 15 120 15

Total σ̂2|mv

PAR 152 0.6531

PARX 150 0.3335

TABLE II

AVERAGE USED TERMS AND σ̂2|mv FOR SETAR

Linear Linear Linear Linear
(regime1) (regime2) (regime3) (regime4)

6-Regime 16 12 21 28

Linear Linear Total σ̂2|mv

(regime5) (regime6)
6-Regime 30 35 142 0.0585

From Table I, Table II and Figure 6, we can see that

SETAR model has more accurate result than that of the

PAR or PARX model at the less expenses of total terms

for estimating minimum variance performance. However, the

results of both PAR and PARX are also over-estimated.

V. CONCLUSIONS

In this paper, a class of complex nonlinearity composed of

the control valve stiction and the protection valve action is

considered on the control loop performance assessment. In

terms of this nonlinearity, a new technology for estimating
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Fig. 6. Comparative box plots of the quality estimations from three models
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Fig. 7. Partitions for close-loop routine operating data

benchmark performance based on the idea of Lebesgue

sampling is proposed. The proposed method is implemented

by the SETAR model, and the prediction error variance

as the benchmark performance can be estimated directly

from close-loop routine operating data. The result of esti-

mation is better than that obtained by the method under

Riemann sampling, and can be used to establish a better

unbiased quantification index to avoid over-estimation or

under-estimation. The numerical example well illustrates the

effectiveness and advantages of the proposed method.
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[2] K. J. Åström and B. M. Bernhardsson, “Comparision of Riemann and

Lebesgue sampling for first order stochastic systems,” in 41st IEEE

Confer. on Decision and Control, 2002, pp. 2011-2016.
[3] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis:

Forecasting and Control. 3rd ed., Englewood Cliffs, NJ: Prentice Hall,
1994.

[4] T. Chen and B. Francis, Optimal Sampled-data Control Systems,
London: Springer, 1995.

[5] M. A. A. S. Choudhury, S. L. Shah, and N. F. Thornhill, Diagnosis

of Process Nonlinearities and Valve Stiction, Berlin: Springer, 2008.
[6] M. A. A. S. Choudhury, N. F. Thornhill, and S. L. Shah, “Modeling

Valve Stiction,” Control Engineering Practice, vol. 13, pp. 641-658,
2005.

[7] L. D. Desborough and T. J. Harris, “Performance assessment measures
for univariate feedback control,” Can. J. of Chem. Eng., vol. 70, pp.
1186-1197, 1992.

[8] L. D. Desborough and T. J. Harris, “Performance assessment measures
for univariate feedback/feedforward control,” Can. J. of Chem. Eng.,
vol. 71, pp. 605-616, 1993.

[9] M. J. Grimble, “Non-linear generalized minimum variance feedback
feedforward and tracking control, Automatica, vol. 41, pp. 957-969,
2005.

[10] A. Horch, “A simple method for detection of stiction in control valves,”
Control Engineering Practice, vol. 7, pp. 1221-1231, 1999.

[11] L. V. Hedges, “Distribution theory for glass’s estimator of effect size
and related estimators,” J. of Educational Statistics, vol. 6, no. 2, pp.
107-128, 1981.

[12] T. J. Harris, “Assessment of closed loop performance,” Can. J. Chem.

Eng., vol. 67, pp. 856-861, 1989.
[13] T. J. Harris, F. Boudreau, and J. F. MacGregor, “Performance assess-

ment of multivariable feedback controllers, Automatica., vol. 32, no.
11, pp. 1505-1518, 1996.

[14] L.-S. Hu and B. Huang, “Multirate robust control for fuzzy systems
with periodic lyapunov function,” IEEE Trans. Fuzzy Systems, vol. 13,
no. 4, pp. 436-443, 2005.

[15] L.-S. Hu, B. Huang, and Y.-Y. Cao, “Robust digital model predictive
control for linear uncertain systems with saturations,” IEEE Trans.

Automatic contr., vol. 49, no. 5, pp. 792-796, 2004.
[16] B. Huang and S. L. Shah, Performance Assessment of Control Loops

Theory and Applications, Berlin: Springer, 1999.
[17] T. J. Harris, C. T. Seppala, and L. D. Desborough, “A review of

performance monitoring and assessment techniques for univariate and
multivariate control systems,” J. Process Control, vol. 9, pp. 1-17,
1999.

[18] T. J. Harris and W. Yu, “Controller assessment for a class of non-linear
systems,” J. Process Control, vol. 17, pp. 607-619, 2007.

[19] International Electro technichal Commission, IEC 61508 Func-

tional Safety of Electrical/Electronic/Programmable Electronic Safety-

related Systems. Parts 1-7, Switzerland, 1998-2005.
[20] International Electro technichal Commission, IEC 61511 Functional

Safety - Safety Instrumented Systems for the Process Industry Sector.

Parts 1-3, Switzerland, 2003.
[21] M. Jelali, “An overview of control performance assessment technology

and industrial applications,” Control Eng. Practice, vol. 14, pp. 441-
466, 2006.

[22] M. Jelali and B. Huang (Eds.), Detection and Diagnosis of Stiction

in Control Loops State of the Art and Advanced Methods, Springer,
2010.

[23] B. Knegtering and J. Wiegerinck, “Future trends in safety instrumented
systems,” Honeywell Safety Management Systems & Shell Global

Solutions Report, 2003.
[24] J. W. Liu, “Safety protection of control valve in petrochemical unit.”

Automation in Petro-Chemical Industry vol. 3, pp. 86-89, 2005.
[25] J. F. MacGregor, T. J. Harris, J. D. Wright, “Duality between the

Control of Processes Subject to Randomly Occurring Deterministic
Disturbances and ARIMA Stochastic Disturbances.” Tech- nometrics,
vol. 26, pp. 389-397, 1984.

[26] R. McCann, A. K. Gunda, and S. D. Damugatla, “Improved operation
of networked control systems using Lebesgue sampling,” in Industry

Applications Conference, vol.2, 2004, pp. 1211-1216.
[27] S. J. Qin, “Control performance monitoring - a review and assess-

ment,” Computers & Chemical Engineering, vol. 23, pp. 173-186,
1998.

[28] H. Tong, Threshold Models in Non-linear Time Series Analysis, New
York: Springer, 1983.

[29] H. Tong, Nonlinear Time Series, Oxford University Press, 1990.
[30] H. Tong and K. S. Lim, “Threshold autoregression, limit cycles and

cyclical data,” J. R. statist. Soc. B, vol. 42, no. 3, pp. 245-292, 1980.
[31] V. Utkin, Silding Modes and Their Applications in Variable Structure

Systems, Moscow: MIR, 1981.
[32] W. Yu, D. I. Wilson, and B. R. Young, “Nonlinear control performance

assessment in the presence of valve stiction,” J. Process Control, vol.
20, no. 6, pp. 754-761, 2010.

5084


