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Abstract— We try to stabilize steady solutions of physical
models described by a class of first-order linear partial dif-
ferential equations with nonlinear boundary conditions. These
systems are distributed parameter systems in which ideal
turbulence, introduced by Sharkovsky et al., occurs. In this
report, using the method of characteristics, we design a control
law to stabilize equilibrium solutions and synchronize a pair of
the distributed parameter systems.

I. INTRODUCTION

Ideal turbulence, which is the notion introduced by

Sharkovsky et al. [1], [2], is a complex phenomenon that

occurs in distributed parameter systems (DPSs) induced,

in particular, by boundary value problems for hyperbolic

partial differential equations (PDEs). In systems having ideal

turbulence, one can often observe cascade processes of

emergence of structures of decreasing scales or processes

that even lead to stochastization of the systems. From this

viewpoint, ideal turbulence is considered to be a good notion

to understand features of real turbulence mathematically.

Recently, controlling spatiotemporal chaos has attracted

great interest. In fact, the dynamics of spatiotemporal sys-

tems is often quite complicated and produces rich patterns

with respect to time and space, which cannot be captured

by low-dimensional dynamics. Therefore, it is natural and

important to extend approaches to controlling chaos of

low-dimensional dynamics to the high-dimensional case.

The investigations of controlling spatiotemporal chaos have

been carried out in several aspects, e.g., controlling spatio-

temporal chaos in coupled map lattices [3], synchronizing it

in PDEs [4], anti-controlling (i.e. generating chaotic behav-

ior) for systems described by hyperbolic PDEs [5], and so

on. In [6], [7], for a class of physical models described by

a linear wave equation with nonlinear boundary conditions,

especially, for time-delayed Chua’s circuits [1], we try to

stabilize steady solutions, which mean equilibrium solutions

and periodic solutions, and synchronize a pair of the circuits

by using d’Alembert’s solution.

The contribution in this paper is to extend the results

for the linear wave equation systems in [7] to that for

systems described by first-order linear hyperbolic PDEs
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whose coefficients depend on spatial coordinate. To this end,

we use the method of characteristics. The method of char-

acteristics is a geometric solution method for a certain class

of DPSs, especially, first-order hyperbolic PDE systems [8].

The feature of hyperbolic PDEs is the existence of infinite-

dimensional modes of nearly the same amount of energy;

hence, it cannot be accurately represented by a finite number

of modes. On the other hand, the method of characteristics is

a strong tool for hyperbolic PDEs, since this method does not

include any approximation such as discretization. Actually, in

chemical engineering, the method of characteristics has been

used for designing control law to develop the performance

of the processes [9]–[11]. Furthermore, in literature [12]–

[14], boundary conditions to stabilize equilibria in hyperbolic

PDE systems have been investigated by using the method of

characteristics with Riemann coordinates. Our technique is

similar to [12]–[14] in the sense of designing a controller at

the boundary. It should, however, be stressed that we consider

the PDE systems having nonlinear boundary conditions,

which generate complex phenomena like ideal turbulence.

Focusing on the nonlinear structure caused by the boundary

conditions and using chaos control techniques (e.g., [15]),

we design control laws not only to globally stabilize the

equilibrium solutions but also synchronize such systems.

II. IDEAL TURBULENCE AND THE METHOD OF

CHARACTERISTICS

Ideal turbulence is a spatio-temporal vibration phe-

nomenon which has quite intricate geometrical structure after

the time evolution. The mathematical definition is given by

Sharkovsky [1]: for an initial state, if the ω-limit set of it

contains at least a fractal function, or at least a random

function, then the initial state is said to generate ideal

turbulence, or stochastic ideal turbulence, respectively. In

this section, an example of systems in which ideal turbulence

occurs is introduced.

A. Time-delayed Chua’s circuit

Let us consider a lossless transmission line with Chua’s

diode [16] as shown in Fig. 1(a).

Initial and boundary value problem (IBVP): The transmis-

sion line is denoted by a wave equation
{

L ∂ti+ ∂xv = 0
C ∂tv + ∂xi = 0

, x ∈ [−l, l], t ∈ R+, (1)

and has boundary conditions

v(−l, t) = 0, t ∈ R+, (2)

i(l, t) = G(v(l, t)−Ri(l, t)− E), t ∈ R+, (3)
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Fig. 1. (a) Lossless transmission line with Chua’s diode; (b) The voltage-
current characteristic of Chua’s diode; Here vR and iR are the voltage and
the current, applied to the diode, respectively.

where E denotes a bias voltage, and G represents the

voltage-current characteristic of Chua’s diode given as fol-

lows (see Fig. 1(b)).

G(ξ) = m1ξ +
1

2
(m0 −m1)[|ξ +Bp| − |ξ −Bp|].

For the wave equation (1), by mean of a variable transfor-

mation

v = p− q, i = (p+ q)/Z,

we derive PDEs whose new variables p, q are separated.

{
∂tp+ ν ∂xp = 0
∂tq − ν ∂xq = 0

, x ∈ [−l, l], t ∈ R+. (4)

Here, Z and ν are the characteristic impedance and the

propagation velocity of the transmission line, and given by

Z =
√

L/C and ν = 1/
√
LC, respectively.

In general, first-order PDEs are solvable by using the

method of characteristics. For (4), introducing parameters r,

s ∈ R and integrating the following coupled ordinary differ-

ential equations (ODEs) with appropriate initial conditions

dt

dr
= 1,

dx

dr
= ν,

dp

dr
= 0, (5)

dt

ds
= 1,

dx

ds
= −ν,

dq

dr
= 0, (6)

we can find solutions of the PDE (4). ODEs (5) and (6) have

trajectories each of which takes constant values along lines

t − x/ν = const. and lines t + x/ν = const., respectively.

Hence, the general solutions of Eq. (4) can be represented

by using some functions α, β : [0,∞) → R as follows.

p(x, t) = α(t− (x− l)/ν), q(x, t) = β(t+ (x+ l)/ν).

Then, we have

{
v(x, t) = α (t− (x− l)/ν)− β (t+ (x+ l)/ν) ,
i(x, t) = 1

Z
[α (t− (x− l)/ν) + β (t+ (x+ l)/ν)] .

(7)

Substituting (7) for the boundary conditions (2) and (3), we

get a difference equation (DE) with continuous argument:

{
α(t+ 2l/ν) = β(t),
β(t+ 2l/ν) = f (α(t)) ,

(8)

where f is described as follows.

f(η) =





A1η −B−1, η − E
2 < −δ,

A0η −B0, |η − E
2 | ≤ δ,

A1η −B1, η − E
2 > δ,

(9)

A0=
m0(Z−R)−1
m0(Z+R)+1 , B0=

m0EZ
m0(Z+R)+1 ,

A1=
m1(Z−R)−1
m1(Z+R)+1 , B−1=

[m1E−(m1−m0)Bp]Z
m1(Z+R)+1 ,

B1=
[m1E+(m1−m0)Bp]Z

m1(Z+R)+1 , δ=
[m0(Z+R)+1]Bp

2 .

Eliminating α from Eqs. (8), we obtain

β (t+ 4l/ν) = f (β (t)) , t ≥ 0. (10)

Initial conditions v(x, 0) = ϕ(x), i(x, 0) = ψ(x) for the

IBVP give an initial condition β(τ), τ ∈ [0, 4l/ν] for DE

(10) as follows.

β ((x+ l)/ν) = [−ϕ(x) + Zψ(x)]/2, x ∈ [−l, l],
β (−(x− 3l)/ν) = [ϕ(x) + Zψ(x)]/2, x ∈ [−l, l].

(11)

Then, the solution for (11) is uniquely determined by (10):

β(τ)=fn (β (τ−4nl/ν)) , 4nl/ν≤τ <4(n+1)l/ν, n∈N,

which provides the corresponding solution for the IBVP as

follows:
(

v(x, t)
i(x, t)

)
=

(
fλ(β(µ))− fλ+1(β(µ))

fλ(β(µ)) + fλ+1(β(µ))/Z

)
,

λ ∈ N s.t. ν
4l

(
t− x

ν

)
− 1

4 < λ ≤ ν
4l

(
t− x

ν

)
+ 3

4 ,

µ = t− x
ν
− (4λ−3)l

ν
∈
[
0, 4l

ν

]
.

Thus, the time evolution of the distributed parameter system

can be described by one-dimensional map f . Then we can

investigate various properties of the original system, includ-

ing the asymptotic behavior of it, by the map f . Sharkovsky

et al. have proven the following theorem [1].

Theorem 1 (i) There occurs ideal turbulence if the map f
has an attracting periodic orbit with period m > 2.

(ii) There occurs stochastic ideal turbulence if the map f
has no attracting periodic orbits.

Set the parameters of the circuit to m0 = −1.5[1/kΩ],

m1 = 20[1/kΩ], Z = 0.51[kΩ], 2l/ν = 400[ns], R =
0.05[kΩ], Bp = 3.5[V] and E = 3[V]. Then f does not have

any stable periodic orbit and the behavior becomes chaotic.

Therefore, stochastic ideal turbulence occurs. Figure 2 shows

the time evolution of the distribution of the voltage for time-

delayed Chua’s circuit with the above parameters, where a

smooth initial state transfers to stochastic ideal turbulence.

III. STABILIZING AN EQUILIBRIUM SOLUTION

A. System description

Let us consider an initial and boundary-value problem of

first-order linear PDEs with input u(t) at a boundary x = −l
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Fig. 2. Stochastic ideal turbulence: This figure shows the time development
of the voltage distribution in the transmission line.

as follows.




∂tp+ a(x) ∂xp = 0, x ∈ [−l, l],
∂tq − a(x) ∂xq = 0, x ∈ [−l, l],
H1(p(−l, t), q(−l, t), p(l, t), q(l, t), u(t)) = 0,
H2(p(−l, t), q(−l, t), p(l, t), q(l, t), u(t)) = 0,
p(x, 0) = ϕ(x),
q(x, 0) = ψ(x).

(12)

Here, a is a scalar function satisfying that a(x) > 0, x ∈
[−l, l], and H1, H2 are boundary conditions. Moreover, we

assume that we can observe the boundary values p(l, t) and

q(−l, t) (i.e., the incoming-flow values into the right and the

left boundaries, respectively) as the output of the system.

For ordinary differential equations

dx/dt = a(x), dx/dt = −a(x),

denote the flows as

φa : R+ × [−l, l] → [−l, l], φ−a : R+ × [−l, l] → [−l, l].

Then, according to the method of characteristics, variables

p and q in the first and second equations in IBVP (12) take

constant values along these flows in the region (−l, l). For

the flow φa, the time interval T , which is taken to reach to

the boundary x = l from the opposite boundary x = −l, is

a root of an equation with respect to t:

l = φa(t,−l).

Due to the monotonicity of the flow ( a(x) > 0 ), this is

uniquely determined. In a similar way, the time interval taken

for the flow φ−a to reach to x = −l from x = l is also T .

Therefore, it turns out that

p(−l, t) = p(l, t+ T ), q(l, t) = q(−l, t+ T ).

Substituting the above representation for the boundary con-

ditions in (12), we have
{

H1(p(l, t+ T ), q(−l, t), p(l, t), q(−l, t+ T ), u(t)) = 0,
H2(p(l, t+ T ), q(−l, t), p(l, t), q(−l, t+ T ), u(t)) = 0.

Now we consider the following assumption for IBVP (12).

Assumption 1 The above simultaneous equations can be

solved with respect to p(l, t+T ) and q(−l, t+T ), and written

by continuous functions Ĥ and Ȟ as follows.
{

α(t+ T ) = Ĥ(α(t), β(t), u(t)),
β(t+ T ) = Ȟ(α(t), β(t), u(t)).

(13)

Here, for the sake of simplicity, we use α(t) = p(l, t) and

β(t) = q(−l, t).

(13) is a difference equation with continuous argument.

There exists a lot of nonlinear boundary conditions satisfying

this assumption: e.g., when the boundary conditions H1, H2

are defined by piecewise affine functions such as Chua’s

diode, the form (13) can be derived.

From the initial functions ϕ, ψ for (12), we have sets

Iα := {α(t) | 0 ≤ t ≤ T}={ϕ(φa(−t, l)) | 0 ≤ t ≤ T},
Iβ := {β(t) | 0 ≤ t ≤ T}={ψ(φ−a(−t,−l)) | 0 ≤ t ≤ T},
as initial sets for the difference equation (13). For all time

t, the values α(t) and β(t), i.e., the values at the bound-

aries, p(l, t) and q(−l, t), are calculated by (13) with these

initial sets. Meanwhile, the states in the inner of the region

[−l, l], p(x, t) and q(x, t), are uniquely determined from the

boundary-values. This is because these states take constant

values along the flows φa and φ−a.

Let us consider a two-dimensional discrete-time dynamical

system
{

αn+1 = Ĥ(αn, βn, un),
βn+1 = Ȟ(αn, βn, un),

(14)

which corresponds to (13). In the following sections, we try

to design a control law to stabilize an equilibrium solution

of (12) using (14).

B. Equilibrium solutions and the stability

For solutions of (12), (p q)T : [−l, l] × R+ →
R

2, which take temporally-constant distributed-values, that

is, solutions (p∗ q∗)T satisfying that (p∗ q∗)T(x, t) =
(p∗ q∗)T(x, 0), x ∈ [−l, l] for all t ≥ 0, let us call such

solutions equilibrium solutions. For an equilibrium point of

the discrete-time system (14), (α∗ β∗)T ∈ R
2, we find that

a pair of functions given by

p∗(x, t) ≡ α∗, q∗(x, t) ≡ β∗,

is an equilibrium solution for Eq. (12) without input.

Now, define a norm || · || on the function space

C0([−l, l],R2) by
∣∣∣
∣∣∣(p q)

T
∣∣∣
∣∣∣ = sup

x∈[−l,l]

(|p(x)|+ |q(x)|).

Using this norm, we give the definition of the stability of the

equilibrium solution as follows.

Definition 1 An equilibrium solution r∗ = (p∗ q∗)T of the

system (12) is said to be stable if, for all ε > 0, there exists a

δ > 0 such that, for any solutions satisfying ||(p q)T(·, 0)−
r∗|| < δ, we have ||(p q)T(·, t)− r∗|| < ε for all t > 0.

Definition 2 An equilibrium solution r∗ = (p∗ q∗)T of

the system (12) is said to be globally asymptotically stable
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if it is stable and, for any initial condition r, we have

limt→∞ ||(p q)T(·, t)− r∗|| = 0.

C. Stabilizing the equilibrium solution

In this section, we tackle the following problem.

Problem: For the system (12), design a control law

u(t) = u(p(l, t), q(−l, t))

that stabilizes an equilibrium solution (p∗ q∗)T of (12) by

using only the boundary values.

The basic idea is not to design a control law for controlling

the state (p q)T directly, but to keep α(t) and β(t) in the

neighborhood of α∗ and β∗, respectively. At first, for (14),

we design a control law to converge (αn, βn) to (α∗, β∗),
and then, apply the control law to the original system (12).

The following two propositions guarantee the validity of this

strategy.

Proposition 1 Assume that, for the discrete-time system (14)

there exists a state feedback law un = ū(αn, βn) such

that, for the equilibrium point (α∗ β∗)T, ū locally stabilizes

(α∗ β∗)T (that is, for all ε > 0, there exist a δ > 0
and a state feedback input {un = ū(αn, βn)} such that,

if |(α0 β0)
T − (α∗ β∗)T| < δ, we have |(αn βn)

T −
(α∗ β∗)T| < ε for all n > 0.). Then, using this control

law ū for the IBVP (12) as follows,

u(t) := ū(α(t), β(t)) = ū(p(l, t), q(−l, t)), (15)

the equilibrium solution (p∗, q∗)T of the IBVP is locally

stabilized.

Proposition 2 If the equilibrium point of (14) can be glob-

ally asymptotically stabilized by a state feedback law un =
ū(αn, βn), then, by letting u(t) = ū(α(t), β(t)), the equilib-

rium solution of the IBVP (12) can be globally asymptotically

stabilized.

Proofs are given in Secs. A and B.

Remark 1 For many low-dimensional discrete-time chaotic

systems, it is possible to globally stabilize equilibrium points

by conventional chaos control schemes [17]. From the propo-

sition, if an IBVP induces such a low-dimensional system

to which existing control methods can be applied, then, for

the IBVP, we can also use the control methods as boundary

inputs. Therefore, one finds that the class of IBVPs such that

their equilibrium solutions can be globally stabilized is large.

D. Applications: Stabilization of an equilibrium solution of

time-delayed Chua’s circuit with an inhomogeneous trans-

mission line

For time-delayed Chua’s circuit introduced in Sec. II-A,

consider stabilizing an equilibrium solution of the system

with control input at the boundary x = −l. In this section,

assume that the parameters of the transmission line of time-

delayed Chua’s circuit depend on the space coordinate x,

that is, C(x) and L(x), and the characteristic impedance
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Fig. 3. Controlling stochastic ideal turbulence in an inhomogeneous
transmission line: Stabilising an equilibrium solution.

however takes a constant value (does not depend on x,

i.e., Z =
√

L(x)/C(x) =const.). Then, using the same

variable transformation as Sec.II-A, we can describe this

system as (12). Here, a(x) = 1/
√

C(x)L(x). The voltage

and current signals propagate with non-constant velocity in

the transmission line.

Let the boundary condition at x = −l be

v(−l, t) = u(t), t ∈ R+.

Then we get the following difference equation with contin-

uous argument, where f is defined by Eq. (9).
{

α (t+ 2l/ν) = β(t) + u(t)
β (t+ 2l/ν) = f(α(t))

, t ≥ 0. (16)

The discrete-time system
{

αn+1 = βn + un

βn+1 = f(αn)
, n = 0, 1, · · · (17)

has an equilibrium point (α∗, β∗) = (B0/(1−A0), B0/(1−
A0)). For (17), a state feedback law

un = ū(βn) = −βn + β∗,

make the equilibrium point globally asymptotically stable.

Therefore, for (16), by using the corresponding control law

u(t) = ū(β(t)) = −β(t) + β∗,

the equilibrium solution of the IBVP can be globally asymp-

totically stabilized. In fact, the variable β(t) is represented

as β(t) = (−v(−l, t) + Zi(−l, t))/2. Hence, the input can

be given only by the boundary states, and written as follows.

u(t) = [v(−l, t)− Zi(−l, t)]/2 + β∗, t ∈ R+. (18)

Fig. 3 shows a simulation result using time-delayed Chua’s

circuit with an inhomogeneous transmission line, where we

set C(x) = 1/(10x + 11)[nF/m] and L(x) = 0.26/(10x +
11)[mH/m]. From Fig. 3, we can see that a complicated

initial state converges to the equilibrium solution.
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IV. SYNCHRONIZATION

We show that two identical hyperbolic PDE systems can

be synchronized by using the same strategy mentioned in

Secs. III. Consider two identical systems except for inputs.

Define them as a master Σ and a slave Σ̃ by

Σ :





∂tp+ a(x) ∂xp = 0, x ∈ [−l, l],
∂tq − a(x) ∂xq = 0, x ∈ [−l, l],
H1(p(−l, t), q(−l, t), p(l, t), q(l, t), 0) = 0,
H2(p(−l, t), q(−l, t), p(l, t), q(l, t), 0) = 0,

Σ̃ :





∂tp̃+ a(x) ∂xp̃ = 0, x ∈ [−l, l],
∂tq̃ − a(x) ∂xq̃ = 0, x ∈ [−l, l],
H1(p̃(−l, t), q̃(−l, t), p̃(l, t), q̃(l, t), u(t)) = 0,
H2(p̃(−l, t), q̃(−l, t), p̃(l, t), q̃(l, t), u(t)) = 0.

Assume that each system can be reduced to a difference

equation with continuous argument in the same way as

Sec.III as follows.

Σ :

(
α(t+ T )
β(t+ T )

)
=

(
Ĥ(α(t), β(t))
Ȟ(α(t), β(t))

)
=:F (α(t), β(t)) ,

Σ̃ :

(
α̃(t+ T )

β̃(t+ T )

)
= F

(
α̃(t), β̃(t)

)
+Bu(t).

Consider discrete-time systems corresponding to the above

difference equations:

(αn+1 βn+1)
T = F (αn, βn), (19)

(α̃n+1 β̃n+1)
T = F (α̃n, β̃n) +Bun. (20)

Now, we design a control law to synchronize these discrete-

time systems (19), (20) based on [15]. At first, we evaluate

the error between the states of two systems by using an

appropriate function h as follows.

Dn := h(α̃n, β̃n)− h(αn, βn).

Next, we give a control law using a constant gain K:

un = KDn = K
[
h(α̃n, β̃n)− h(αn, βn)

]
.

If F + BKh is a contractive map, then the systems (19),

(20) can be synchronized.

For the original systems Σ, Σ̃, we give a control law using

the above K and h as follows.

u(t) = K
[
h(α̃(t), β̃(t))− h(α(t), β(t))

]
. (21)

A. An application to time-delayed Chua’s circuits

In the rest of this paper, we try to synchronize a pair of

identical time-delayed Chua’s circuits with the inhomoge-

neous transmission lines:

Σ :





L(x)∂ti+ ∂xv = 0, C(x)∂tv + ∂xi = 0
v(−l, t) = 0,
i(l, t) = G(v(l, t)−Ri(l, t)− E)

Σ̃ :





L(x)∂tĩ+ ∂xṽ = 0, C(x)∂tṽ + ∂xĩ = 0
ṽ(−l, t) = 0,

ĩ(l, t) = G(ṽ(l, t)−Rĩ(l, t)− E + u(t)) + w(t).

Here, u(t) and w(t) represent a voltage input and a current

input, respectively, and C(x) = 1/(10x+11)[nF/m], L(x) =

0.26/(10x+11)[mH/m]. . Thus, in this section, we consider

that the inputs of slave Σ̃ are given at the boundary x = l,
and show that the control strategy used for the stabilization

of the equilibrium solution can be also used even if the

circuit has control ports at x = l. Using the method of

characteristics and letting u(t) = (Z + R)w(t), we derive

difference equations as follows.

(α(t+2l/ν) β(t+2l/ν))
T
= (β(t) f(α(t)))

T

(
α̃(t+2l/ν) β̃(t+2l/ν)

)T

=

(
β̃(t) f(α̃(t))+

Z

Z +R
u(t)

)T

Consider discrete-time systems corresponding to the above

difference equations:

(αn+1 βn+1)
T
= (βn f(αn))

T
(22)

(
α̃n+1 β̃n+1

)T

=
(
β̃n f(α̃n)

)T

+

(
0

Z

Z +R

)T

un (23)

and give the input un by

un = K(h(α̃n)− h(αn)).

Letting K = (Z +R)/Z and choosing the function h as

h(η)=





(A0 − a)δ, η ≤ −δ + E/2,
(a−A0)(η − E/2), −δ + E/2 < η < δ + E/2,
(a−A0)δ, η ≥ δ + E/2,

where a is a constant number that is less than 1, the function

f+ Z
Z+R

·Kh becomes a contraction map. Hence, the systems

(22) and (23) eventually synchronize. Finally, for the slave

Σ̃, by letting

u(t)=K(h(α̃(t))− h(α(t)))

=
Z +R

Z

[
h

(
ṽ(l, t)+Zĩ(l, t)

2

)
−h

(
v(l, t)+Zi(l, t)

2

)]
,

the distributed voltages and currents in transmission lines of

Σ and Σ̂ can be synchronized. The top and third figures

in Fig. 4 show initial states and states after 3960[ns],

respectively. Moreover, the second and the fourth figures

show the difference between them. Comparing the bottom

figure with the second one, it can be seen that the states are

synchronizing although the initial states are quite different.

V. CONCLUSIONS

In this report, for a class of infinite-dimensional dynamical

systems described by a first-order linear PDE with nonlinear

boundary conditions, a control method to stabilize equi-

librium solutions has been proposed by using the method

of characteristics. Even if ideal turbulence occurs in such

a system, it has been confirmed that the stabilization is

accomplished only by boundary inputs. We have also applied

the proposed method to time-delayed Chua’s circuits, and

shown by numerical simulation that equilibrium solutions

are stabilized and two identical circuits can be synchronized.

Thus, this paper extended the control method for a linear

wave equation systems in [7] to that for first-order linear hy-

perbolic PDE systems whose coefficients depend on spatial

coordinate.
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Fig. 4. Synchronization of two time-delayed Chua’s circuits: In the top
and the third figures, solid lines and broken lines mean v(x, l) and v̂(x, l),
respectively; The second and fourth figures show the difference between the
master and slave.
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[13] J.-M. Coron, B. d’Andréa, and G. Bastin, “A strict Lyapunov function
for boundary control of hyperbolic systems of conservation laws,”
IEEE Trans. on Automatic Control, vol. 52, no. 1, pp. 2–11, 2007.

[14] C. Prieur, J. Winkin, and G. Bastin, “Robust boundary control of
systems of conservation laws,” Mathematics of Control, Signals and

Systems, vol. 20, pp. 173–197, 2008.

[15] T. Ushio, “Chaotic synchronization and controlling chaos based on
contraction mappings,” Phys. Lett. A, vol. 198, pp. 14–22, 1995.

[16] L. O. Chua, “Chua’s circuit 10 years later,” Int. J. of Circuit Theory

and Applications, vol. 22, pp. 279–305, 1994.
[17] S. Boccaletti, C. Grebogi, Y. C. Lai, H. Mancini, and D. Maza, “The

control of chaos: theory and applications,” Physics Reports, vol. 329,
pp. 103–197, 2000.

APPENDIX

A. A proof of Proposition 1

Define the ε-neighborhood around a point (y1 y2)
T in R

2

by Vε(y1, y2) =
{
(z1 z2)

T
∣∣ |(z1 z2)

T − (y1 y2)
T| < ε

}
. If

the initial sets of (13) satisfy1 {
(
α(τ) β(τ)

)T}τ∈[0,T ) ⊂
Vδ(α

∗, β∗), then, under the control law ū, it turns out that

{
(
α(nT + τ) β(nT+τ)

)T}τ∈[0,T ) ⊂ Vε(α
∗, β∗), n=1, 2,· · ·.

Therefore, for all t ≥ 0, we have {
(
α(t) β(t)

)T}t>0 ⊂
Vε(α

∗, β∗).
While we have confirmed that the states at boundaries of

(12) keep taking values in the neighborhood of (α∗ β∗)T,

the states of the interior of the distributed system are consid-

ered as below. Reviewing the ordinary differential equation

dx/dt = a(x), we find that the time κ, which a state

x ∈ [−l, l] spends to reach to the boundary l, one-to-one

corresponds to the state x due to the monotonicity(, where

0 ≤ κ ≤ t1). From this viewpoint, we can define a map

Ta : x 
→ Ta(x) = κ. Using the method of characteristics,

we find that p(x, t) = p(l, t + Ta(x)) = α(t + Ta(x)).
In a similar way, for the equation dx/dt = −a(x), by

defining a map T−a giving the cost time which a state

x ∈ [−l, l] spends to reach to the boundary −l, we have

q(x, t) = q(−l, t+T−a(x)) = β(t+T−a(x)). Consequently,

it turns out that, for all t,
∥∥(p q)T(·, t)−(p∗ q∗)T

∥∥= sup
x∈[−l,l]

(|p(x,t)−p∗|+|q(x,t)−q∗|)

≤ sup
x∈[−l,l]

|α(t+Ta(x))−α∗|+ sup
x∈[−l,l]

|β(t+T−a(x))−β∗|<2ε.

B. A proof of Proposition 2

The local stability of the equilibrium solution is guaranteed

by Proposition 1. Here, we confirm that each trajectory with

an arbitrary initial condition converges to the equilibrium

solution. From the global asymptotically stability of (14), for

each element (α0, β0) in the initial sets and all ε > 0 there

exists a N = N((α0, β0), ε) < ∞ such that |(αn βn)
T −

(α∗ β∗)T| < ε for all n ≥ N . Since the initial sets are

bounded, there exists a maximal value of N , Ñ , when one

fixes ε and varies the value (α0, β0) in the initial sets.

Therefore, we have |(α(t) β(t))T−(α∗ β∗)T| < ε, t ≥ ÑT.
Consequently, it turns out that
∣∣∣∣(p q)T(·, t)− (p∗ q∗)T

∣∣∣∣
≤ sup

x∈[−l,l]

|α(t+ Ta(x))−α∗|+ sup
x∈[−l,l]

|β(t+ T−a(x))−β∗|

→ 0 (as t → ∞),

and hence, the equilibrium solution of (12) is globally

asymptotically stable.

1Actually, it is possible when the initial function (ϕ ψ)T of (12) is
enough close to the equilibrium solution (p∗ q∗)T.
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