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Abstract— In this work, we present a Nash equilibrium
solution for a timed, asymmetric skirmish between two agents:
an attacker, and a defender. We derive a solution by focusing
on strategy profiles in which both the attacker and defender
randomize their actions, which correspond to times, over a
common atomic support. We show this class of strategies
admits a unique mixed-strategy Nash equilibrium and give an
algorithm for its computation. A numerical example highlights
interesting features of a typical equilibrium strategy profile.

I. INTRODUCTION

In this work, we consider a simple two-player competitive
game, inspired by a skirmish scenario, with a focus on
strategic timing. One player is the attacker; the attacker’s
goal is to penetrate the opponent’s defenses and seize control
of a valuable resource. The second player is the defender; the
defender tries to retain control of the resource by executing a
strategically-timed defensive maneuver (e.g., using an expen-
sive defensive stance or formation). Attacker and defender
strategies consist of times, on R≥0, at which to attack and
defend, respectively. With an interest in the emergence of
temporally-based tactics, we explore solution methods for a
two-player, simple-timed game in which players are allowed
a single action and may act asynchronously.

Given the actions are times at which to attack and defend,
the skirmish we have described belongs to the family of
timed games. Among the more well-known members of this
family is the War of Attrition (WoA) game [1]. In WoA, each
player, i, has a valuation, Vi, for a common item, and bids
a costly waiting time ti in an attempt to obtain the good.
The player with the lowest bid receives utility Vi− ti. The
remaining players each receive zero utility. The WoA is also
popularly referred to as the second-price all-pay auction. A
deeper exposition of timed games can be found in [2].

In this work, we analyze the structure of equilibria in
a temporal game that is similar to, albeit more complex
than, the War of Attrition game. Our model is an abstraction
capturing the key strategic elements of a common attacker-
defender stand-off found in a number of applications, in-
cluding, for example, the duel and searchlight games in
[3]. For example, the inspiration of this work was a base-
defense scenario in which a defender must anticipate an
enemy attack. There are also representative examples of our
skirmish scenario in the financial world. For example, an
aggressive firm (attacker) may attempt a hostile takeover of
a competing business. With this threat looming, the targeted
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firm (defender) may have a single opportunity to muster their
resources, e.g., call an emergency shareholder’s meeting, in
hopes of avoiding the takeover. Since we believe the model
represents the underlying mechanics in a number of domains,
we shall henceforth refer to this scenario simply as the
Redhands game. This name was chosen in recognition of
a popular schoolyard game in which one child attempts to
slap the hands of a second child (turning them red). The
second child tries to avoid the slap by quickly pulling their
hands away at the last instant; however, the child is heavily
penalized for removing their hands prematurely.

The game Redhands is more complex than many typical
examples in classical game theory. It can be formulated
naturally as a game on timed-automata. Ultimately, we show
that Redhands is simple among this extremely complex
family of games; however, its namesake (the multiple-round
schoolyard version) demonstrates a mechanism which may
require a more sophisticated approach. The control of timed
automata generally falls within two competing frameworks:
supervisory control theory (SCT) [4], and forced-event con-
trol [5]. There is also some existing work in the literature for
dynamical timed games, e.g. [6], [7]. However, in [6], the
authors are concerned with games-of-type solution concepts,
e.g. the existence of policies that satisfy some formally
expressed winning condition. In [7], the authors consider
a worst-case optimal control problem on timed automata
(restricting the results, in some sense, to zero-sum games).
Introducing scoring functions over strategies, and removing
zero-sum assumptions (as we do in this work), has the
potential to vastly increases the complexity of such problems.
Due to this complexity, to our knowledge, there is no fully
game-theoretic treatment of timed automata. By analyzing
the Redhands game, we hope instead to gain insight into the
structure of solutions that can emerge in simple but relevant
examples within this family.

The contributions of this work are as follows. First, we
discuss the inability of standard results to guarantee the
existence of a Nash equilibrium in the Redhands game.
Nevertheless, we show that Redhands is amenable to analysis
using classical techniques, i.e. strategy synthesis from a best-
response characterization. We describe a class of strategies—
namely, those with an atomic, uniformly-spaced support—
within which we can guarantee existence of a mixed-strategy
Nash equilibrium. Moreover, we show that the equilibrium
strategy is unique within this class, and we synthesize an
algorithm to compute it. One limitation of the work is that we
leave open the issue of equilibrium uniqueness within the full
space of mixed strategies. Also, this work does not consider
the use of sensors to detect enemy attacks; though, the utility
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of sensors is unclear if players may employ deceitful tactics
(e.g. in the schoolyard game).

The remainder of the paper is organized as follows.
Section II describes the problem formulation: a game model
of the Redhands game. In Section III, we discuss existence
guarantees for Nash equilibria in Redhands, and then charac-
terize attacker and defender best responses. We characterize
an atomic, mixed-strategy Nash equilibrium in Section IV,
and we prove its uniqueness within an expedient class of
atomic strategy profiles. In Section V, we provide a numeri-
cal example for a game played with sample parameter values.
Section VI closes with conclusions and future directions.

II. PROBLEM FORMULATION

In this section, we present our formulation of the Redhands
game and motivate the analysis of its solution. The game is
comprised of two players, player A and D. Henceforth, A
and D will refer to the attacker and defender, respectively.

Player A’s strategy is the time, tA ∈ R≥0, at which he
chooses to initiate an attack, ending the game. If A launches
an attack at time tA, then he will either register a “hit” or
record a “miss”. In the event of a hit, A seizes some time-
discounted reward VAe−βAtA , and inflicts a punishment cD
on D. Here, VA > 0 is the valuation of player A, and the
discounting term in A’s payoff reflects the fact that time is
valuable, providing an incentive to attack early. The constant
βA > 0 is called the impatience of player A; the larger the
value of βA, the greater A’s disposition to attack early. The
punishment term cD > 0 is used to model some damage
(physical or economical) that is inflicted on the defender.
In the event A misses at time tA, he receives nothing, while
D escapes punishment and receives the reward of value
VDe−βDtA .

Player D’s strategy is the time, tD ∈ R≥0, at which he
chooses to deploy a single defensive “guard”. Deploying his
guard improves D’s ability to deflect an attack over the time
interval [tD, tD + τD), but he may only do this once, and
therefore must use it wisely. Specifically, if A attacks at a
time when D is not guarding, then A’s chance of registering
a hit is p̄. On the other hand, if A attacks when D is
guarding, then A’s chance of registering a hit is p < p̄. The
hit probability can be expressed succinctly in terms of tA and
tD as follows:

pH(tA, tD) =

{
p if tA ∈ [tD, tD + τD)

p̄ otherwise.
(1)

We assume players are fully aware of the value τD. This
would be the case, for example, if the guard used a well-
known technology (e.g., forcefield) or if the game had been
played many times in the past. We encode these mechanisms
in the players’ utility functions, which express the expected
reward of A and D, respectively, under the action pair (tA, tD):

ūA (tA, tD) =VAe−βAtA pH(tA, tD), (2)

ūD (tA, tD) =VDe−βDtA [1− pH(tA, tD)]− cD pH(tA, tD). (3)

In the present work, we pursue a solution to the Redhands
game in the classical sense of Nash equilibria. We define this
notion, in the present context, as follows:

Definition 2.1 (Pure-strategy Nash equilibrium): A strat-
egy profile (tA, tD) is said to be a pure-strategy Nash
equilibrium (PSNE), if

ūA(tA, tD)≥ ūA(tA′, tD) for all tA′ ≥ 0,
and ūD(tA, tD)≥ ūD(tA, tD′) for all tD′ ≥ 0.

In this work, we allow the attacker and defender to use
randomized strategies. In particular, we say that player A
(D) plays strategy fA ( fD) if his action tA (tD) is randomized
according to the distribution fA ( fD). We refer to the pair
( fA, fD) as a mixed-strategy profile. In the analysis of this
work, we will not distinguish between pure and mixed
strategies as arguments to the utility functions. We will
simply maintain an equivalence through expectation, in the
sense that

ū( fA, ·)
.
= E fA ū(tA, ·), and ū(·, fD)

.
= E fD ū(·, tD).

Definition 2.2 (Mixed-strategy Nash equilibrium): A
mixed strategy profile ( fA, fD) is said to be a mixed-strategy
Nash equilibrium (MSNE), if

ūA( fA, fD)≥ ūA( fA
′, fD) for all fA

′ in ΣR≥0 ,

and ūD( fA, fD)≥ ūD( fA, fD
′) for all fD

′ in ΣR≥0 ,

where ΣR≥0 denotes the set of probability distributions over
the support R≥0.

As it applies to the present problem, a Nash equilibrium,
be it pure or mixed, is a strategy profile in which neither
the attacker nor defender can strictly improve their utility by
unilaterally changing their strategy. The notion of both pure
and mixed-strategy Nash equilibrium in the Redhands game
are explored in the next section.

III. EQUILIBRIUM STRUCTURE OF THE REDHANDS GAME

In this section, we explore the issue of existence for both
PSNE and MSNE. We show that the existence of a PSNE
depends on the patience of the attacker and that a well-known
existence result for discontinuous games does not guarantee
that the Redhands game has a MSNE. Given this result, we
proceed to explore MSNE in the Redhands game from first
principles, by characterizing the best response of the attacker
and defender to given opponent strategies.

A. Existence of PSNE

We begin by showing that the existence of a pure-strategy
Nash equilibrium is critically linked to the patience of the
attacker through βA.

Lemma 3.1: The Redhands game has unique pure-strategy
Nash equilibrium (tA, tD) = (0,0) if and only if

βA ≥ log(p̄/p)/τD. (4)

Proof: Because p < p̄, the defender has an incentive
from (3) to deviate from a strategy (tA, tD) unless tD ≤ tA <
tD + τD (i.e. unless the guard interval contains the attack).
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Moreover, we reason that tD = 0 in any equilibrium: if tD >
0 (and so tA ≥ tD > 0), we have by (2) that ūA (tA′, tD) >
ūA (tA, tD) for any tA′ < tD. Applying the condition tD = 0
to (2) we have

ūA (tA,0) =VAe−βAtA

{
p for tA ∈ [0,τD),
p̄ otherwise.

We observe that ūA(tA,0) is strictly decreasing over the
interval [0,τD), and again over [τD,∞). Thus, the attacker
may play tA = 0 as a best response if βA ≥ (1/τD) log(p̄/p),
or he may play tA = τD for βA ≤ (1/τD) log(p̄/p). We prove
the lemma by eliminating the PSNE candidate (τD,0), since
its guard interval does not contain the attack.

Remark 3.2: In the case of a perfect guard, i.e. p = 0,
there can never exist a PSNE.

Before embarking on a characterization of possible MSNE
in the Redhands game, we first remark on the inapplicability
of the well-known Dasgupta and Maskin [8] existence result
for mixed-equilibria in discontinuous games, as applied to
the Redhands game.

Theorem 3.3: [MSNE in discontinuous games [8]] Let
tA (tD) lie in a closed interval of R. Assume uA (tA, tD)
(uD (tA, tD)) is continuous, except possibly on a finite number
of lower-dimensional, continuous manifolds. Assume also
that uA (tA, tD)+uD (tA, tD) is everywhere upper semicontin-
uous and that uA (tA, tD) (uD (tA, tD)) is bounded and weakly
lower semicontinuous at all points of discontinuity. Then the
game has a mixed-stategy Nash equilibrium.

Proof: The proof can be found in [8].

The result of theorem 3.3 requires the technical condition
that uA (tA, tD) + uD (tA, tD) be upper semicontinuous at all
points of discontinuity. The utility functions of A and D, are
discontinuous on the rays tA = tD and tA = tD + τD. It can
be shown that upper semicontinuity is not satisfied on both
rays, and so 3.3 does not apply.

B. Best Response Characterization of MSNE

In Section III-A we argued that the Dasgupta and Maskin
existence theorem does not apply to the Redhands game,
and so we cannot yet claim existence of Nash equilibria.
Undeterred, we continue to pursue a MSNE by deriving
the attacker’s and defender’s best-responses and invoking
conditions necessary for equilibrium play. We begin with the
definition of best-response strategies.

Definition 3.4 (Best-response strategy): A strategy tA is
said to be a best-response to strategy fD of player D if

ūA(tA, fD)≥ ūA(tA′, fD) for all tA′ ∈ R≥0 .

A strategy tD is said to be a best-response to strategy fA of
player A if

ūD( fA, tD)≥ ūD( fA, tD′) for all tD′ ∈ R≥0 .

Closely associated with best-responses is the notion of
incentive compatibility.

Definition 3.5 (Incentive Compatibility): A strategy fA is
said to be incentive compatible with fD, if

supp fD ⊆ BD( fA),

where BD(·) is a relation returning the set of best-responses
of player D, and supp fD denotes the set of values with
positive probability in fD. A similar definition holds for fD.

In a MSNE, both strategies necessarily satisfy incentive
compatibility; as a corollary, all strategies in the support
achieve the same (maximum) utility.

We characterize the sets of best-response strategies of A
and D, respectively. We may express player A’s best response
to fD as:

BA( fD)
.
= argmax

tA

∫
∞

t=0

[
VAe−βAtA pH(tA, t)

]
fD(t) dt

= argmax
tA

VAe−βAtA

[
p̄
∫ tA−τD

t=0
fD(t) dt

+ p
∫ tA

t=tA−τD

fD(t) dt + p̄
∫

∞

tA
fD(t) dt

]
= argmax

tA
VAe−βAtA {p̄

−(p̄− p) [FD(tA)−FD(tA− τD)]} , (5)

where, for convenience, we let FD(t) =
∫ t

t ′=−∞
fD(t ′)dt ′ de-

note the cumulative density function of fD.
Due to the incentive compatibility requirement for a

MSNE, it follows that for all tA ∈ supp( fA), there exists a
constant vA such that

FD(tA)−FD(tA− τD) =
1

p̄− p

(
p̄− vA

VA
eβAtA

)
. (6)

Player D’s best response to strategy fA is given by

BD( fA)
.
= argmax

tD

∫
∞

t=0

[
e−βDtVD[1− pH(t, tD)]−

cD pH(t, tD)
]

fA(t) dtA

= argmax
tD

(p̄− p)
∫ tD+τD

t=tD

[
e−βDtVD + cD

]
fA(t) dt

+κ( fA), (7)

where, in the interest of brevity, we have introduced

κ( fA) =
∫

∞

t=0

[
e−βDtVD(1− p̄)− cD p̄

]
fA(t) dt. (8)

We remark that τD features prominently in both (5) and
(7). In the remaining development, we pursue a solution for
fA and fD under the assumption that both players randomize
over a finite set of common action times.

IV. ATOMIC MSNE OF THE REDHANDS GAME

The following definition details strategies in which both
players use strategies that are atomic over a common set of
support points.
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Definition 4.1: For the Redhands game in which A attacks
and D defends, we say that f = ( fA, fD) is a (K +1)-atom,
τD-spaced strategy profile if

fA (t) =
K

∑
k=0

αK,kδ(t− kτD) (9)

fD (t) =
K

∑
k=0

πK,kδ(t− kτD) , (10)

where αK,k and πK,k are the coefficients of the respective
strategies.

In the rest of this section, we restrict attention to the
Redhands game in which A and D randomize according to
(9) and (10), respectively. We proceed by considering the
implications using atomic strategies has on the best response
function of the attacker, before performing a similar analysis
in the case of the defender.

A. Player A

From (5) and (9), we see that when D plays according to
(10) with weights πK = {πK,k}K

k=0, then A’s utility is given
(abusing the argument) by

ūA(t,πK) =VAe−βAt

{
p̄− (p̄− p)πK,k t ∈ [kτD,(k+1)τD) ,

p̄ else.
(11)

The payoff function in (11) is strictly decreasing be-
tween atoms. Therefore, incentive compatability (from def-
inition 3.5) only requires that all times in A’s support have
the same (maximizing) payoff, i.e., (i) for all k = 0, . . . ,K,

ūA(kτD,πK) =VAγ
−k
A [p̄− (p̄− p)πK,k] = vA (K) (12)

where vA (K) is the payoff in question, which we call the
conformity payoff, and (ii) the maximum deviation payoff
vA,dev satisfies

vA,dev(K)
.
= ūA ((K +1)τD,πK) =VAγA

−(K+1) p̄≤ vA (K) .
(13)

As the name implies, the maximum deviation payoff is the
largest payoff A can receive if he deviates from playing
according to (9). In (12) and (13), we have introduced
the attacker impatience factor γA = eβAτD , for brevity. We
will denote the defender impatience factor γD = eβDτD (note
both are expressed with the defender’s guard duration τD).
We use (12) along with the constraint 1T πK = 1, i.e., the
normality constraint for probability densities, to determine
vA(K) according to

vA (K) =VA [K p̄+ p]

(
K

∑
k=0

γA
k

)−1

=VA [K p̄+ p]Γ−1
A,K , (14)

where we let

ΓA,K
.
=

K

∑
k=0

γA
k =

γA
K+1−1
γA−1

.

Finally, we can use (12) and (14) to solve for πK , obtaining

πK,k =
p̄− [K p̄+ p]Γ−1

A,KγA
k

p̄− p
, k = 0, . . . ,K. (15)

B. Player D

We now perform a similar analysis for player D. Specif-
ically, from (7) and (10), we may write D’s utility when A
plays according to (9) with the weights αK = {αK,k}K

k=0 as

uD(t,αK) = κ(αK)+


(p̄− p)

(
cD +VDγD

−k
)

αK,k,

if (k−1)τD < t ≤ kτD

0 else.
(16)

This payoff function is piece-wise constant, so for some
conformity payoff vD (K), incentive compatibility requires

uD(kτD,αK) = κ(αK)+(p̄− p)
(

cD +VDγD
−k
)

αK,k = vD (K)

(17)
for all k = 0, . . . ,K. Note the term κ(αK) is a function of
αK alone and not of t. Therefore, from the structure of (16),
initiating a guard at any time outside the support will not
be strictly profitable to the defender. It can be shown, again
using normality requirements for probability densities, that

αK,k =
(

cD +VDγ
−k
D

)−1
/N(αK), (18)

where N(αK) = ∑
K
k=0

(
cD +VDγ

−k
D

)−1
is the normalization

factor for the profile αK . Finally, we complete the character-
ization of D’s strategy by noting that D’s conformity payoff,
vD (K), may be expressed as

vD (K) = κ(αK)+(p̄− p)/N(αK). (19)

C. An Algorithm to Compute an Atomic MSNE

From the preceding discussion, if we assume that A and D
play atomically over the support {0,τD, . . . ,KτD} (note K is
specified), then determining the associated weights, αK and
πK reduces to solving a linear system. However, to establish
the existence of a MSNE, it remains to check that for some
K the solution is both (i) realizable, in the sense that the
atomic weights πK are positive, and (ii) incentive compatible
for the attacker, i.e., A cannot strictly improve his payoff by
playing somewhere outside the support.

Below, we propose an enumerative algorithm to determine
an atomic MSNE for the Redhands game. Verification of the
existence of an atomic equilibria, its uniqueness, and the
algorithm’s correctness is provided in the next section.

Algorithm RedhandsNash
Output: atomic weights of MSNE for the Redhands game
1. K← 0, nashFlag ←false
2. while nashFlag 6= true
3. solve for vA (K) using (14)
4. if vA (K)≥ vA,dev(K)
5. then found K for Nash
6. nashFlag ←true
7. else K ←K +1
8. solve for πK,k using (15)
9. solve for αK,k using (18)
10. return αK and πK

Given the atomic weights supplied by RedhandsNash,
the probability distributions fA (tA) and fD (tD) are readily
computed from (9) and (10), respectively.
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D. Existence and Uniqueness of Atomic MSNE

In Section III-B, we determined the conditions a MSNE
must satisfy. We subsequently specified these results for the
particular case of atomic strategy profiles, and presented the
RedhandsNash algorithm to compute an atomic MSNE.

Now we undertake the unification of our previous efforts.
Specifically, we show that (i) there exists an atomic MSNE,
and (ii) it is generally unique. Establishing these results
guarantees that RedhandsNash—by way of enumeration—
computes the atomic MSNE and terminates, thereby certify-
ing completeness of the algorithm.

A Nash candidate, in the class under consideration, con-
sists of a pair of atomic strategies, fA and fD, where
each strategy is realizable (i.e., a valid pdf) and incentive
compatible with its opponent strategy. In what follows, we
verify that these conditions are uniquely satisfiable.

We observe, from (18), that A’s weights are guaranteed to
be positive. Also, from (17), D has no incentive to deviate
from (10), as there is no point in time, outside of his support,
that provides a strictly better payoff. Therefore, it remains
only to ensure the incentive compatibility condition for A,
and that all πK,k ≥ 0. Regarding the latter condition, we
focus on the sign of πK,K , the smallest atom in the defender’s
strategy. From (15), we have

πK,K =
p̄− [K p̄+ p]Γ−1

A,KγA
K

p̄− p
. (20)

The conditions we need to check for K to form a MSNE
are then (i) πK,K ≥ 0 and (ii) vA (K)≥ vA,dev(K).

Lemma 4.2: There exists K∗ ≥ 0 such that the strategy πK
is realizable, i.e. πK,K ≥ 0, for all K≤K∗, and for no K >K∗.

Proof: The proof is based on an argument showing that
the weight πK,K of the last atom of the defender’s strategy is
strictly decreasing in K. It follows that a sequence which is
strictly decreasing from π0,0 = 1, and is unbounded below,
must have exactly one zero-crossing. Using (20), we have

(p̄− p)πK+1,K+1

= p̄− [(K +1) p̄+ p]Γ−1
A,K+1γA

K+1

= p̄− [K p̄+ p]Γ−1
A,KγA

K

+[K p̄+ p]
(

Γ
−1
A,KγA

K−Γ
−1
A,K+1γA

K+1
)

− p̄Γ
−1
A,K+1γA

K+1.

Using (20) again, and recognizing that p < p̄, we have

(p̄− p)πK+1,K+1

< (p̄− p)πK,K

+ p̄
[
(K +1)Γ−1

A,KγA
K− (K +2)Γ−1

A,K+1γA
K+1
]

= (p̄− p)πK,K

+ p̄Γ
−1
A,KγA

K
[
(K +1)− (K +2)

γAΓA,K

ΓA,K+1

]
.

We then substitute γAΓA,K = ΓA,K+1−1, to obtain

(p̄− p)πK+1,K+1

< (p̄− p)πK,K

+ p̄Γ
−1
A,KγA

K
{
(K +1)− (K +2)

[
1−Γ

−1
A,K+1

]}
= (p̄− p)πK,K

+ p̄Γ
−1
A,KγA

K
{
(K +2)Γ−1

A,K+1−1
}
.

Finally, with the observation that

ΓA,K+1 =
K+1

∑
k=0

γA
k >

K+1

∑
k=0

1 = K +2,

we obtain
πK+1,K+1 < πK,K .

This proves the lemma.

Lemma 4.3: The atomic strategy of length K is realizable
with πK,K > 0 if and only if the atomic strategy of length
K−1 is not incentive compatible.

Proof: This proof results from the rearrangement of the
incentive compatibility condition of (13). If K−1 is incentive
compatible, then from (12) and (13)

p̄≤ [(K−1) p̄+ p]
γA

K+1− γA
K

γAK−1
=⇒ p̄

(
γA

K−1
)
≤ [K p̄+ p]

(
γA

K+1− γA
K)

− p̄
(
γA

K+1− γA
K)

=⇒ p̄
(
γA

K+1−1
)
≤ [K p̄+ p]

(
γA

K+1− γA
K)

=⇒ p̄≤ [K p̄+ p]
γA

K+1− γA
K

γAK+1−1

Meanwhile, if πK,K > 0 then from (20) we can write

p̄ > [K p̄+ p]
γA

K+1− γA
K

γAK+1−1
.

We observe that these inequalities are strongly complemen-
tary, proving the lemma.

The following proposition ties together the previous results
to verify that RedhandsNash returns a MSNE, thereby estab-
lishing the existence of a MSNE for the Redhands game.

Proposition 4.4: There exists K such that the output of
RedhandsNash is a MSNE.

Proof: We consider the last realizable K strategy,
which exists by Lemma 4.2. By definition, the K+1 strategy
is not realizable, and so the K strategy is incentive
compatible by Lemma 4.3. There is therefore a finite K
and MSNE of the form (9) and (10) for which RedhandsNash
returns the associated atomic weights αK and πK .

The following proposition addresses the issue of unique-
ness of the MSNE returned by the algorithm RedhandsNash.

Proposition 4.5: The strategy profile returned by the al-
gorithm RedhandsNash is a unique τ-spaced atomic Nash
equilibrium (almost certainly).
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Proof: As seen in Proposition 4.4, for some K, the
K−1 incentive compatibility and the K realizability (strict)
conditions are strongly complementary. Therefore, if K
induces a Nash equilibrium, then for all positive m, the K−m
strategies are not incentive compatible, and likewise K +m
strategies are not realizable.
Caveat: In the event πK,K ≥ 0 holds with equality for some
K, then K+1 (the second incentive compatible solution) will
also be a MSNE.

V. NUMERIC EXAMPLE

In this section, we specify a particular set of player param-
eters and illustrate the characteristics of the unique atomic
MSNE for the associated Redhands game. The relevant
parameters used are listed as follows: p̄ = 1, p = 0, cD = 10,
τD = 1, VA = VD = 1, βA = 0.1, and βD = 1. Referring to
Figure 1(a), the blue plots illustrate the weights used by each
player in the unique atomic equilibrium. The green curves in
Figure 1(a) demonstrate that neither player can improve their
utility by unilaterally deviating. The curves in Figure 1(b)
reveal the unique atomic MSNE has each player mixing over
a support comprised of five points. For completeness, the
weights associated with the MSNE are:

αK = {0.187,0.199,0.203,0.205,0.206}
πK = {0.352,0.283,0.208,0.125,0.033}.

VI. CONCLUSIONS

A. Summary

This work has explored equilibria in the Redhands game,
a timed game in which an attacker and a defender com-
pete in an adversarial setting with the goal of maximizing
their respective utility. We used best-response functions to
characterize a mixed-strategy Nash equilibrium in which
both players mix over a common atomic support. This
equilibrium was shown to be unique among the class, and
an enumerative algorithm for computing the solution was
provided. Numeric results highlighted interesting aspects of
equilibrium strategies for a representative game instance.

B. Future Work

There are a number of directions in which to expand the
research discussed in this paper. It remains a foremost goal
to consider a dynamic version of the Redhands game, where
players may take timed actions in sequence, as a study of
games on timed automata.

In a similar vein, a valuable investigation would be
to augment Redhands with observers, e.g. costly sensors,
spies, or early-warning alarms (perhaps noisy), and consider
explicitly the tradeoff between measured data and prior
knowledge about players’ predilections. One might argue
that with good sensors, prior knowledge of the opponent’s
private information (which is generally considered difficult to
measure) may be rendered unimportant. However, the relative
value of measurements versus prior knowledge is less clear
if players may employ deceitful tactics.
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(a) An equilibrium for a representative version of the Redhands game. Note
each’s players utility is maximized at each of the time points in their support.
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(b) Graphical evidence demonstrating the existence and uniqueness of the
atomic MSNE.

Fig. 1. Simulation Results

Finally, we remark that, although we demonstrated the
uniqueness of the uniformly-space atomic MSNE within its
class, we have left open whether MSNE may exist outside
this class. It would be natural, therefore, to attempt either to
certifying uniqueness of the proposed MSNE, or construct
others.
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