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Abstract— Bacterial persistence is an epigenetic phenomenon
in which some bacteria cells become immune to antibiotic treat-
ment without undergoing genetic mutation. In this paper, we
develop a population dynamic model that captures both short
term and long term persistence in bacteria. We subsequently
pose the problem of designing an optimal treatment strategy, in
terms of minimizing the number of persister cells that transition
into long term dormancy. We find that the infinite time horizon
optimal control strategy is not unique, and it can be expressed
as a feedback law using the information about the population
sizes of normal and persister cells. We also show the existence
of a theoretical lower bound for the optimal cost value.

I. INTRODUCTION

Bacterial persistence is an epigenetic phenomenon, in

which some bacteria cells become immune to antibiotic treat-
ment without undergoing genetic mutation1 [1]. Biologists

observed bacterial persistence through a small fraction of

cells in a colony that survive the antibiotic attack. Upon
removal of the antibiotics, the colony regrows. However, this

colony of survivor cells is found to exhibit the same vulner-

ability to antibiotics as the previous one. This effectively
demonstrates the fact that persistence is not inheritable, and

hence is an epigenetic trait [1], [2].

Bacterial persistence poses a serious global health prob-

lem. In tuberculosis, which is a disease caused by bacterial

infection, it is known that persistent bacteria can infect a
patient asymptomatically for decades. Approximately eight

million people develop active tuberculosis every year, with
two millions dying from the disease [3].

A recent finding by Balaban et al [4], [5] suggests that
persistence is related to a phenotypic state of slow growth

(dormancy), in which the effect of antibiotics on the bacteria

cells is minimized. More interestingly, this state of slow
growth does not seem to be induced by any external stressor

or stimulus. Rather, some cells (termed type II persis-

ters) spontaneously and stochastically become dormant. The
mechanism behind this stochastic transition to dormancy is

not well understood, although some biologists suggest that it

might be caused by fluctuations in the expression of toxin-
anti toxin proteins in the cells [6], [7].

A. Mathematical Model for Persistence

Some earlier publications in this field put forward a

mathematical model for this phenomenon [4], [8], which is

1In contrast, resistance is a similar phenomenon where genetic modifica-
tion is involved.

based on empirical observation of the population dynamics.
The underlying assumptions are: (i) the transitions between

dormancy and normal state can be modeled as a two-

state continuous time Markov chain (cf. [9]), and (ii) the
population growth can be modeled as a linear term (thus,

exponential in time). Mathematically, this can be expressed

as

ṅ = µnn− an+ bp, (1)

ṗ = µpp+ an− bp. (2)

Here, n and p denote the population sizes of the normal cells

and persister/dormant cells, respectively. The growth rates at
both states are given by µn and µp, while a and b represent

the transition rates into and out of dormancy. For wild type

E. coli, these transition rates are reported to be [4], [8]:

a = 1.2× 10−6 hour−1,

b = 0.1 hour−1.

The growth rates µn and µp are variables of the growth

condition. For example, in favorable growth condition (i.e.

in the absence of antibiotics), these rates are reported to be
[4], [8]:

µn = 2 hour−1, µp = 0 hour−1.

With antibiotics present, the growth rates become

µn = −4 hour−1, µp = −0.4 hour−1.

From the model, it is obvious that in favorable growth
condition, having dormancy is a hindrance to the prolifer-

ation of bacteria. However, the model and empirical obser-

vation also suggest that having dormancy is beneficial in
adverse conditions. In a constantly changing environment,

researchers have hypothesized that the optimal growth policy

is to have a certain level of dormancy. Kussell et al [8]
evaluated the benefit of having dormancy in a periodically

changing environment, under the model given in (1) - (2).

Acar et al [10] did the same investigation experimentally by
putting cells with different dormancy levels in a periodically

changing environment. Gardner et al [11] also performed a
mathematical analysis of individual fitness from the evolu-

tionary perspective, in a periodically changing environment.

The general outcome of these investigations is that depending
on the periodicity of the environmental changes, a population

with a given level of dormancy has a competitive advantage

over other population with lower level of dormancy.
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Despite the agreement between the model (1) - (2) and
the experimental observation for bacteria that do not exhibit

long term dormancy (i.e. E. coli), it does not capture long

term dormancy exhibited in others (e.g. M. tuberculosis).
Long term dormancy is a phenomenon where the bacterial

population consists of high levels of persisters and low level
of normal cells, allowing the population to remain dormant

for decades [3]. Once the host’s immunity system weakens

the pathogenic bacteria reactivate. In this paper, we propose a
hybrid system model that captures long-term dormancy. The

underlying assumption is that during antibiotic attack, the

transition rate from dormancy to active cells (the symbol b in
(1) - (2)) is zero. Further, once the number of active bacteria

cells is reduced below a threshold, we assume that the

host’s native immunity system is activated, and the remaining
dormant bacteria become long-term persisters.

B. Infection Treatment Strategy

In the controls community, the problem of finding an

optimal infection treatment strategy for a given mathematical

model of infection has been previously studied. For example,
Stengel et al developed a detailed optimal control analysis

of infection treatment using a model of the human immunity

system [12]. However, in this work, persistence effect is not
included in the model. Other researchers investigated the

issue of optimal control in the treatment of HIV infection,

using a model that also captures the development of drug re-
sistance (see e.g. [13], [14], [15], [16]). Jung et al developed

an optimal control based treatment strategy for tuberculosis,

based on a mathematical model of the host population [17].
In this paper, we use the population model for the bacteria

including long-term dormancy to devise an optimal control

strategy to minimize long-term persisters. The outcome of
this analysis underlines the necessity of patterned or inter-

rupted treatment strategy to deal with persistence. Interest-

ingly, when persistence was first discovered in the 1940s,
field observation reported in the literature also suggested the

benefit of interrupted treatment strategy [1], [18].

II. MODEL DEVELOPMENT FOR LONG-TERM

PERSISTENCE

We modify the standard model in (1) - (2) to include
the effect of finite environmental support. This is done by

incorporating the Verhulst model that models the competition

between individuals as a bilinear term in the dynamics (see
e.g. [19]).

ṅ = µnn− an+ bp− kn2, (3)

ṗ = µpp+ an− bp, (4)

where, as before, n and p denote the population sizes of the

normal/active cells and dormant/persister cells, respectively.
The parameter k represents the competition rate among

the active cells. In our subsequent analysis, we use the

assumption that µp ≈ 0[4], which means that the persisters
do not multiply nor get killed in antibiotic attacks. Equations

(3) - (4) represent a planar dynamical system, whose phase-

plane can be sketched in Figure 1.
Qualitatively, we can easily observe that the first quadrant

is invariant in (3) - (4). Further, from Figure 1, we see that the

system (generally) admits two equilibria, one at the origin,

n

p

dp
dt

= 0

dn
dt

= 0

p = a
b
n

p = kn2
−(µn−a)n

b

(µn−2a
k

,
aµn−2a2

bk
)

Fig. 1. The phase-plane of (3) - (4). The solid lines represent the nullclines
of the dynamics in favorable growth condition (µn > 0). During antibiotic
attack, µn < 0. The nullcline ṅ = 0 in this case is represented by the
dashed line.

and another one that depends on the system parameters.
Given that typically µn ≫ a, the second equilibrium always

lies in the first quadrant. The Jacobian of the dynamics in

(3) - (4) is given by

J(n, p) =

[

µn − a− 2kn b
a −b

]

.

Analyzing the eigenvalues of J(n, p) at the two equilibria,
we find that the origin is an unstable equilibrium, whereas
(

µn−2a
k

, aµn−2a2

bk

)

is stable. This means that any positive

initial condition will result in a dynamics that converge to the
maximum carrying capacity of the environment. Our model

is thus able to capture both the exponential growth phase and
the stationary growth phase of bacterial population.

Our goal is to develop this model into one that can capture
the phenomenon of long-term persistence in infections such

as tuberculosis. Primary tuberculosis develops within 1 or 2
years after initial infection [3]. Upon treatment, the pathogen

can remain in a state of asymptomatic infection. Post-primary

tuberculosis typically develops much later in the host’s life.
This can be caused by reactivation of the remaining bacteria

from the initial infection [3]. Currently, it is estimated that 2

billion people are infected with M. tuberculosis, the pathogen
that causes tuberculosis [20]. In developing our model, we

assume that the normal portion of the bacteria population is

virulent, while the dormant one corresponds to asymptomatic
infection.

An antibiotic attack can be modeled as a change in the

value of µn to a negative value. This is in accordance with

the experimental observation and the model in (1) - (2) (cf.
[4], [8]). In this case, there is no equilibrium in the first

quadrant (see Figure 1), and the origin is a stable equilibrium.

Physically, this corresponds to the prediction that all bacteria
cells will eventually be killed by the attack. However, this

model is not able to capture long-term dormancy, where
persisters can survive for decades. To see this, observe that

although persister cells are not susceptible to the attack,

they are converted to normal cells in a process with time
constant 1

b
. According to the reported parameter value, this

time constant is in the order of 10 hours, which is several

orders of magnitude lower than the time scale of long-term
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Growth Phase

ṅ = (µn − a)n − kn2 + bp

ṗ = an − bp

Attack Phase

ṅ = (µ∗

n
− a)n − kn2

ṗ = an

attack

stop attack

Fig. 2. A hybrid system model allows survival of persister cells. This
model is obtained by modifying (3) - (4). The two events attack and
stop attack corresponds to the beginning and the end of the antibiotic
treatment period.

persistence.

In order to allow the persisters to survive antibiotic attacks,
we further modify (3)-(4) into a hybrid system model [21].

This is shown in Figure 2. The underlying assumption is that

during antibiotic attack, both µn and b assume new values.
The new growth rate is denoted as µ∗

n, which is a negative

number. The new value for the transition rate b is effectively

0.

The planar dynamical system during the attack phase has a
continuum of equilibria, given by n = 0. Linearizing the dy-

namics around this line, we find that the equilibria are stable.

Thus, any initial condition in the first quadrant will converge
to n = 0. However, this convergence is asymptotic, which

means that any dose of antibiotics (represented by arbitrarily

negative but finite µ∗
n) given during a treatment period of

any finite length will not reduce n to 0. Further, the model

also predicts that upon cessation of this treatment period, the

infection will return to its full scale. This corresponds to the
dynamics in the growth phase, where the trajectory converges

to the stable equilibrium in the first quadrant. Therefore, the

model given in Figure 2 cannot capture the fact that the
normal cell population remains insignificantly low during

long-term persistence.

We further enhance the model by including a third discrete

location, whose dynamics represents the condition when n
is very low. In this condition, we assume that the amount of

virulent bacteria is low enough that host’s native immunity

system can take over the attack against the bacteria. This is
shown in Figure 3. We introduce a third mode of dynamics

that represents long-term dormancy/persistence. We assume

that the transition to this mode automatically happens when
the guard condition n ≤ nimmune is satisfied. During long-

term dormancy, normal cells will continue to decrease and

transition to persistence. However, persister cells do not
transition back to normal cells. Stopping the treatment in this

mode does not have any effect on the dynamics, since the

host’s native immunity system is mounting an attack on the
bacteria. The system can transition from long-term dormancy

to growth phase again when the host’s immunity system
is weak. This is modeled by the event weak immunity.

The weak immunity event is external to the system and

assumed uncontrollable. During long term dormancy the
number of active and persister cells is relatively constant;

therefore, the number of persisters entering the Growth Phase

through the weak immunity event will be the number of

Growth Phase

ṅ = (µn − a)n − kn2 + bp

ṗ = an − bp

Attack Phase

ṅ = (µ∗

n
− a)n − kn2

ṗ = an

attack

stop attack

Long-Term Dormancy

ṅ = (µ∗

n
− a)n

ṗ = an

stop attack

n < nimmune
weak immunity

Fig. 3. A hybrid system model that captures long-term persistence and
post-primary infection.

persisters entering the Long Term Dormancy Phase through
the n < nimmune event.

III. OPTIMAL TREATMENT STRATEGY

In designing the optimal treatment strategy, the goal is

to minimize the number of persisters upon transition into

long-term dormancy. Given the hybrid system model shown

in Figure 3, a treatment strategy is defined as the timing

of attack and stop attack events, which corresponds
to the scheduling of the treatment. Therefore, if we define

ta,1 < ta,2 < · · · as the times when the attack event happens,
and ts,1 < ts,2 < · · · as the times when the stop attack

event happens, where

∀i ∈ {1, 2, · · · }, ta,i < ts,i, (5)

then the design of optimal treatment strategy can be formu-
lated as follows:

Problem: Given an initial condition n(0) > nimmune and

p(0) in the growth mode. Minimize p(tdorm), where

tdorm = inf{t > 0 | n(t) < nimmune}, (6)

with {ta,i}i∈{1,2,··· } and {ts,i}i∈{1,2,··· } as the optimization

variables.

To illustrate the affect of treatment scheduling, we perform
a few numerical simulations. Consider the model in Figure

3, with parameters as follows:

µn = 2, a = 10−6, b = 0.1,

k = 2, µ∗
n = −4, nimmune = 10−6.

These parameters are the same as the ones reported in [4],

except for k and nimmune
2. We pick k = 2 to normalize the

amount of normal cells at equilibrium during growth phase

at 1. For this numerical simulation, an arbitrarily small value

of nimmune is chosen. We assume that the initial conditions
are n(0) = 1, p(0) = 5× 10−6 in growth phase.

2Parameters can be scaled up uniformly to simulate a large environment,
i.e. host
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Fig. 4. Top: The phase-plane plots of the outcomes of the three attack
patterns. Bottom: The plots of the amount of persister cells vs time for
each of the three scenarios.

Consider the following three scenarios:

Naive Attack (NA): Apply antibiotics from time t = 0
until long-term dormancy is reached, then stop treat-
ment.

Patterned Attack 1 (PA1): Apply antibiotics until n =
nimmune (just before transition to long-term dormancy),
then stop the treatment for 6 hours, and then reapply

antibiotics until long-term dormancy is reached.

Patterned Attack 2 (PA2): Apply antibiotics until n =
nimmune (just before transition to long-term dormancy),

then stop the treatment for 12 hours, and then reapply

antibiotics until long-term dormancy is reached.

The outcomes of these treatment strategies are shown in

Figure 4. We can see that at the transition to long-term

dormancy, the amount of persister cells in the three attack
scenarios differ. For the naive attack (NA), the value is at

around 0.02. For PA1 and PA2, the values are at around

0.018 and 0.028, respectively. From this observation, we
can conclude that the naive attack strategy (simply apply

antibiotics until the primary infection subsides) is generally

not the best option, if we are to suppress the amount of
persister cells that enter long-term dormancy. However, by

inspecting the performance of PA1 and PA2 we can also

conclude that some patterns of attack can be worse than the
naive attack strategy. Similar observations were also made

in a recent publication [5], which stated that some periodic
treatment patterns are not effective. Therefore, an optimal

treatment strategy is needed.
We formulate a solution to this optimization problem that

is based on the principles of dynamic programming[22],[23].

As is the case with most optimal control problems, our

optimal treatment strategy will then be defined as a feedback
policy, rather than an open loop timing sequence.

First, we observe that any treatment strategy will end with

an attack that leads to the transition to long-term dormancy.
This is implicitly expressed in (6), and the problem state-

ment. Our goal is to minimize the number of persisters as
the system enters into long term dormancy, where long term

dormancy can only be reached during an attack. We calculate

the cost function incurred (i.e. the number of persisters at the
transition) as a function of the state when this final attack

begins, [na, pa] as follows. The orbit of the state trajectory

in the attack phase can be obtained by solving

0
0.5

1

00.20.40.60.811.2
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Fig. 5. The plot of the final cost Ja(na, pa) as a function of the state

[na, pa]
T , at which the final attack is initiated. Top: Surface plot. Bottom:

Contour plot

dn

dp
=

ṅ

ṗ
=

(µ∗
n − a)

a
−

k

a
n (7)

using [na, pa] as a boundary condition. From here, we obtain

p = pa +
a

k
ln

(

µ∗
n − a− kna

µ∗
n − a− kn(t)

)

(8)

The incurred cost is then obtained by substituting n =
nimmune (the start at transition to long-term dormancy).

Ja(na, pa) = pa +
a

k
ln

(

µ∗
n − a− kna

µ∗
n − a− knimmune

)

(9)

For the numerical example above, the plot of this cost

function is shown in Figure 5. By definition of the cost, the

contour lines of Ja(·) are the end of the orbits of the system
trajectories in attack mode.

Prior to the start of the final attack, the system must

be in the growth phase (the hybrid system contains only
two modes). By the principle of dynamic programming, the

transition from the final growth phase to the final attack phase

(i.e. the start of the final attack) needs to be made when
Ja(·) is minimized. Under this assumption, we can compute

the final cost as a function of the state when the last growth

phase is started, [ng, pg]
T

, as follows

Jg(ng, pg) = min
t≥0

Ja(n(t), p(t)) (10)

where (n(t), p(t)) is the state trajectory in growth phase

with [ng, pg]
T

as the initial conditions. Furthermore, in

the optimal strategy, the final attack should start when the
minimum of the right hand side of (10) is attained. The

function Jg(ng, pg) can be computed and shown in Figure

6.

From the discussion above, we observe that as long as

we can traverse down the contour of Ja(·), the number of

persisters at the transition to long-term dormancy can be
reduced. In order to go to a lower contour (lower orbit),

the transitions between growth phase and attack phase are

utilized. Specifically, the growth phase initially leads the
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Fig. 7. The sketch of the treatment strategy to reduce the final cost. By
switching back and forth between attack and growth phases, we traverse
down the contour of Ja(·). Solid lines represent the orbits of the attack
phase dynamics, while the dashed line represents the orbits of the growth
phase dynamics

system toward lower orbits. A simple sketch of this is shown

in Figure 7

From (9), the gradient of Ja(·) is given by

∇Ja(n, p) =

[ −a
µ∗

n
−a−kn

1

]

(11)

We can characterize the set of all states at which the growth

phase orbit goes down the contour of Ja(·). The set is

characterized by

[

−a
µ∗

n
−a−kn

1
]

[

(µn − a)n− kn2 + bp
an− bp

]

> 0

or

p >
−a (µn − µ∗

n)n

b (µ∗
n − kn)

(12)

Let us define Q := {(n, p) | (12) holds}. For the

numerical example above, this set is shown in Figure 8.
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Fig. 8. Q is the area above the curve

Consequently, we can find a lower bound for the number
of persisters at the transition to long-term dormancy. This

value is given by the intersections of the boundary of Q and

n = nimmune, or

pmin =
−a (µn − µ∗

n)nimmune

b (µ∗
n − knimmune)

(13)

For the above numerical example, pmin = 1.5 × 10−11.
The optimal treatment strategy is thus not unique, however

such strategies can be characterized as in Algorithm 1:

Algorithm 1 Optimal Treatment Strategy

During the attack phase: the attack must stop before n =
nimmune, but only when (n, p) ∈ Q.
During the growth phase: the attack must begin when

p =
−a(µn−µ∗

n
)n

b(µ∗

n
−µn)

This algorithm does not explicitly define the t1,a, t1,2, . . .
from (5) explicitly, rather the timing of antibiotic dosing is

implicit upon the states. A simulation of such strategy is
shown in Figure 9. In this figure, we can see the first four

waves of attack. Observe that after four waves of antibiotic

attack. Observe that after four waves of antibiotic attack, the
number of persisters is about 20% of the level that would

be attained by a naive attack. We also would like to note
that although the attack pattern shown in the bottom panel of

Figure 9 seems periodic, it is actually not. Upon continuation

of the pattern, which is not shown here, we observe that the
intervals between attack waves becomes shorter.

IV. DISCUSSION

We developed a hybrid system model for the dynamics

of the populations of normal and persister bacterial cells
in favorable growth condition and under antibiotic attacks.

Our model is able to capture long-term persistence, a health

problem that is common for some infections, such as tu-
berculosis. Using this model, we posed the problem of

designing an optimal infection treatment strategy so as to
minimize the number of persister cells that go into long-

term dormancy. We subsequently characterized the optimal

treatment strategy, which turns out to be non-unique. We
also computed the theoretical lower bound on the number

of persister cells that transition into long-term dormancy

under the optimal treatment scheduling. The non-uniqueness
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Fig. 9. Top: A simulation of an optimal treatment strategy. Top: Phase-
plane plot of the state trajectory. Bottom: A plot of the number of persisters
vs time. The circles mark the start of an antibiotic attack, while the squares
mark the end of the attack

is due to the approach of an infinite time horizon problem,

and the lack of a continual or running cost in the problem
statement. If a suboptimal decision is made (application of

antibiotics too early or too late) this will only temporarily

put the system on a suboptimal path. When looking at a
predetermined number of dosing regiments (in Figure 9 there

are 4 regiments, or waves of attacks) the optimal solution

is unique. The infinite time horizon problem is considered
instead of a finite time due to the differences in time scales of

active cell growth and dormancy transition rates. Currently,

we are pursuing the finite time problem, specifically with the
addition of antibiotic resistance to the model. This will be

pursued and put forth in future publications.

For future work we also plan to study the problem of
optimizing not only the scheduling but also the dosing of

the antibiotics. It will be sensible to consider the total
administered dose as an additional design parameter (as a

cost function or constraint in the optimization). Although

not explicit, antibiotic resistance is taken into consideration
when developing this control law. Optimizing the beginning

of an attack phase but not the end ensures long pulses of an-

tibiotic attack. Prolonged exposure to antibiotics, especially
in intermediate concentrations, can lead to the emergence of

resistant strains of bacteria. In future work we look to add

the resistance state to the model.
Finally, we would like to note that so far our proposed

control law is expressed in terms of the population sizes of

the normal and persistent cells. This kind of state feedback
information might not be available in practice. Therefore, to

improve the applicability of control theoretical results in this
field, we may need to further develop some notion of state

observer, such as the host’s physiological state (e.g. body
temperature), or the amount of serum or hormone or other

signalling molecules in host’s bloodstream.
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