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Abstract— Iterative learning control is concerned with track-
ing a reference trajectory defined over a finite time duration,
and is applied to systems which perform this action repeatedly.
In this paper iterative learning schemes are developed to ad-
dress the case in which the output is only critical at certain time
instants. This freedom makes it possible to incorporate both
hard and soft constraints into the control scheme. Experimental
results confirm practically and performance.

I. INTRODUCTION

Iterative Learning Control (ILC) is applicable to systems

which repeatedly track a reference, yd(t), defined over a

finite interval 0 ≤ t ≤ T . In many applications, however,

the goal is to repeatedly follow a motion profile in which

the system output is only critical at a finite set of prescribed

time instants. Examples include production line automation,

crane positioning, and robotic ‘pick and place’ tasks. Instead

of tracking yd(t), strategies for point-to-point ILC typically

involve the generation of a more suitable motion profile,

ŷd(t), in advance. The standard ILC framework is clearly

able to tackle such problems simply by using ŷd(t). Since

tracking performance at times between those important time

instants is not specified, extra freedom can be gained in

ILC design, allowing additional performance demands to be

addressed. In particular, when soft and hard constraints are

considered, point-to-point ILC may lead to a feasible solution

while the original system is infeasible for those constraints.

In [1], [2], [3] ILC was employed in point-to-point motion

control to suppress residual vibrations, but these involved

design of a static reference over 0 ≤ t ≤ T . In contrast,

Terminal ILC required only an end-point demand, employing

a time-invariant input vector [4]. These approaches, however,

are formulated for a single point-to-point movement, as

opposed to a multiple sequence of point-to-point movements.

Moreover, they cannot simultaneously address general forms

of objective function, such as minimizing the norm of the

input, output or states, or their derivatives. These drawbacks

were overcome in [5] where an approach to multiple point-

to-point ILC was developed. Here tracking was only required

over an arbitrary set of time points, with the reference

comprising the corresponding output values to be tracked.

This simplified design and implementation, and allowed

soft constraints to be specified in response to performance

requirements. However, hard constraints are generally more

critical and arise due to actuator saturation, physical limi-

tations, or imposed safety restrictions. This paper therefore

C. Freeman is with the School of Electronics and Computer
Science, University of Southampton, Southampton, SO17 1BJ, UK.
cf@ecs.soton.ac.uk. Y. Tan is with the Electrical and Electronic
Engineering Department, University of Melbourne, Parkville, VIC 3010,
Australia. y.tan@ee.unimelb.edu.au

focuses on hard input constraints and shows how they can be

addressed in the ILC point-to-point framework, either alone,

or in combination with soft constraints.

II. PROBLEM FORMULATION

The set of real numbers is denoted as R, and the set of

integers as N. The symbol k denotes the trial number and

k ∈ N≥0. For any vector x ∈ R
n, ‖x‖2 =

√
xTx. For any

matrix A ∈ R
n×n, ‖A‖2 is the induced norm of the vector

norm. Consider the following nonlinear discrete-time system

x(t + 1) = f (x(t),u(t))
y(t) = h (x(t),u(t)) x(0) = x0

(1)

defined over the finite time interval t ∈ [0, 1, 2, . . . , N −
1]. Here f(·) and h(·) are continuously differentiable, and

x(·) ∈ R
n, u(·) ∈ R

m, y(·) ∈ R
p are the state, input and

output vectors respectively. The input and output sequences

are given by

u = [u(0)T ,u(1)T , . . . ,u(N − 1)T ]T ∈ R
mN

y = [y(0)T ,y(1)T , . . . ,y(N − 1)T ]T ∈ R
pN

The standard ILC framework constructs a series of inputs

which drives the system to track a reference sequence

yd = [yd(0)T ,yd(1)T , . . . ,yd(N − 1)T ]T ∈ R
pN

Let uk and yk be the input and output vectors respectively

on the kth trial, with ek = yd−yk the tracking error. Then it

is necessary to find a sequence of control inputs that satisfies

lim
k→∞

‖ek‖2 = 0, lim
k→∞

‖uk − ud‖2 = 0

where ud is the desired input signal corresponding to yd.

Over the kth trial the relationship between the input and

output time-series is expressed by the algebraic functions

yk(0) = h(xk(0),uk(0)) = g0(xk(0),uk(0))

yk(1) = h(xk(1),uk(1)) = h (f(xk(0),uk(0)),uk(1))
= g1 (xk(0),uk(0),uk(1))...

yk(N − 1) = h(xk(N − 1),uk(N − 1))
= h (f(xk(N − 2),uk(N − 2)),uk(N − 1))
= gN−1(xk(0),uk(0),uk(1), . . . ,uk(N − 1))

(2)

This allows a precise connection to be made between ILC

and techniques from nonlinear optimization employed sub-

sequently. Since xk(0) = x0, using the relations (2), the

system (1) can be represented by the algebraic function

g(·) : R
mN → R

pN in the following form

yk = g(uk), g(·) = [g0(·)T ,g1(·)T , . . . ,gN−1(·)T ]T . (3)
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In the point-to-point problem the plant output is specified

at a fixed number, M ≤ N , of sample instants given by

1 ≤ n1 < n2 < · · · < nM ≤ N . Let the prescribed values

of the output at these instants be yr(0),yr(1), . . . ,yr(M −
1), where yr(i) ∈ R

p. ILC can be considered an iterative

numerical solution to the problem of finding a control input

which minimizes the point-to-point error norm

min
u

J(u), J(u) = ‖yr − Φg(u)‖2
2 (4)

where the pM × pN matrix Φ has block-wise components

Φi,j =

{

Ip j = ni, i = 1, 2 . . .M
0p otherwise

(5)

where Ip and 0p are the p × p identity and zero matrices

respectively, and

yr =
[

yr(0)T ,yr(1)T , · · · ,yr(M − 1)T
]T ∈ R

pM .
(6)

The control objective is to find a sequence of control inputs

{uk} such that lim
k→∞

Φg(uk) = yr, thus minimizing the

optimization criterion (4).

As g(·) is a static mapping, the design of ILC becomes a

special case of numerical analysis in which iterative updating

laws are employed to solve a nonlinear equation. Many

numerical algorithms are available (see [6]) to solve such a

problem, and in this paper the gradient descent and Newton

methods are used. Standard approaches will also be utilised

to address additional inequality and equality constraints.

III. GRADIENT DESCENT POINT-TO-POINT ILC

The gradient descent method is frequently used to tackle

optimization problems of the form of (4), and in this case

the iterative update is

uk+1 = uk − β

2
∇uJ(uk)

= uk + β (Φg′(uk))
T

(yr − Φyk) (7)

Since (Φg′(uk))
T

(yr − Φyk) is a descent direction for

problem (4), there exists a scalar gain β > 0 which

guarantees reduction of the error norm. The rigid connection

established between the gradient descent method and ILC

ensures that the algorithm has the local property of a linear

convergence rate to zero error. The derivative g′(uk) is

equivalent to the system linearisation around uk and is

represented by the pN × mN matrix

g′(uk) =





















∂g0

∂uk(0)

∂g0

∂uk(1)
. . .

∂g0

∂uk(N − 1)
∂g1

∂uk(0)

∂g1

∂uk(1)
. . .

∂g1

∂uk(N − 1)
...

...
. . .

...
∂gN−1

∂uk(0)

∂gN

∂uk(1)
. . .

∂gN−1

∂uk(N − 1)





















(8)

since gi(·) is not a function of uk(j), j > i, the upper

triangular elements are zero.

Remark 1: The linearized system ỹ = g′(uk)ũ corre-

sponds to the linear time-varying system

x̃(t + 1) = A(t)x̃(t) + B(t)ũk(t)

ỹ(t) = C(t)x̃(t) + D(t)ũk(t) t = 0, 1, . . . , N − 1
(9)

with

A(t) =

(

∂f

∂x

)

uk(t),xk(t)

, B(t) =

(

∂f

∂u

)

uk(t),xk(t)

C(t) =

(

∂h

∂x

)

uk(t),xk(t)

, D(t) =

(

∂h

∂u

)

uk(t),xk(t)
(10)

The term (Φg′(uk))
T

(yr − Φyk) in (7) can be efficiently

generated using the co-state representation of system (9).

More specifically, it is equal to the output ỹ of the system

x̃(t + 1) = AT (t)x̃(t) + CT (t)ũ(N − 1 − t)

ỹ(N − 1 − t) = BT (t)x̃(t) + DT (t)ũ(N − 1 − t)

t = 0, 1, . . . , N − 1

(11)

with the input ũ = ΦT (yr − Φyk). �

Remark 2: If the reference is defined at every sample, then

M = N , Φ = IpN , yr = yd, and the update (7) becomes

uk+1 = uk + βg′(uk)Tek
�

Remark 3: In the special case that the underlying system

is linear time-invariant, (1) may be replaced by

x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t) t = 0, 1, . . . , N − 1
(12)

and the gradient ILC point-to-point algorithm (7) becomes

uk+1 = uk + β (ΦG)
T

(yr − Φyk) (13)

with

G =















D 0 0 · · · 0
CB D 0 · · · 0

CAB CB D · · · 0
...

...
...

. . .
...

CAN−2B CAN−3B CAN−4B · · · D















(14)

The algorithm (13) is shown in [5] to possess extremely

desirable robust convergence properties which are inherited

from its standard linear ILC counterpart

uk+1 = uk + βGT ek (15)

analyzed by several authors [7], [8], and rigorously tested

using a gantry robot facility [9], a non-minimum phase

testbed [10], and in stroke rehabilitation [11]. �

A. Inequality constraints

Consider vector inequality constraints on the system input

of the form Λu � b, where Λ ∈ R
c×mN and b ∈ R

c, where

c is the number of imposed constraints. The point-to-point

problem is then

min
u

‖yr − Φg(u)‖2
2 subject to Λu � b (16)

3658



This can be solved using an interior-point approach to

inequality constrained minimisation, termed the barrier func-

tion [12]. Employing a logarithmic barrier function produces

min
u

{

‖yr − Φg(u)‖2
2 −

1

τ

c
∑

i=1

log(bi − aT
i u)

}

(17)

where ai, bi are the ith rows of Λ, b respectively. The

solution via the gradient method is

uk+1 = uk + βk (Φg′(uk))
T

(yr − Φyk) − 1

τ
ΛTd (18)

where the elements of d ∈ R
c are given by di = 1/(bi −

aT
i uk). This must be implemented with the scalar τ pro-

gressively taking larger values to result in a hard limit. An

appropriate update strategy is to select the highest value of

βk that results in a feasible input, that is

max
βk∈(0 β]

βk s.t Λ
(

uk + βk (Φg′(uk))
T

(yr − Φyk)
)

� b

(19)

and then update τk+1 according to

τk+1 =

{

ǫτk if βk = β
τk otherwise

(20)

The multiplier ǫ > 1 is chosen to effect a compromise

between convergence to the hard constraint, and robustness.

Remark 4: Since only a few points are important, it is

possible to select a modified reference ŷd such that

ŷd(t) =

{

yd(t) if t = ni, i = 1, · · · , M.
ys(t) else

(21)

where ys(t) is a smooth interpolation between yd(ni) and

yd(ni+1) which satisfies the constraints aT
i u(t) ≤ bi, ∀t ∈

(ni, ni+1). This is feasible as u(t) can be set to 0 during

the interval (ni, ni+1). Therefore, the constraints Λu(t) ≤ b

can be relaxed as ΛΦu(t) ≤ b. This implies that by using

the point-to-point ILC algorithm, the feasible region of the

optimization problem with constraints (16) is enlarged.

B. Mixed constraints

The optimization problem (4) considers only tracking

performance at the desired time instants, leading to a solution

yr = Φg(u), (22)

Depending on the number of time instants specified, there

will exist many feasible solutions for u. In addition to

inequality constraints on the input, this freedom can also

be used to tackle a wide range of other performance indices,

such as reducing the output derivative at certain times to

provide smoother movements. In particular, consider mini-

mizing a general function, p(·) ∈ R
q, of the input, output,

and states, leading to the problem

min
u

‖Wp(u,y,x)‖2
2 subject to

{

yr = Φg(u)
Λu � b

(23)

where W = diag{w1, w2, . . . , wq} is a weighting matrix.

From (1) each component of the state time series

x = [x(0)T ,x(1)T , . . . ,x(N − 1)T ]T ∈ R
nN (24)

has the form

x(0) = x0 = σ0(x(0),u(0))

x(1) = f(x(0),u(0)) = σ1(x(0),u(0))
...

x(N − 1) = f(x(N − 2),u(N − 2))

= σN−1(x(0),u(0),u(1), . . . ,u(N − 2))

(25)

so that the states can be written as an algebraic function

σ(·) : R
mN → R

nN

x = σ(u), σ(·) = [σ0(·)T , σ1(·)T , σ2(·)T , . . . ,σN−1(·)T ]T

then the vector quantity p(u,y,x) in (23) can be expressed

in terms of the input vector, u, by the time series

p(u,g(u), σ(u)) = p̃(u), p̃(·) : R
mM → R

q

Furthermore

p̃′(u) = ∇up(u,y,x) + ∇yp(u,y,x)g′(u)

+∇xp(u,y,x)σ′(u)

Following a standard approach to the equality constrained

minimization problem [12], the equality constraint in (23) is

first linearized about u to give yr = Φg′(u)u. Then take û

as any solution satisfying Φg(û) = yr and introduce F ∈
R

mN×m(N−M) satisfying

F ∈ ker(Φg′(u))

Denote J(u) := ‖Wp(u,y,x)‖2
2, then the minimization

(23) is locally replaced by the inequality constrained problem

min
z

J̃(z) = J(Fz + û)

= ‖Wp̃(Fz + û)‖2
2 s. t. Λ(Fz + û) � b

(26)

with z ∈ R
m(N−M). On trial k the applied control input uk

is then obtained from

uk = Fzk + û (27)

Applying the barrier function method to solve (26) yields

min
z

{

‖Wp̃(Fz + û)‖2
2 −

1

τ

mN
∑

i=1

log(bi − aT
i (Fz + û))

}

This has solution via the gradient method

zk+1 = zk − β∇zJ̃(zk) − 1

τ
(ΛF )Td

= zk − β(p̃′(uk)F )TW2p̃(uk)−1

τ
(ΛF )T d

where the elements of d ∈ R
c are given by di = 1/(bi −

aT
i (Fzk+û)). Within the ILC framework, p̃(uk) is replaced

with the experimentally obtained counterpart ˆ̃p(uk) to give

zk+1 = zk − β(p̃′(uk)F )TW2 ˆ̃p(uk) − 1

τ
(ΛF )T d

Over each trial this locally solves the minimization com-

ponent of the optimization problem (26), but the point-to-

point component may not be satisfied since it relies on û

continuing to satisfy Φg(û) = yr within (27) with changing

zk . This is addressed by updating û using the unconstrained

point-to-point update of (7). In addition, F must also be
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updated to ensure that the problem (23) may still be locally

replaced by (26). The final update sequence on each trial is

uk+1 =Fkzk+1 + ûk+1 (28)

zk+1 =zk − β(p̃′(uk)Fk)TW2 ˆ̃p(uk) − 1

τk+1
(ΛFk)Td(29)

ûk+1 = ûk + α (Φg′(uk))
T

(yr − Φyk) (30)

Fk ∈ ker(Φg′(uk)) (31)

As before, the scalar τ must be increased each trial in order

to produce a hard bound on the input signal. To ensure that

the constraint engages productively with the minimization

component of the update (29), we again apply the τ update

procedures of Section III-A, replacing (19) with

max
βk∈(0 β]

βk s.t Λ
(

Fk

(

zk − βk(p̃′(uk)Fk)T W2 ˆ̃p(uk)

− 1

τk

(ΛFk)Td
)

+ ûk+1

)

� b

and then applying (20) to update τ .

IV. NEWTON METHOD BASED ILC

Whilst providing a high level of robustness to plant uncer-

tainty, the gradient descent approach provides only a linear

convergence rate. This section exchanges it for the Newton

method which potentially delivers quadratic convergence.

Application to (4) gives rise to the ILC update

uk+1 = uk −∇u,uJ(uk)−1∇uJ(uk)

= uk + ((Φg′(uk))T Φg′(uk))−1(Φg′(uk))T (yr − Φyk)

= uk + (Φg′(uk))†(yr − Φyk) (32)

where (Φg′(uk))† denotes the pseudoinverse of Φg′(uk).
Since its computation involves inverse and derivative opera-

tions, the update is difficult to implement, especially for large

values of N . It may contain excessive amplitudes and high

frequencies, and, depending on the system relative degree,

g′(uk) is likely to be singular. However, it is shown in [5]

that (Φg′(uk))†(yr − Φyk) is the solution, u, to

min
u

‖u‖2
2 subject to Φg′(uk)u = yr − Φyk (33)

which is further shown to be equal to the solution to

min
u

‖yr − Φyk − Φg′(uk)u‖2
2 (34)

via the unconstrained gradient descent method of Section III

which always yields the minimum input energy solution. In

particular, the substitutions yr ⇔ yr − Φyk and g(u) ⇔
g′(uk)u are made in (4), with associated iterative update

uj+1 =uj + α (Φg′(uk))
T

(yr − Φyk − Φg′(uk)uj)
(35)

applied to the plant Φg′(uk), whose solution approximates

(Φg′(uk))†(yr−Φyk) after sufficient iterations. The number

of trials is chosen to effect a compromise between exces-

sively high amplitudes/frequencies in the update, robustness,

and subsequent performance. The total update sequence is

(a) apply input uk to the real plant and record output yk

(b) solve (34) through repeated application of (35) to the

system Φg′(uk) to obtain a suitable approximation to

(Φg′(uk))†(yr − Φyk)
(c) use the resulting input to form the next input to the

Newton update (32). Go to (a)

Remark 5: If the reference is defined at every point, then

M = N , Φ = IpN , yr = yd, and the update (32) becomes

uk+1 = uk + g′(uk)†ek (36)

with (34) becoming

min
u

‖ek − g′(uk)u‖2
2 (37)

The problem (37) now fits within the standard ILC frame-

work, with g′(uk) realized in state-space form by the system

(9). Therefore the solution to finding the input u that drives

the system to track ek can be solved by any convergent

ILC approach for linear time-varying systems. In [13] it

was assumed that the plant had an equal number of inputs

and outputs, and the Norm Optimal ILC law was employed

between each trial to solve this problem, and hence provide

the term g′(uk)†ek = g′(uk)−1ek used in the construction

of the next control input. �

A. Inequality constraints

Consider again the constrained problem (16)

min
u

‖yr − Φg(u)‖2
2 subject to Λu � b (38)

This can be solved via the Newton method by imposing the

inequality constraint in the iterative calculation of the descent

direction, (Φg′(uk))†(yr − Φyk), given by the solution to

(33). The constraint Λuk+1 � b then translates to Λu �
b − Λuk and the descent direction is given by

min
u

‖u‖2
2 subject to

{

Φg′(uk)u = yr − Φyk

Λu � b− Λuk

whose solution is then used in (32). The solution to this

mixed constraint problem can be addressed within the ILC

framework using the approach developed in Section III-B.

From previous discussion this is equivalent to applying the

gradient method to solve

min
u

‖yr−Φyk−Φg′(uk)u‖2
2 subject to Λu � b−Λuk

This is the form addressed in Section III-A, with correspond-

ing update

uj+1 = uj + α (Φg′(uk))
T

(yr − Φyk − Φg′(uk)uj) −
1

τ
ΛT d

(39)

applied to the plant Φg′(uk), where the elements of d ∈ R
c

are given by di = 1/(bi−aT
i (uj +uk)). The highest value of

α is used which results in a feasible input, and τ is updated

as in (20).

The full update sequence is therefore

(a) apply input uk to the real plant and record output yk

(b) construct suitable approximation to (Φg′(uk))†(yr −
Φyk) satisfying Λuk+1 � b when used in Newton

update (32), through repeated application of (39)

(c) use the resulting input to form the next input to the

Newton update (32). Go to (a)
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B. Mixed constraints

As in (23), introduce an additional objective function

whilst satisfying the point-to-point tracking requirement

through use of an equality constraint

min
u

‖Wp(u,y,x)‖2
2 s. t.

{

yr = Φg(u)
Λu � b

(40)

As in Section III-B, the equality constraint is first removed

by defining

F ∈ ker(Φg′(u))

which allows the problem to be locally replaced by the in-

equality constrained problem (26). The control input applied

to the plant is

uk = Fkzk + ûk (41)

where ûk and Fk are also updated to ensure the point-

to-point tracking objective is satisfied. If the inequality

constraint is omitted from (26), its solution using the Newton

method is

zk+1 = zk + (Wp̃′(uk)Fk)†W ˆ̃p(uk) (42)

where the Newton descent direction

(Wp̃
′

(uk)Fk)†W ˆ̃p(uk) is itself the solution to

min
u

‖u‖2
2 s. t. Wp̃′(uk)Fku = W ˆ̃p(uk) (43)

via the gradient method. Now solve (26) via the Newton

method by imposing the inequality constraint on (43). In

terms of the control input, on trial k + 1, the constraint

enforces Λuk+1 � b, which, assuming ûk and Fk have not

yet been updated, can be written as Λ(Fkzk+1 + ûk) � b.

In terms of the Newton descent direction, this translates to

Λ(Fk(zk + u) + ûk) � b. Hence, (43) becomes

min
u

‖u‖2
2 s. t.

{

Wp̃′(uk)Fku = W ˆ̃p(uk)

ΛFku � b− Λûk − ΛFkzk

This is equivalent to

min
u

‖W(ˆ̃p(uk) − p̃′(uk)Fku)‖2
2

s. t. ΛFku � b − Λûk − ΛFkzk

with corresponding update

uj+1 = uj + β(p̃′(uk)Fk)T W2(ˆ̃p(uk) − p̃′(uk)Fkuj)

−1

τ
((ΛFk)T d) (44)

applied to the plant Wp̃′(uk)Fk , where the elements of d ∈
R

c are given by di = 1/(bi − aT
i (Fkzk + ûk + uj)).

As previously, the term ûk in (41) must also be updated

so that the point-to-point tracking objective is satisfied with

changing zk . This is achieved using the Newton ILC update

(32) with the constraint Λ(Fkzk+1 + ûk+1) � b where we

have assumed that zk+1 has just been updated via (42) as

discussed. The unconstrained Newton ILC descent direction,

(Φg′(uk))†(yr − Φyk), in (32) is the solution to

min
u

‖u‖2
2 s. t. Φg′(u)u = yr − Φyk (45)

Fig. 1. Robotic manipulator system.

so that the corresponding required constraint is Λ(Fkzk+1 +
ûk + u) � b. This therefore produces

min
u

‖u‖2
2 s. t.

{

Φg′(u)u = yr − Φyk

Λu � b− ΛFkzk+1 − Λûk

which is equivalent to

minu ‖yr − Φyk − Φg′(uk)u‖2
2 s. t. Λu � b − ΛFkzk+1 − Λûk

with the corresponding gradient descent update

uj+1 = uj + α(Φg′(uk))T (yr − Φyk − Φg′(uk)uj) −
1

τ
(ΛT d)

(46)

applied to the plant Φg′(uk), where the elements of d ∈ R
c

are given by di = 1/(bi − aT
i (Fkzk+1 + ûk + uj)).

The total update sequence is therefore

(a) apply input uk to the real plant and record output yk

(b) construct a suitable approximation to the

term (Wp̃
′

(uk)Fk)†W ˆ̃p(uk) which satisfies

ΛFkzk+1 � b − Λûk when used in Newton update

(42), through repeated application of (44)

(c) use the resulting input to form the next update (42)

(d) construct suitable approximation to (Φg′(uk))†(yr −
Φyk) satisfying Λûk+1 � b − ΛFkzk+1 when used in

Newton update (32), through repeated application of (46)

(e) use the resulting input to form the next update (32)

(f) use the new uk+1 and zk+1 values to form the next

control input using (41). Go to (a)

The number of updates of (44) and (46) are chosen to ef-

fect a compromise between excessive amplitudes/frequencies

present in the update uk+1, robustness, and the subsequent

performance achieved.

V. EXPERIMENTAL RESULTS

The approaches developed have been tested on a six degree

of freedom anthropomorphic robotic arm whose five rotary

joints are composed of PowerCubes (Schunk GmbH & Co.)

incorporating brushless servomotors with integrated power

electronics and transmission. These communicate with a

dSPACE ds1103 control board via a CAN bus at a rate of

500 kbit/s. Results are presented for the first joint which

is aligned in the horizontal plane as shown in Fig. 1. Each

joint has been identified using frequency response tests and

includes a feedback loop to provide base-line performance.

A model of the first link has been identified as G(s) =

500985.1977(s+12.14)(s+24.01)2

(s+29.15)(s+23.07)(s+3.403)(s2+34.8s+355.4)(s2+127.4s+4310)

and a sampling time of 200Hz has been used.
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Fig. 2. Newton method-based point-to-point ILC with inequality constraint.

First the Newton approach with inequality constraints of

Section IV-A has been implemented. Constraints of −45 ≤
u(t) ≤ 60 have been employed through selection of Λ =
[I, −I]T , b = [60, 60, . . . , 60, 45, 45, . . . , 45]T in

(38). Results are shown in Fig. 2 where 25 repetitions of

(39) have been used between trials to calculate the required

descent direction appearing in (32), with a value of ǫ = 1.04
employed in the updating of τ . For comparison, results

for the unconstrained case are also shown, where (35) is

used in place of (39) (yielding the minimum input energy

solution). A high level of performance can be seen in both

cases. Next a soft constraint is applied in which the output

derivative is minimized over the period 5 ≤ t ≤ 6. In

this case p(·) = Dy in (40) where D is the differen-

tial operator, together with W = diag{0, . . . , 0, 1, . . . , 1}.

This gives p̃(u) = Dg(u), p̃′(u) = Dg′(u), and the

soft constraint component (42) becomes zk+1 = zk +
β(WDg̃′(uk)Fk)†Wẏk. Furthermore (44) becomes uj+1 =
uj+β(Dg̃′(uk)Fk)T W2(ẏk−Dg′(uk)Fkuj)− 1

τ
(ΛFk)T d)

applied to the plant WDg′(uk)Fk . Results are shown in

Fig. 3 where 25 trials of (44) are used with ǫ = 1.04 to

produce the required descent direction. It can be seen that the

point-to-point task is accomplished to high accuracy whilst

satisfying both hard and soft constraints.

VI. CONCLUSIONS AND FUTURE WORK

The requirement for point-to-point motion control arises in

many practical applications, including industrial automation,

robotics and rehabilitation engineering. It has been shown

how the ILC framework can provide solutions which exploit

the freedom available to simultaneously address both hard

constraints on the input, and soft constraints on the input,

output and states. Experimental results confirm the practical

utility and performance of the proposed approaches.

Future work will consider the inclusion of prescribed

variation in the temporal point-to-point locations to provide

more flexibility and faster convergence properties. Con-

straints linking two or more outputs will also be considered,
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Fig. 3. Newton method-based point-to-point ILC with mixed constraints.

allowing co-ordinated movements to be performed.
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