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Abstract— We consider a problem encountered when trying
to estimate a Gaussian random field using a distributed esti-
mation approach based on Gaussian graphical models. Because
of constraints imposed by estimation tools used in Gaussian
graphical models, the a priori covariance of the random field
is constrained to embed conditional independence constraints
among a significant number of variables. The problem is,
then: given the (unconstrained) a priori covariance of the
random field, and the conditional independence constraints,
how should one select the constrained covariance, optimally
representing the (given) a priori covariance, but also satisfying
the constraints? In 1972, Dempster provided a solution, optimal
in the maximum likelihood sense, to the above problem. Since
then, many works have used Dempster’s optimal covariance, but
none has addressed the issue of suitability of this covariance
for Bayesian estimation problems. We prove that Dempster’s
covariance is not optimal in most minimum mean squared error
(MMSE) estimation problems. We also propose a method for
finding the MMSE optimal covariance, and study its properties.
We then illustrate the analytical results via a numerical exam-
ple, that demonstrates the estimation performance advantage
gained by using the optimal covariance vs Dempster’s covari-
ance. The numerical example also shows that, for the particular
estimation scenario examined, Dempster’s covariance violates
the necessary conditions for optimality.

I. INTRODUCTION

Consider the Bayesian problem of estimating the random

variable X from a noisy measurement Z = X + V ,

where V ∼N(0, R) and X∼N(0, S). In the classical problem

formulation, the a priori covariance of X is known, and

has a general, unconstrained, form. Often, however, some

constraints must be imposed on the components of X ,

resulting in constraints on the a priori covariance. This

can happen, e.g., when dealing with problems of large

dimension, where it is difficult or altogether impractical to

employ the full a priori covariance of X due to limited

computation resources or limited enrolling data, or when

using estimation algorithms that impose constraints on the

covariance structure. In such cases, some constraints must

be imposed on the covariance, resulting in a modified, but

tractable, estimation problem. As a trivial example, we can

assume that some elements of X are uncorrelated, which

is equivalent to requiring that the corresponding entries of

the (constrained) covariance of X vanish. In these cases

the problem becomes: given the full (unconstrained) a priori

covariance, and the constraints imposed on the components

of X , how should one compute a constrained covariance of
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X , such that 1) it is closest (in some well defined sense) to

the full (unconstrained) a priori covariance, yet 2) it fully

satisfies the constraints?

In 1972 Dempster [1] studied the model selection (or

covariance selection) problem. In his seminal work Dempster

presents an effective method for constrained covariance se-

lection, using reduction of the number of model parameters.

The estimated (constrained) covariance was shown to be

optimal (i.e., to best approximate the original covariance,

while simultaneously satisfying the constraints) in the max-

imum likelihood sense. While seeking to reduce the number

of parameters to be estimated, Dempster showed that when

some components of the random vector X are forced to be

conditionally independent, the maximum likelihood covari-

ance takes a specific form, that facilitates the reduction of

the number of parameters.

In the following years the field of graphical model methods

has been founded. A graphical model is a probabilistic

model, in which a graph is used to denote the conditional in-

dependence structure between random variables. Dawid and

Lauritzen [2] showed that cases associated with conditional

independence properties can be effectively represented by

Gaussian graphical models. In such cases, Dempster’s results

can be applied.

Subsequently to the introduction of Dempster’s original

work [1], a number of algorithms were developed to find

Dempster’s covariance in an efficient way [3]–[7]. Other

works studied a related problem of finding the covariance

structure (selecting the independent variables) [8], [9].

In estimation applications Dempster’s maximum likeli-

hood covariance was used in a number of speech recognition

algorithms [10]. In [11] the authors use this covariance for

estimation using a generalization of the Kalman filter to tree

applications. The original Dempster covariance was used,

or implicitly assumed, in algorithms for solving estimation

problems using graphical methods, such as [12]–[15].

Perhaps surprisingly, none of the aforementioned works

has addressed the following fundamental question: is Demp-

ster’s covariance, developed for the maximum likelihood

modeling problem, also optimal for a Bayesian estimation

problem? Although many criteria exist, estimation algo-

rithms’ performance is commonly measured by the engineer-

ing community by the mean squared error (MSE) criterion.

Whereas for the Gaussian linear, non-constrained case it

is well known that the MSE and the maximum likelihood

optimization criteria are equivalent, this is not true in general.

Therefore, for more complex cases, different methods may

yield different results. Indeed, a similar question was studied
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by Eldar [16], who showed that, for low signal to noise

ratio (SNR) cases, MSE optimization yields results that

are different from those obtained by minimum variance

optimization.

In this work we study the problem of optimal covariance

selection in the MSE sense for a Bayesian estimation prob-

lem solved using Gaussian graphical models. We show that if

an estimation algorithm uses a covariance that is constrained

by the special conditional independence structure, the opti-

mal value of the MSE criterion thus achieved is superior

to that achieved by the matrix used in all previous works.

In fact, we show that, for most Bayesian estimation prob-

lems, Dempster’s covariance is not an optimal constrained

covariance. We propose a method for computing the optimal

covariance matrix, and study its properties.

The remainder of this paper is organized as follows. In

Section II we present some mathematical background. This

is followed by a definition of the problem in Section III. In

Section IV we define the optimal covariance in terms of the

solution of an optimization problem, and study its properties.

In Section V we prove that Dempster’s covariance is not

optimal in most Bayesian estimation problems of the type

dealt with herein. Section VI illustrates the analytical results

via a numerical simulation that demonstrates the benefits of

using the optimal covariance instead of Dempster’s covari-

ance. Concluding remarks are offered in the last section.

II. THEORETICAL BACKGROUND

In this section we provide some theoretical background,

and briefly review Dempster’s covariance selection problem

and its solution. We start with a presentation of some facts

from graph theory and Gaussian graphical models.

A. Gaussian Graphical Models

Let the pair G = (V , E) be a graph, where V is a group of

vertices and E is a group of edges that connect some (or all)

of the vertices from V . Let C ∈ V be a group of vertices.

C is called a clique if there exist edges in E that connect

every two vertices in C. Let C and B be two cliques in G.

The intersection of C and B, S = C∩B, is called separator.

For neighboring cliques a separator defines all vertices that

separate one clique from another.

Consider now the graph G = (V , E). For notation simplic-

ity, we extend the definition of E to include edges from every

node to itself (the diagonal entries in an adjacency matrix).

Let X ∈ R
|V| be a Gaussian random vector, such that every

component of X is associated with a corresponding entry

of V , and let fX be the pdf of X . The pair of G and fX

constitutes a Gaussian graphical model.

For sets of vertices x, y, z ⊆ V , we say that x and y

are separated by z in G if every path from x to y includes

members from z. Separation in a Gaussian graphical model is

associated with conditional independence, defined as follows.

Definition 1 (Conditional Independence [17]): Let X , Y ,

and Z be jointly distributed Gaussian random variables. Then

X and Y are conditionally independent given Z , if the joint

probability density function (pdf) can be factored as follows:

fX,Y,Z(x, y, z) = g1(x, z)g2(y, z) (1)

We say that x is separated from y by z in G iff the random

vectors associated with x, y, and z, denoted by X , Y , and

Z , respectively, satisfy that X is independent of Y given Z

[17].

B. The Covariance Selection Problem

Let X ∼ N(µ, S) be a Gaussian random vector, where

S is its true (dense) unconstrained covariance, and let G
be a graph we want to associate with X . The association

of G with X imposes constraints among the components

of X , such that the (unconstrained) covariance S needs

to be approximated by a constrained covariance P that 1)

best approximates S in some well defined sense, and 2)

satisfies the constraints imposed on the components of X .

To investigate this approximation problem, we recall the

following useful lemma, proved in [18].

Lemma 1 (Inverse covariance structure): Let P be the

covariance of the random vector X associated with the

graphical model (G, fX). Then, the inverse covariance matrix

of X , P−1, is nonzero only in entries (i, j) such that there

is an edge in E from vertex i to vertex j.

Thus, according to Lemma 1, we need to find an approx-

imation P of S, such that P−1 has zeroes according to the

structure of G.

The problem of finding P from S is known as the

covariance selection problem. The first thorough analysis and

a partial solution of this problem were given by Dempster

in [1]. The article does not address graphical models, but

it uses zeroes in the inverse covariance matrix for reducing

the number of free parameters in the covariance estimation

problem (model learning). Dempster proved in [1] a number

of results that are very important in the context of the

problem treated in this paper. We summarize these results

herewith.

Let I be the set of indices corresponding to all zero entries

of P−1, and let J be the set of indices of all other entries

of P−1. Then the following properties hold.

1) The entries of P associated with the index set J are

sufficient statistics for the problem of determining the

covariance under the constraint P−1(I) = 0.

2) P (J ) = S(J ).
3) The matrix P is a maximum likelihood estimate of

the covariance of X under the constraint P−1(I) = 0.

Thus, P is the solution of the following minimization

problem:

min
P∈{P−1(I)=0}

L(P ) (2a)

where

L(P ) ,

N
∑

i

log

(

(2π)−
n

2

det(P )
1

2

e[−
1

2
XiP

−1Xi]
)

(2b)

and Xi is a single sample out of N samples available

for the covariance estimation.
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In other words, Dempster proved that, given some data about

the real covariance of X , the J entries of the maximum

likelihood estimate of the covariance under the constraint

P−1(I) = 0 are equal to the corresponding entries of the

unconstrained covariance. The other entries are chosen to

satisfy the P−1(I) = 0 constraint.

Although there exist many algorithms to compute the

Dempster covariance from the original covariance, a closed

form expression given in [2, p. 1306] is useful for further

analysis and understanding how the computation is done:

F =
∑

C∈C

[

FC
]0

−
∑

S∈S

[

FS
]0

(3)

where F = P−1, C is the group of all cliques in the graph G,

S is the group of all separators, and FC and FS represent the

inverse covariance matrices of the corresponding subgroups.

The [A]0 operator appends zeros to the matrix A to give it

the correct dimensions.

III. PROBLEM DEFINITION

Let X∼N(µ, S) be an unobserved Gaussian random vec-

tor, and let Z be a vector of noisy observations of X ,

such that Z = HX + V , where V ∼N(0, R) and H is the

observation matrix. Assuming that X is associated with a

given graphical model G = (V , E), we need to estimate X

given Z using the graphical model G. Thus, the covariance

P associated with the graphical model must have a structure

as stated in Lemma 1.

We can state the problem in equivalent terms without

using the graphical model machinery, but still abiding by its

constraints. Thus, the estimation problem may be posed in

a conventional matrix form, with the constrained covariance

that is dictated by the graphical model. To do that, assume,

for the moment, that P is the a priori covariance of X . Then,

the MMSE estimate of X from Z is given by the following

equations:

X̂ = P̂p(H
T R−1Z + P−1µ) (4a)

P̂p = (P−1 + HT R−1H)−1 (4b)

where P̂p is the (a posteriori) covariance of X̂ . Obviously,

when P = S, that is, when the true covariance of X is

used, equations (4) yield the optimal estimate (in the MMSE

sense). However, because of the constraint on the covariance,

we cannot use S. Thus, for any P 6= S we can expect (4) to

yield a suboptimal solution.

Our problem is to find the optimal constrained covariance

P , that yields the MMSE estimate of X , that is

P = arg min
P∈{P−1(I)=0}

tr(EX̃X̃T ) (5)

where X̃ , X̂ − X is the estimation error of X .

IV. THE OPTIMAL COVARIANCE

Dempster’s result P (J ) = S(J ) means that the nonzero

cross-covariances in P are unchanged relative to the true

covariance, S. The usage of the constrained covariance, P ,

in the estimation problem, may give rise to non-optimal per-

formance, because it means that although some edges have

been removed from the graphical model, no compensation

has been incorporated and new measurements are processed

using wrongly correlated components of X . We thus seek

for a solution that takes this model reduction into account.

A. Estimation Error Covariance

Using (4a) The estimation error is

X̃ = P̂p(H
T R−1(HX + V ) + P−1µ) − X

= (P̂pH
T R−1H − I)X + P̂pH

T R−1V + P̂pP
−1µ.

(6)

Thus, the mean of the estimation error is

E(X̃) = (P̂pH
T R−1H − I)µ + P̂pP

−1µ

= (P̂p(P
−1 + HT R−1H) − I)µ = 0 (7)

and its covariance becomes

E(X̃X̃T ) =(P̂pH
T R−1H − I)S(HT R−1HP̂p − I)

+ P̂pH
T R−1HP̂p. (8)

Notice that, as could be expected, the estimation error

covariance does not depend on µ. Furthermore, this result

holds for every constrained covariance P , not only for P = S

(since (8) does not depend on µ). Hence, without loss of

generality, we will assume µ = 0 in the sequel.

B. Covariance Optimization Problem

Denoting K = P̂−1
p , we use (8) to derive an optimiza-

tion problem whose solution yields the optimal constrained

covariance:

min
K

tr
[

(K−1HT R−1H − I)S(HT R−1HK−1 − I)

+K−1HT R−1HK−1
]

s.t. K = HT R−1H +
∑

ei∈E

γei
Cei

(9)

where E is the set of edges of the graph G(V , E), including

self-edges (a self-edge is an edge from every node to itself),

and Cei
is the connectivity matrix associated with edge ei.

For example, if ei is the edge connecting nodes 1 and 2, Cei

is an |V| × |V| matrix whose only nonzero entries are ones

at the (1, 2) and (2, 1) positions. {γei
}
|E|
i=1 are optimization

variables.

Remark 1: Notice that the matrix K is set to satisfy an

affinity structural constraint (it is an affine combination of all

connectivity matrices of the graph G). That the optimization

domain is an affine set bears practical importance for the

optimization procedure [19].

For effective optimization, we define

B , HT R−1HSHT R−1H + HT R−1H (10a)

D , SHT R−1H. (10b)

In terms of the matrices B, D, the optimization problem can

be rewritten as

min
K

J , tr
[

K−1BK−1 − DK−1 − K−1DT + S)
]
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s.t. K = HT R−1H +
l
∑

ei∈E

γei
Cei

. (11)

C. Necessary Conditions for Optimality

Let Kopt be the optimum matrix. Because the optimiza-

tion domain is affine, we can study the properties of this

optimization problem on lines defined as Kopt +kCi, where

we denote Ci = Cei
and k is a free parameter. The conditions

for optimality are

∂J

∂k
= 0 ∀Ci, K = Kopt + kCi. (12)

In the sequel we derive an expression for the derivative.

For any K = Kopt + kCi and a symmetric matrix Ci we

have

∂J

∂k
=

∂ tr
[

K−1BK−1
]

∂k
− 2

∂ tr
[

DK−1
]

∂k
(13)

To compute the first term on the right-hand side (RHS) of

(13) we use the matrix chain rule [20, Eq. (126)]

∂ tr
[

K−1BK−1
]

∂k
= tr







(

∂ tr
[

K−1BK−1
]

∂K

)T

∂K

∂k







(14)

Now, [20, Eq. (114)]

∂ tr
[

K−1BK−1
]

∂K

= −B−1KK−1BK−1(I + I)K−1BK−1

= −2K−2BK−1, (15)

thus

∂ tr
[

K−1BK−1
]

∂k
= tr

[

−2
(

K−1BK−2
)T

Ci

]

= tr
[

−2K−2BK−1Ci

]

. (16)

For the second term on the RHS of (13) we have

∂ tr
[

DK−1
]

∂k
= tr







(

∂ tr
[

DK−1
]

∂K

)T

∂K

∂k







(17)

where [20, Eq. (113)]

∂ tr
[

DK−1
]

∂K
= −K−1DT K−1, (18)

therefore

∂ tr
[

DK−1
]

∂k
= tr

[

−K−1DK−1Ci

]

. (19)

Using both (16) and (19) in (13) finally yields

∂J

∂k
= 2 tr

[

K−1(D − K−1B)K−1Ci

]

,

K = Kopt + kCi. (20)

Remark 2: In the constrained case, treated in this paper,

the derivative has to vanish just along the directions Ci

from (11). On the other hand, in the unconstrained case,

this derivative has to vanish along any direction, yielding

the condition D − K−1B = 0. Thus K = BD−1 =
HT R−1H + S−1, which is the familiar unconstrained opti-

mal covariance (4b).

V. NON-OPTIMALITY OF DEMPSTER’S COVARIANCE

We prove that, in most cases, Dempster’s covariance is

not an optimal solution of the aforementioned optimization

problem (hence its use in MMSE estimation problems is

suboptimal, at best). Before formally stating and proving this

result, however, we need the following two technical lemmas.

Lemma 2: Let P be a covariance matrix approximation of

the original (dense) covariance matrix S, such that P 6= S.

Denote by M the set of all real symmetric matrices in R
m,m

with bounded entries, and define the set χ ⊂ M as

χ , {R ∈ M |
∂J

∂k
= 0} (21)

where, for all R ∈ χ, the derivative ∂J
∂k

is computed

according to Eq. (20). Let N = m(m+1)
2 and notice that

there exists a one-to-one correspondence between M and

R
N . Let λ denote the Lebesgue measure in R

N [21, page

176]. Then, λ(χ) = 0.

Proof: We begin by examining the value of ∂J
∂k

as a

function of a single entry of the matrix R, when all other

entries of R are fixed. Changing the derivative by varying

the value of a single entry of R is equivalent to a change in
∂J
∂k

along a single coordinate in R
N .

Using the definitions of B and D from Eqs. (10), Eq. (20)

can be rewritten as follows

∂J

∂k
=2 tr

[

(HT R−1H + P−1)−1Ci(H
T R−1H + P−1)−1

×
{

SHT R−1H − (HT R−1H + P−1)−1

× (HT R−1H + S−1)SHT R−1H
}]

(22)

for all Ci, ei ∈ E . Since both P and S are constant, ∂J
∂k

is a rational function of each of the entries of the matrix

R, when all other entries are fixed. This rational function

is not constant, because ∂J
∂k

→ 0 when R → 0, and
∂J
∂k

→ ∞ when HT R−1H → −P−1. Therefore, according

to the fundamental theorem of algebra, it vanishes at a finite

number of (isolated) points.

Now, because χ ⊂ M, it can be covered by a bounded

interval in R
N . This interval can be made to have an

arbitrarily small size along one of the coordinates, because

it is required to cover only the isolated points where ∂J
∂k

vanishes. Thus, the size of the interval is arbitrarily small,

rendering the Lebesgue measure of χ in R
N zero [22].

Consider now the probability space {M,F , P}, where

F is the σ-algebra defined on M and P is an absolutely

continuous probability measure defined on F . Let M′ de-

note the set of all positive definite matrices in M, and

notice that all elements of M′ can function as measurement

noise covariance matrices. The next lemma then addresses

the probability of randomly selecting a measurement noise

covariance matrix from M′.

Lemma 3: Assuming that P is an absolutely continuous

probability measure on F , it can be defined such that

P(M′) > 0.

Proof: Since P is an absolutely continuous measure, it

is dominated by the Lebesgue measure. Hence, we need to

show that λ(M′) > 0. To that end, we study the interval that
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covers the vicinity of the identity matrix I , which is a single

element of M′. It can be easily shown, that when adding ǫ (in

a symmetric way) to any entry of the matrix I , its non-trivial

eigenvalues become 1 ± ǫ. Hence, all symmetric matrices

thus formed by changing I along one of the coordinates

remain in M′, as long as |ǫ| < 1. Therefore, the size of

the interval covering the vicinity of I along any coordinate

is nonzero, rendering the Lebesgue measure of the set of

positive definite matrices in the vicinity of the identity matrix

strictly positive.

Having the two technical lemmas on hand, we now state

the main result of this section.

Theorem 1: Let P be a covariance matrix approximation

of the original (dense) covariance matrix S, such that P 6= S.

Then, for any measurement noise covariance matrix R ∈ M′

we have P(∂J
∂k

= 0 | R ∈ M′) = 0.

Proof: For any R ∈ M′ the probability that ∂J
∂k

vanishes can be expressed as

P(χ | M′) =
P(χ ∩M′)

P(M′)
(23)

Now, P(χ ∩ M′) < P(χ) = 0 because λ(χ) = 0 and P

is absolutely continuous. Selecting P such that P(M′) > 0,

proven possible by Lemma 3, thus yields the theorem.

Remark 3: Theorem 1 holds for every approximation of

the covariance matrix S, that does not explicitly take into

account the covariance of the measurement noise. Thus, it

shows that (subject to the theorem’s assumptions) Demp-

ster’s classical approximation of S, in particular, does not

constitute an optimal constrained covariance for any partic-

ular MMSE estimation problem (with a given measurement

noise covariance), as it violates the necessary conditions for

optimality with probability 1.

VI. SIMULATION STUDY

To illustrate the analytical results and demonstrate the es-

timation performance obtained using the optimal constrained

covariance vs Dempster’s covariance, we use the following

example. The covariance S has ones along its diagonal and

0.9 as its off-diagonal entries. We test the 5, 8, and 14-

dimensional cases. The estimation performance measure is

taken to be the RMS criterion, which is the square root of the

MSE criterion. The tested graph is a chain graph—a single

thread connecting all vertices from 1 to n.

The RMS values are calculated by using (8) with either

Dempster’s covariance or the optimal constrained covariance,

computed via numerically solving the optimization prob-

lem (11). For reference, the values corresponding to the true

covariance, S, are also computed. All RMS values have been

corroborated by a direct calculation using estimation error

realizations obtained in a 100,000-run Monte Carlo (MC)

simulation study with random measurement samples.

The results are presented in Table I. The two leftmost

columns show the normalized RMS values obtained when

using Dempster’s covariance and the optimal constrained

covariance, respectively. These values are computed via nor-

malizing the RMS values corresponding to the constrained

TABLE I

RMS ESTIMATION ERROR USING DEMPSTER’S COVARIANCE AND THE

OPTIMAL CONSTRAINED COVARIANCE.

|V| Dempster’s Optimal True
covariance covariance covariance

(normalized) (normalized) (not normalized)

5 1.025 1.006 1.088
8 1.074 1.011 1.231
14 1.153 1.019 1.452

covariances by the RMS values corresponding to the true

covariance, S (hence, values closer to 1 are better). For

reference, the normalizing RMS values, corresponding to

the true covariance, are shown in the rightmost column.

As can be observed from Table I, the estimation quality

benefits from using the optimal covariance. The improvement

increases with problem dimension, from a 2% improvement

for |V| = 5, to a 14% improvement for |V| = 14.

We next demonstrate that, as expected by theory, Demp-

ster’s covariance is not optimal for the estimation prob-

lem considered. We do this by showing that it violates

the necessary conditions for optimality. Table II shows

the norms of the gradients of the cost function J from

(20), computed using both Dempster’s covariance and the

optimal constrained covariance. As can be observed from

Table II, when Dempster’s covariance is used, the gradient

of the cost function clearly never vanishes, demonstrating

that this covariance is not optimal (in the MMSE sense).

In contradistinction, using the numerically obtained optimal

constrained covariance, the corresponding cost gradient norm

is practically zero in all tested cases.

Finally, Fig. 1 shows the dependence of the estimation

error on the measurement noise covariance, which we take

to be RI|V| where I|V| is the identity matrix of dimension

|V|. The figure compares the increment of RMS estimation

error relative to values obtained with the true (unconstrained)

covariance, of the optimal and Dempster’s covariances. The

true covariance, S, is identical to that used in the previous

example, and we set |V| = 5. As can be seen from Fig. 1,

for low measurement noise, the information embedded in

the measurements dominates the a priori information and,

therefore, there is no difference between both methods.

For larger measurement noise values, the optimal method

approaches the results obtained with the true covariance,

whereas the results obtained with Dempster’s covariance are

significantly worse.

TABLE II

COST FUNCTION GRADIENT NORM FOR DEMPSTER’S COVARIANCE AND

THE OPTIMAL CONSTRAINED COVARIANCE

|V| Dempster’s Optimal
covariance covariance

5 0.0426 1.28e-14
8 0.0297 1.02e-10

14 0.182 4.01e-10

5053



0 1 2 3 4 5
0

1

2

3

4

5
n

o
rm

a
liz

e
d

 e
rr

o
r 

[%
]

 

 

Measurement noise covariance

Optimal

Dempster

Fig. 1. Increment of RMS estimation error (relative to unconstrained
covariance) vs measurement noise intensity. Solid line: optimal covariance,
dashed line: Dempster’s covariance.

VII. CONCLUSIONS

We have investigated the problem of covariance selection

in graphical models that are used in distributed Bayesian

estimation problems. This problem arises when trying to

approximate the full a priori covariance, associated with the

given Gaussian random field, by a constrained covariance, in-

corporating conditional independence constraints imposed on

the problem to facilitate the use of Gaussian graphical models

machinery. The importance of optimally reducing the a priori

covariance in estimation applications involving graphical

models stems from the fact that it allows a significant model

reduction, thus enabling the use of algorithms suitable for

specific graph structure, such as trees, while, at the same

time, maintaining close-to-ideal estimation performance.

A well known covariance selection method, previously

suggested by Dempster, finds the constrained covariance

closest to the original (dense) covariance in the maximum

likelihood sense, while complying with the imposed con-

ditional independence structural constraints. However, this

method is not geared for the problem at hand, because it

does not address the Bayesian estimation goal of minimizing

the mean squared estimation error criterion, nor does it take

into account the effect of the measurement noise on the (a

posteriori) estimation error covariance.

Explicitly addressing the MMSE estimation problem prop-

erties, we have formulated an optimization problem, dis-

tinctly different than the problem solved by Dempster, the

solution of which provides the optimal constrained covari-

ance that yields the minimal a posteriori estimation error

covariance complying with the conditional independence

constraints. In addition, we have proved that Dempster’s

method computes a constrained covariance that does not

yield optimal performance in most estimation problems of

the type addressed herein.

A simple numerical example is used to demonstrate the

performance advantage of using the optimal constrained

covariance, computed by solving the optimization problem

formulated in this paper, over using Dempster’s covariance.

The example also illustrates the fact, formally proved herein,

that Dempster’s covariance is not optimal in a particular

estimation problem, by numerically showing that this con-

strained covariance violates the necessary conditions for

optimality.
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