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Abstract— This paper applies the hierarchical identification
principle and the gradient search method to study iterative
solutions for a class of general coupled matrix equations with
real coefficients. As long as the convergence factors are appro-
priately chosen, the proposed algorithms for any initial values
can provide iterative solutions that are arbitrarily close to the
unique solutions of the equations. Two numerical examples
are given to demonstrate the effectiveness of the proposed
algorithms.

Index Terms: Coupled matrix equations; hierarchical identifi-
cation; gradient search; iterative algorithm; estimation.

I. INTRODUCTION

Throughout the paper, the transpose and the trace of

matrix X are denoted by X T and tr[X ], respectively, and

the norm is defined as ‖X‖2 = tr[X TX ]. The symbol In

stands for an identity matrix of size n × n, 0 is an zero

matrix with appropriate dimension. For two matrices A

and B, A ⊗ B is their Kronecker product; and for matrix

X = [x1,x2, · · · ,xn] ∈ R
m×n, xi ∈ R

m, the vector operator is

defined as col[X ] = [xT

1,x
T

2, · · · ,x
T

n]
T ∈ R

mn. Furthermore, we

have col[X T] = Pmncol[X ], where Pmn is a square mn×mn

matrix partitioned into m×n submatrices such that the (i, j)th
submatrix has a 1 in its ( j, i)th position and zeros elsewhere.

Matrix equations have received much attention because

of their important applications in control theory, signal

processing, filtering and many other fields [1]–[4]. For ex-

ample, the Sylvester matrix equations can be used for pole

assignment, feedback design and fault detection [5], [6]; and

the coupled Lyapunov matrix equations are encountered in

stability analysis of linear jump systems with Markovian

transitions [7]. There exist numerous methods for solving

matrix equations, in which the iterative ones are especially

computational efficient [8]–[10]. In this literature, Dehghan

and Hajarian introduced three iterative algorithms to obtain

the reflexive and anti-reflexive solutions for the matrix equa-

tions A1X1B1 + A2X2B2 = C [11]; Zhou et al. developed

a gradient based iterative algorithm to find the weighted

least squares solutions for general coupled Sylvester matrix

equations [12]; Wu et al. considered iterative solutions for a

class of general complex matrix equations with the conjugate

and transpose of the unknowns, and demonstrated that the
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proposed algorithm can converge to the exact solutions

within finite iteration steps [13].

Recently, by applying the hierarchical identification prin-

ciple, Ding, Liu and Ding presented a gradient based

and a least squares based iterative algorithms for solv-

ing the generalized Sylvester matrix equations, which re-

garded the unknown matrices as the parameter matrices

to be identified [14]. Such methods are also developed to

solve the extended Sylvester-conjugate matrix equations [15],

general linear matrix equations ∑
p
i=1 AiXBi = F [16] and

∑
p
i=1 AiXBi + ∑

q
i=1 CiX

TDi = F [17], and general coupled

matrix equations ∑
p
j=1 Ai jX jBi j = F i, i = 1,2, · · · , p [18],

[19]. Based on the work mentioned above, solutions for more

general coupled matrix equations with real coefficients are

considered in this paper, and the gradient based iterative

algorithms are derived by using the hierarchical identification

principle and the gradient search method.

The iterative algorithms are related to recursive estimation

algorithms in system identification, e.g., the multi-innovation

identification methods [20]–[32] and the iterative identifica-

tion methods [33]–[37].

The rest of this paper is organized as follows. Section II

presents a gradient based iterative algorithm to solve a simple

form of coupled matrix equations with real coefficients;

and Section III develops the algorithm for more general

cases. Section IV provides two examples to demonstrate the

effectiveness of the proposed algorithms. Finally, we end the

paper with some concluding remarks in Section V.

II. SIMPLE COUPLED MATRIX EQUATIONS

This section concentrates on solutions for the coupled

matrix equations
{

A1X +X TB1 +C1Y +Y TD1 = F1

A2X +X TB2 +C2Y +Y TD2 = F2
, (1)

where A1, A2, C1, C2 ∈R
n×m, B1, B2, D1, D2 ∈R

m×n, and

F1, F2 ∈R
n×n are given constant matrices, X , Y ∈R

m×n are

two unknown matrices to be solved.

By using the vector operator, equation (1) can be converted

into the following equivalent form,

S col[X ,Y ] = col[F1,F2],

S :=

[

In ⊗A1 +(BT

1 ⊗ In)Pnm In ⊗C1 +(DT

1 ⊗ In)Pnm

In ⊗A2 +(BT

2 ⊗ In)Pnm In ⊗C2 +(DT

2 ⊗ In)Pnm

]

,

Pnm = P−1
mn = PT

mn,

col[X ,Y ] :=

[

col[X ]
col[Y ]

]

, col[F1,F2] :=

[

col[F1]
col[F2]

]

.
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Then the exact solutions of equation (1) can be given by the

following lemma.

Lemma 1: Equation (1) has unique solutions if and only if

rank{S,col[F1,F2]}= rank[S] = mn (i.e., S has a full column

rank). In this case, the unique solutions can be given by

col[X ,Y ] = (STS)−1STcol[F1,F2], (2)

and the corresponding homogeneous coupled matrix equation

in (1) with F1 = 0, F2 = 0 has unique solutions X = Y = 0.

However, when the dimensions of X and Y become large,

computing the solutions in (2) requires excessive computer

memory and the resulted computational cost is high. This

motivates us to study the iterative algorithm to solve (1).
Based on the hierarchical identification principle, regard-

ing the unknown matrices X and Y in (1) as the parameter
matrices to be identified, we define the following matrices,

Q1 :=

[

F1 −XTB1 −C1Y −Y TD1

F2 −XTB2 −C2Y −Y TD2

]

, (3)

Q2 := [F1 −A1X −C1Y −Y TD1, F2 −A2X −C2Y −Y TD2], (4)

Q3 :=

[

F1 −A1X −XTB1 −Y TD1

F2 −A2X −XTB2 −Y TD2

]

, (5)

Q4 := [F1 −A1X −XTB1 −C1Y , F2 −A2X −XTB2 −C2Y ]. (6)

Then, from (1), we obtain four fictitious subsystems,

Sub1 :

[

A1

A2

]

X = Q1, Sub2 : X T[B1,B2] = Q2,

Sub3 :

[

C1

C2

]

Y = Q3, Sub4 : Y T[D1,D2] = Q4.

Applying the gradient search method [16], [19] to the above
four subsystems leads to the following iterative equations:

X(k) = X(k−1)+ µ

[

A1

A2

]

T
{

Q1 −

[

A1

A2

]

X(k−1)

}

, (7)

X(k) = X(k−1)+ µ[B1,B2]{Q2 −XT(k−1)[B1,B2]}
T, (8)

Y (k) = Y (k−1)+ µ

[

C1

C2

]

T
{

Q3 −

[

C1

C2

]

Y (k−1)

}

, (9)

Y (k) = Y (k−1)+ µ[D1,D2]{Q4 −Y T(k−1)[D1,D2]}
T, (10)

where µ > 0 is the iterative step size or convergence factor to
be given later. Substituting (3)-(6) into (7)-(10), respectively,
and replacing the unknown matrices X and Y with their
estimates X(k−1) and Y (k−1) yield

X(k) = X(k−1)+ µ

[

A1

A2

]

T
{[

F1 −XT(k−1)B1 −C1Y (k−1)
F2 −XT(k−1)B2 −C2Y (k−1)

]

−

[

Y T(k−1)D1 +A1X(k−1)
Y T(k−1)D2 +A2X(k−1)

]}

, (11)

X(k) = X(k−1)+ µ[B1,B2]

×[F1 −A1X(k−1)−C1Y (k−1)−Y T(k−1)D1 −XT(k−1)B1,

F2 −A2X(k−1)−C2Y (k−1)−Y T(k−1)D2 −XT(k−1)B2]
T,

(12)

Y (k) = Y (k−1)+ µ

[

C1

C2

]

T
{[

F1 −A1X(k−1)−XT(k−1)B1

F2 −A2X(k−1)−XT(k−1)B2

]

−

[

Y T(k−1)D1 +C1Y (k−1)
Y T(k−1)D2 +C2Y (k−1)

]}

, (13)

Y (k) = Y (k−1)+ µ[D1,D2]

×[F1 −A1X(k−1)−XT(k−1)B1 −C1Y (k−1)−Y T(k−1)D1,

F2 −A2X(k−1)−XT(k−1)B2 −C2Y (k−1)−Y T(k−1)D2]
T.

(14)

Taking the average of (11) and (12) as the iterative solution
X(k), and the average of (13) and (14) as the iterative
solution Y (k), we obtain a gradient based iterative algorithm
for the solutions of (1):

X(k) =
Xa(k)+Xb(k)

2
, (15)

Xa(k) = X(k−1)+ µ

[

A1

A2

]

T
[

∆F1(k)
∆F2(k)

]

, (16)

Xb(k) = X(k−1)+ µ[B1,B2][∆F1(k),∆F2(k)]
T, (17)

Y (k) =
Y a(k)+Y b(k)

2
, (18)

Y a(k) = Y (k−1)+ µ

[

C1

C2

]

T
[

∆F1(k)
∆F2(k)

]

, (19)

Y b(k) = Y (k−1)+ µ[D1,D2][∆F1(k),∆F2(k)]
T, (20)

∆F i(k) = F i −AiX(k−1)−XT(k−1)Bi −CiY (k−1)

−Y T(k−1)Di, i = 1,2. (21)

The convergence factor µ can be simply taken to satisfy

0 < µ < 2
{

‖A1‖
2 +‖B1‖

2 +‖C1‖
2 +‖D1‖

2

+‖A2‖
2 +‖B2‖

2 +‖C2‖
2 +‖D2‖

2
}−1

. (22)

To initialize the algorithm, we take X(0) and Y (0) as some

small real matrices, e.g., X(0) =Y (0) = 10−61m×n with 1m×n

being an m×n matrix whose elements are all 1.

Theorem 1: If the equation in (1) has unique solutions X

and Y , then for any initial values, the iterative solutions X(k)
and Y (k) given by the algorithm in (15)-(22) converge to the

true solutions X and Y , i.e.,

lim
k→∞

X(k) = X , lim
k→∞

Y (k) = Y .

III. GENERAL COUPLED MATRIX EQUATIONS

Consider the following more general coupled matrix equa-

tions with transpose of p unknown matrices,











































p

∑
j=1

[A1 jX jB1 j +C1 jX
T

jD1 j] = F1,

p

∑
j=1

[A2 jX jB2 j +C2 jX
T

jD2 j] = F2,

...
p

∑
j=1

[Ap jX jBp j +Cp jX
T

jDp j] = F p,

(23)

where Ai j ∈ R
r×m, Bi j ∈ R

n×s, Ci j ∈ R
r×n, Di j ∈ R

m×s,

and F i ∈ R
r×s are given constant matrices, X j ∈ R

m×n,

j = 1,2, · · · , p, are the unknown matrices to be determined.

In order to simplify the representation of the gradient

based iterative algorithm to be proposed later, we use the

block-matrix star product, denoted by notation ⋆ in [18], [19].
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Let

X =











X1

X2

...

X p











, Y =











Y 1

Y 2

...

Y p











, X i,Y
T

i ∈ R
m×n,

SA = [Ai j]p×p =











A11 A12 · · · A1p

A21 A22 · · · A2p

...
...

...

Ap1 Ap2 · · · App











,

SAT = [AT

i j]p×p











AT

11 AT

12 · · · AT

1p

AT

21 AT

22 · · · AT

2p

...
...

...

AT

p1 AT

p2 · · · AT

pp











,

SB = [Bi j]p×p, SBT = [BT

i j]p×p,

SC = [Ci j]p×p, SCT = [CT

i j]p×p,

SD = [Di j]p×p, SDT = [DT

i j]p×p,

Sp = [BT

i j ⊗Ai j +(DT

i j ⊗Ci j)Pnm]p×p.

Then the block-matrix star product is defined as

X ⋆Y =











X1

X2

...

X p











⋆











Y 1

Y 2

...

Y p











=











X1Y 1

X2Y 2

...

X pY p











,

SA ⋆X =











A11X1 A12X2 · · · A1pX p

A21X1 A22X2 · · · A2pX p

...
...

...

Ap1X1 Ap2X2 · · · AppX p











,

SA ⋆SB =











A11B11 A12B12 · · · A1pB1p

A21B21 A22B22 · · · A2pB2p

...
...

...

A21Bp1 Ap2Bp2 · · · AppBpp











.

The star product is superior to matrix multiplication, thus
AB ⋆C = A(B ⋆C) 6= (AB) ⋆C. Furthermore, the following
properties exist:

tr



















XT

j











A1 j

A2 j

...
Ap j











T










F̃1

F̃2

...

F̃ p











⋆











BT

1 j

BT

2 j

...
BT

p j





























= tr





























A1 jX jB1 j

A2 jX jB2 j

...
Ap jX jBp j











T










F̃1

F̃2

...

F̃ p





























,

∥

∥

∥

∥

∥

∥

∥

∥

∥











A1 j

A2 j

...
Ap j











T










F̃1

F̃2

...

F̃ p











⋆











BT

1 j

BT

2 j

...
BT

p j











∥

∥

∥

∥

∥

∥

∥

∥

∥

2

≤
p

∑
i=1

‖Ai j‖
2‖Bi j‖

2

∥

∥

∥

∥

∥

∥

∥

∥

∥











F̃1

F̃2

...

F̃ p











∥

∥

∥

∥

∥

∥

∥

∥

∥

2

.

Lemma 2: Provided that the matrix Sp is full column rank,

equation (23) has unique solutions and can be given by

col[X1,X2, · · · ,X p] = (ST

pSp)
−1col[F1,F2, · · · ,F p], (24)

the corresponding homogeneous matrix equation in (23) has

unique solutions X j = 0, j = 1,2, · · · , p.

Although (24) can be used to obtain the exact solutions

of the coupled matrix equations in (23), it requires excessive

computer memory because of computing the inversion of the

large matrix ST

pSp of size (mnp)× (mnp) as the dimension

of X j increases. Thus, we need to seek an alternative way

to study the iterative solutions for (23), the details are as

follows.

According to the hierarchical identification principle, re-
gard the unknown matrices X j, j = 1,2, · · · , p, as the param-
eter matrices to be identified and decompose equation (23)
into p subsystems,















































A1 jX jB1 j = F1 −
p

∑
i=1,i 6= j

[A1iX iB1i +C1iX
T

i D1i]−C1 jX
T

jD1 j,

A2 jX jB2 j = F2 −
p

∑
i=1,i 6= j

[A2iX iB2i +C2iX
T

i D2i]−C2 jX
T

jD2 j,

...

Ap jX jBp j = F p −
p

∑
i=1,i 6= j

[ApiX iBpi +CpiX
T

i Dpi]−Cp jX
T

jDp j.

(25)

Let

∆F i(k) := F i−
p

∑
j=1

[Ai jX j(k−1)Bi j +Ci jX
T

j(k−1)Di j]. (26)

Applying the gradient search method to solve (25) gives

X j(k) = X j(k−1)+ µ











A1 j

A2 j

...
Ap j











T 







∆F1(k)
∆F2(k)

...
∆F p(k)









⋆ [B1 j,B2 j, · · · ,Bp j]
T,

j = 1,2, · · · , p. (27)

where µ > 0 is the iterative step size or convergence factor

to be given later.

Similarly, From (23) we have















































C1 jX
T

jD1 j = F1 −
p

∑
i=1,i 6= j

[A1iX iB1i +C1iX
T

i D1i]−A1 jX jB1 j,

C2 jX
T

jD2 j = F2 −
p

∑
i=1,i 6= j

[A2iX iB2i +C2iX
T

i D2i]−A2 jX jB2 j,

...

Cp jX
T

jDp j = F p −
p

∑
i=1,i6= j

[ApiX iBpi +CpiX
T

i Dpi]−Ap jX jBp j.

Using the gradient search method gives

X j(k) = X j(k−1)+ µ













DT

1 j

DT

2 j

...
DT

p j













T










∆FT

1(k)

∆FT

2(k)
...

∆FT
p(k)











⋆ [CT

1 j,C
T

2 j, · · · ,C
T

p j]
T,

j = 1,2, · · · , p. (28)

Taking the average of equations (27) and (28), we propose
the following gradient based iterative algorithm to compute
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the solutions X j(k) for (23):

X ja(k) = X j(k−1)

+µ











A1 j

A2 j

...
Ap j











T 







∆F1(k)
∆F2(k)

...
∆F p(k)









⋆ [B1 j,B2 j, · · · ,Bp j]
T, (29)

X jb(k) = X j(k−1)

+µ













DT

1 j

DT

2 j

...
DT

p j













T










∆FT

1(k)

∆FT

2(k)
...

∆FT
p(k)











⋆ [CT

1 j,C
T

2 j, · · · ,C
T

p j]
T, (30)

X j(k) =
X ja(k)+X jb(k)

2
, (31)

0 < µ < 2

{

p

∑
i=1

p

∑
j=1

‖Ai j‖
2‖Bi j‖

2 +‖Ci j‖
2‖Di j‖

2

}−1

. (32)

Theorem 2: If the coupled matrix equation in (23) has

unique solutions X j, j = 1,2, · · · , p, then the iterative solu-

tions X j(k) given by the algorithm in (29)-(32) converge

to the true solutions X j for any initial values X j(0), i.e.,

lim
k→∞

X j(k)= X j; in other words, the error matrices X j(k)−X j

converge to zero when k is infinite.

Considering the space restrictions, the proofs of Theorem

1 and 2 are omitted here, but they can be derived similarly

as in [18], [19].

Let

X(k) :=











X1(k)
X2(k)

...

X p(k)











, F :=











F1

F2

...

F p











, ∆F(k) :=











∆F1(k)
∆F2(k)

...

∆F p(k)











,

Xa(k) :=











X1a(k)
X2a(k)

...

X pa(k)











, Xb(k) :=











X1b(k)
X2b(k)

...

X pb(k)











,

X H(k) := [X1(k),X2(k), · · · ,X p(k)]
T,

FH := [F1,F2, · · · ,F p]
T,

∆FH(k) := [∆F1(k),∆F2(k), · · · ,∆F p(k)]
T,

Inp×n := [In, In, · · · , In]
T.

By using the star product properties, a more compact form

of the gradient based iterative algorithm in (29)-(31) can be

written as

Xa(k) = X(k−1)+ µST

A ⋆
{

F − [SA ⋆X(k−1)⋆SB

+SC ⋆X H(k−1)⋆SD]Inp×n

}

⋆ST

BInp×n

= X(k−1)+ µST

A ⋆∆F(k)⋆ST

BInp×n, (33)

Xb(k) = X(k−1)+ µST

DT ⋆
{

FH − (SBT ⋆X H(k−1)⋆SAT

+SDT ⋆X(k−1)⋆SCT)Inp×n

}

⋆ST

CT Inp×n

= X(k−1)+ µST

DT ⋆∆FH(k)⋆ST

CT Inp×n, (34)

X(k) =
Xa(k)+Xb(k)

2
. (35)

IV. NUMERICAL EXAMPLES

In this section, we provide two examples to validate the

effectiveness of the proposed algorithms.

Example 1 Consider the coupled matrix equation in (1)

with

A1 =

[

1 0

2 −3

]

, B1 =

[

1 2

−4 1

]

, C1 =

[

4 1

−3 5

]

,

D1 =

[

2 −1

1 2

]

, A2 =

[

5 0

−4 1

]

, B2 =

[

3 −1

2 −2

]

,

C2 =

[

−1 3

−1 2

]

, D2 =

[

3 1

−5 −1

]

,

F1 =

[

0 40

−11 3

]

, F2 =

[

20 13

8 −9

]

.

Using Lemma 2, the unique solutions of this equation can

be given by

X =

[

1 2

3 4

]

and Y =

[

2 8

−1 5

]

.

Taking X(0) = Y (0) = 10−612×2 and applying

the gradient based iterative algorithm in (15)-(22)

to compute X(k) and Y (k), the iterative errors

δ (k) :=
√

(‖X(k)−X‖2 +‖Y (k)−Y‖2)/(‖X‖2 +‖Y‖2)
versus k with different convergence factor µ is illustrated in

Fig. 1. Specially, when µ = 1/37 and k = 100, the iterative

results are

X(100) =

[

0.99991 1.99988

3.00406 4.00039

]

,

Y (100) =

[

2.00154 7.99689

−0.99511 4.99945

]

,

and δ (100) = 6.53519×10−4.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 k

δ

 µ = 1/37

 µ = 1/104

2
{

‖A1‖
2 +‖B1‖

2 +‖C1‖
2 +‖D1‖

2 +‖A2‖
2 +‖B2‖

2

+‖C2‖
2 +‖D2‖

2
}−1 = 1/104

Fig. 1. The errors δ (k) versus k of Example 1

As depicted in Fig. 1, the error δ (k) decreases and con-

verges to zero as k increases, which verifies the effectiveness

of the proposed algorithm. In addition, the convergence

performance associated with µ = 1/37 is better than that

associated with µ = 1/104. This indicates that the sufficient

condition given in (22) to ensure the convergence of the

algorithm is very conservative, and how to choose an optimal

convergence factor is the focus of our future work.
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Example 2 Consider a general coupled matrix equation with

the form of (23), where the coefficient matrices Ai j, Bi j, Ci j,

Di j, F i and the unique solution X j with i = 1,2 and j = 1,2
are given by

A11 =

[

1 0

2 −1

]

, B11 =

[

3 1

2 −1

]

, C11 =

[

1 0

4 1

]

,

D11 =

[

2 −1

1 1

]

, A12 =

[

1 2

−1 2

]

, B12 =

[

1 2

−1 2

]

,

C12 =

[

2 −3

0 2

]

, D12 =

[

2 −1

1 2

]

, A21 =

[

0 1

3 −1

]

,

B21 =

[

1 1

3 −5

]

, C21 =

[

0 −1

2 1

]

, D21 =

[

3 −1

2 1

]

,

A22 =

[

−1 3

−1 2

]

, B22 =

[

−2 3

−1 3

]

, C22 =

[

−1 1

−7 0

]

,

D22 =

[

1 1

−1 0

]

, F1 =

[

−63 23

61 9

]

, F2 =

[

4 −7

23 −24

]

,

X1 =

[

1 2

3 4

]

, X2 =

[

2 8

−1 5

]

.

The gradient based iterative algorithm in (29)-(32) for ini-

tial values X1(0) = X2(0) = 10−612×2 is applied to solve this

coupled matrix equation. For different convergence factor

µ = 1/1470 and 1/185, the simulation results are shown

in Fig. 2.
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 k

δ

 µ = 1/185

 µ = 1/1470

{

2

∑
i=1

2

∑
j=1

‖Ai j‖
2‖Bi j‖

2 +‖Ci j‖
2‖Di j‖

2

}−1

= 1/1470

Fig. 2. The errors δ (k) versus k of Example 2

From Fig. 2, we can see that the convergence rate of the

algorithm depends on the convergence factor µ , and a larger

value leads to a faster rate. For µ = 1/185, we have

X(300) =

[

1.00000 1.99994

3.00024 3.99986

]

,

Y (300) =

[

2.00000 8.00001

−1.00005 4.99996

]

,

and δ (300) = 2.62284×10−5.

V. CONCLUSIONS

The gradient based iterative algorithms are developed to

solve the general coupled matrix equations with real coef-

ficients by applying the hierarchical identification principle

and the gradient search method. The given simulation results

well demonstrate that the proposed algorithms have good

convergence properties and high accuracy. Moreover, the

problem studied in this paper is quite general, thus the

proposed algorithms are also applicable to solving its special

cases, such as ones in [18], [19].

The basic idea of the proposed algorithm can be applied

to study identification problems of time-varying systems

[38], nonlinear systems [39]–[43], dual-rate/multirate sys-

tems [44]–[67], as well as to design filters [68].
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