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Abstract— This paper presents the mean-square optimal
quadratic-Gaussian controller for stochastic polynomial sys-
tems with a polynomial multiplicative noise, a linear control
input, and a quadratic criterion over linear observations. The
optimal closed-form controller equations are obtained using
the separation principle, whose applicability to the considered
problem is substantiated. As an intermediate result, the paper
gives a closed-form solution of the optimal regulator (control)
problem for stochastic polynomial systems with a polynomial
multiplicative noise, a linear control input, and a quadratic
criterion. Performance of the obtained optimal controller is ver-
ified in the illustrative example against the conventional LQG
controller that is optimal for linearized systems. Simulation
graphs demonstrating overall performance and computational
accuracy of the designed optimal controller are included.

I. INTRODUCTION

Although the optimal LQG controller problem for lin-

ear systems was solved in 1960s, based on the solutions

to the optimal filtering [1] and optimal regulator [2], [3]

problems, the optimal controller for nonlinear systems has

to be determined using the nonlinear filtering theory (see

[4], [5], [6]) and the general principles of maximum [3]

or dynamic programming [7], which do not provide an

explicit form for the optimal control in most cases. However,

taking into account that the optimal filtering and control

problems can be explicitly solved in a closed form in the

linear case, and the optimal controller can be then obtained

using the separation principle [2], [3], this paper exploits

the same approach for designing the optimal controller for

polynomial systems with linear control input over linear

observations. The designed optimal solution is based on the

recently obtained optimal filter and regulator for polynomial

systems states. Thus, this paper continues a long tradition

of the optimal control design for nonlinear systems (see, for

example, [8]–[14]) and not so long research on the optimal

closed-form filter design for nonlinear ([15]–[20]), and in

particular, polynomial ([21], [22]) systems. Nevertheless, to

the best of authors’ knowledge, the optimal closed-form

controller design for polynomial systems with polynomial

multiplicative noises has not been yet considered in the
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literature, due to the absence of closed-form solutions to

the optimal filtering and control problems for that class of

systems.

This paper presents solution to the optimal quadratic-

Gaussian controller problem for stochastic polynomial sys-

tems with a polynomial multiplicative noise, a linear control

input, and a quadratic criterion over linear observations.

First, the separation principle is substantiated for polynomial

systems with a polynomial multiplicative noise, a linear

control input, and a quadratic criterion over linear obser-

vations. Then, the paper gives a closed-form solution of the

optimal regulator (control) problem for stochastic polynomial

systems with a polynomial multiplicative noise, a linear

control input, and a quadratic criterion. The obtained solution

consists of a linear feedback control law and two differential

equations, linear and Riccati ones, for forming the optimal

control gain matrix. This result is proven in Appendix.

Finally, based on that closed-form optimal control problem

solution, the optimal filter for stochastic polynomial systems

with a polynomial multiplicative noise over linear observa-

tions [22], and the separation principle, the paper presents the

optimal solution to the original quadratic-Gaussian controller

problem, which has essentially the same structure as the

solved optimal regulator (control) problem plus the variance

equation for forming the optimal filter gain matrix. All four

differential equations included in the optimal controller are

interconnected.

Finally, performance of the designed optimal controller

for for stochastic polynomial systems with a polynomial

multiplicative noise, a linear control input, and a quadratic

criterion over linear observations is verified in the illustrative

example against the conventional LQG controller that is

optimal for a linearized system.

The paper is organized as follows. In Section 2, the

optimal controller problem is stated and solved for stochastic

polynomial systems with a polynomial multiplicative noise,

a linear control input, and a quadratic criterion over linear

observations. First, the separation principle is substantiated

for the considered class of polynomial systems. Next, a

closed-form solution of the optimal regulator (control) prob-

lem is designed for polynomial systems with a polynomial

multiplicative noise, a linear control input, and a quadratic

criterion. Finally, the optimal solution to the original linear-

quadratic controller problem is given. Section 3 presents an

example illustrating the efficiency of the designed optimal

controller for polynomial systems against the conventional

LQG controller. Simulation graphs verifying overall perfor-

mance and computational accuracy of the designed optimal
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controller are included.

II. OPTIMAL CONTROLLER PROBLEM

A. Problem statement

Let (Ω,F,P) be a complete probability space with an

increasing right-continuous family of σ -algebras Ft , t ≥ t0,

and let (W1(t),Ft , t ≥ t0) and (W2(t),Ft , t ≥ t0) be indepen-

dent Wiener processes. The Ft -measurable random process

(x(t),y(t)) is described by a nonlinear differential equation

with a polynomial drift term for the system state with

polynomial multiplicative noise

dx(t) = f (x, t)dt +B(t)u(t)dt +b(x, t)dW1(t), (1)

x(t0) = x0, and a linear differential equation for the observa-

tion process

dy(t) = (A0(t)+A(t)x(t))dt +G(t)dW2(t). (2)

Here, x(t) ∈ Rn is the state vector, u(t) ∈ Rl is the control

input, and y(t) ∈ Rm is the linear observation vector, m ≤ n.

The initial condition x0 ∈Rn is a Gaussian vector such that x0,

W1(t)∈ Rp, and W2(t)∈ Rq are independent. The observation

matrix A(t) ∈ Rm×n is not supposed to be invertible or even

square. It is assumed that G(t)GT (t) is a positive definite

matrix, therefore, m ≤ q. All coefficients in (1)–(2) are

deterministic functions of appropriate dimensions.

The nonlinear functions f (x, t) and b(x, t) are considered

polynomial of n variables, components of the state vector

x(t) ∈ Rn, with time-dependent coefficients. Since x(t) ∈ Rn

is a vector, this requires a special definition of the polynomial

for n > 1. In accordance with [23], a p-degree polynomial

of a vector x(t) ∈ Rn is regarded as a p-linear form of n

components of x(t)

f (x, t)= a0(t)+a1(t)x+a2(t)xxT + . . .+ap(t)x . . .p times . . .x,
(3)

where a0 is a vector of dimension n, a1 is a matrix of

dimension n×n, a2 is a 3D tensor of dimension n×n×n, ap

is an (p+ 1)D tensor of dimension n× . . .(p+1) times . . .× n,

and x × . . .p times . . .× x is a pD tensor of dimension n ×
. . .p times . . .× n obtained by p times spatial multiplication

of the vector x(t) by itself. Such a polynomial can also be

expressed in the summation form

fk(x, t) = a0 k(t)+∑
i

a1 ki(t)xi(t)+∑
i j

a2 ki j(t)xi(t)x j(t)+ . . .

+ ∑
i1...ip

ap ki1...ip
(t)xi1(t) . . .xip(t), k, i, j, i1 . . . ip = 1, . . . ,n.

The quadratic cost function J to be minimized is defined

as follows

J =
1

2
E[xT (T )Φx(T )+

∫ T

t0

uT (s)R(s)u(s)ds + (4)

∫ T

t0

xT (s)L(s)x(s)ds],

where R is positive definite and Φ, L are nonnegative definite

symmetric matrices, T > t0 is a certain time moment, the

symbol E[ f (x)] means the expectation (mean) of a function

f of a random variable x, and aT denotes transpose to a

vector (matrix) a.

The optimal controller problem is to find the control

u∗(t), t ∈ [t0,T ], that minimizes the criterion J along with

the unobserved trajectory x∗(t), t ∈ [t0,T ], generated upon

substituting u∗(t) into the state equation (1).

B. Separation principle

It can be observed that the separation principle [2],

[3] remains valid for polynomial stochastic systems with

polynomial multiplicative noise. Indeed, let us replace the

unmeasured polynomial state x(t), satisfying (1), with its

optimal estimate m(t) over linear observations y(t) (2), which

is obtained using the following optimal filter for polynomial

states with multiplicative noises over linear observations (see

[22] for the corresponding filtering problem statement and

solution)

dm(t) = E( f (x, t) | FY
t )dt +B(t)u(t)dt + (5)

P(t)AT (t)(G(t)GT (t))−1(dy(t)− (A0(t)+A(t)m(t))dt).

m(t0) = E(x(t0) | FY
t ),

dP(t) = (E((x(t)−m(t))( f (x, t))T | FY
t ) + (6)

E( f (x, t)(x(t)−m(t))T ) | FY
t )+E(b(x, t)bT (x, t) | FY

t )−

P(t)AT (t)(G(t)GT (t))−1A(t)P(t))dt,

P(t0) = E((x(t0)−m(t0))(x(t0)−m(t0))
T | FY

t ),

where P(t) is the conditional variance of the estimation error

x(t)−m(t) with respect to the observations Y (t).
Recall that m(t) is the optimal estimate for the state vector

x(t), based on the observation process Y (t) = {y(s), t0 ≤ s ≤
t}, that minimizes the Euclidean 2-norm

H = E[(x(t)−m(t))T (x(t)−m(t)) | FY
t ]

at every time moment t. Here, E[ξ (t) | FY
t ] means the

conditional expectation of a stochastic process ξ (t) = (x(t)−
m(t))T (x(t)− m(t)) with respect to the σ - algebra FY

t

generated by the observation process Y (t) in the interval

[t0, t]. As known [24], this optimal estimate is given by the

conditional expectation

m(t) = E(x(t) | FY
t )

of the system state x(t) with respect to the σ - algebra FY
t

generated by the observation process Y (t) in the interval

[t0, t]. As usual, the matrix function

P(t) = E[(x(t)−m(t))(x(t)−m(t))T | FY
t ]

is the estimation error variance.

Remark 1. The equations (5) and (6) do not form a

closed system of equations due to the presence of polynomial

terms depending on x, such as E( f (x, t) | FY
t ), E((x(t)−

m(t)) f T (x, t)) | FY
t ), and E(b(x, t)bT (x, t)Q(t) | FY

t ), which

are not expressed yet as functions of the system variables,

m(t) and P(t). However, as shown in [21], [22], the closed
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system of the filtering equations can be obtained for any

polynomial state (1) over linear observations (2), using the

technique of representing superior moments of the condition-

ally Gaussian random variable x(t)−m(t) as functions of

only two its lower conditional moments, m(t) and P(t) (see

[21], [22] for more details of this technique). Apparently,

the polynomial dependence of f (x, t), b(x, t), and (x(t)−
m(t)) f T (x, t) on x is the key point making this representation

possible.

It is readily verified (see [2]) that the optimal control

problem for the system state (1) and cost function (4) is

equivalent to the optimal control problem for the estimate

(5) and the cost function J represented as

J = E{
1

2
mT (T )Φm(T )+

1

2

∫ T

t0

uT (s)R(s)u(s)ds + (7)

1

2

∫ T

t0

mT (s)L(s)m(s)ds+
1

2

∫ T

t0

tr[P(s)L(s)]ds+
1

2
tr[P(T )Φ]},

where tr[A] denotes trace of a matrix A. Since the latter part

of J does not directly depend on control u(t) or state x(t),
the reduced effective cost function M to be minimized takes

the form

M = E{
1

2
mT (T )Φm(T )+

1

2

∫ T

t0

uT (s)R(s)u(s)ds + (8)

1

2

∫ T

t0

m(s)L(s)m(s)ds}.

Thus, the solution for the optimal control problem specified

by (1),(4) can be found solving the optimal control problem

given by (5),(7). Finally, the minimal value of the criterion J

should be determined using (8). This conclusion presents the

separation principle for polynomial systems with a quadratic

cost function.

C. Optimal control problem solution

To handle the optimal control problem given by (5),(7),

let us first give the solution to the general optimal control

problem for a polynomial system with linear control input

and a quadratic cost function.

Consider a polynomial system with linear control input

dx(t) = f (x, t)dt +B(t)u(t)dt +b(x, t)dW1(t), (9)

x(t0) = x0, where x(t)∈ Rn is the state vector, u(t)∈ Rl is the

control input, the polynomial drift function f (x, t) is defined

by (3), and the assumptions made for the system (1) hold.

Following (3), the vector function ∂ (tr{b(x, t)bT (x, t)})/∂x

of the polynomial diffusion b(x, t) of degree r is represented

by

∂ (tr{b(x, t)bT (x, t)})/∂x = b1(t)+b2(t)x + (10)

b3(t)xxT + . . .+br2(t)x . . .r2−1 times . . .x,

where b1 is a vector of dimension n, b2 is a matrix of

dimension n × n, br2 is a r2D tensor of dimension n ×
. . .r2 times . . .× n, and x × . . .r2−1 times . . .× x is a (r2 − 1)D

tensor of dimension n× . . .r2−1 times . . .×n obtained by r2−1

times spatial multiplication of the vector x(t) by itself. The

quadratic cost function J to be minimized is defined by (4).

The optimal control problem is to find the control u∗(t), t ∈
[t0,T ], that minimizes the criterion J along with the trajectory

x∗(t), t ∈ [t0,T ], generated upon substituting u∗(t) into the

state equation (1). The solution to the stated optimal control

problem is given by the following theorem.

Theorem 1. The optimal regulator for the polynomial

system (9) with linear control input with respect to the

quadratic criterion (4) is given by the control law

u∗(t) = R−1(t)BT (t)[Q(t)x(t)+ p(t)],

where the matrix function Q(t) is the solution of the Riccati

equation

Q̇(t) = L(t)− [a1(t)+2a2(t)x(t) + (11)

3a3(t)x(t)x
T (t)+ . . .+ pap(t)x(t) . . .p−1 times . . .x(t)]

T Q(t)−

Q(t)[a1(t)+a2(t)x(t)+a3(t)x(t)x
T (t)+ . . .

+ap(t)x(t) . . .p−1 times . . .x(t)]−Q(t)B(t)R−1(t)BT (t)Q(t),

with the terminal condition Q(T ) = −ψ , and the vector

function p(t) is the solution of the linear equation

ṗ(t) =−Q(t)a0(t)− [a1(t)+2a2(t)x(t) + (12)

3a3(t)x(t)x
T (t)+ . . .+ pap(t)x(t) . . .p−1 times . . .x(t)]

T p(t)−

Q(t)B(t)R−1(t)BT (t)p(t)+Q(t)[b1(t)+b2(t)x(t)+

b3(t)x(t)x
T (t)+ . . .+br2(t)x(t) . . .r2−1 times . . .x(t)],

with the terminal condition p(T ) = 0. The optimally con-

trolled state of the polynomial system (9) is governed by the

equation

dx(t) = f (x, t)dt +B(t)R−1(t)BT (t)[Q(t)x(t) + (13)

p(t)]dt +b(x, t)dW1(t), x(t0) = x0. �

D. Optimal controller problem solution

Based on the result of Theorem 1 and the preceding

derivations substantiating separation of the filtering and con-

trol problems, the solution to the original optimal controller

problem (1)–(4) is given as follows. The corresponding

optimal control law takes the form

u∗(t) = R−1(t)BT (t)[Q(t)m(t)+ p(t)], (14)

where the matrix function Q(t) is the solution of the Riccati

equation

Q̇(t) = L(t)− [c1(t)+2c2(t)m(t)+3c3(t)m(t)mT (t) + (15)

. . .+ pcp(t)m(t) . . .p−1 times . . .m(t)]T Q(t)−

Q(t)[c1(t)+ c2(t)m(t)+ c3(t)m(t)mT (t)+ . . .

+cp(t)m(t) . . .p−1 times . . .m(t)]−Q(t)B(t)R−1(t)BT (t)Q(t),

with the terminal condition Q(T ) = −ψ , and the vector

function p(t) is the solution of the linear equation

ṗ(t) =−Q(t)c0(t)− [c1(t)+2c2(t)m(t) + (16)
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3c3(t)m(t)mT (t)+ . . .+ pcp(t)m(t) . . .p−1 times . . .m(t)]T p(t)−

Q(t)B(t)R−1(t)BT (t)p(t)+Q(t)[d1(t)+d2(t)m(t)+

d3(t)m(t)mT (t)+ . . .+dr2(t)m(t) . . .r2−1 times . . .m(t)],

with the terminal condition p(T ) = 0, where

c0(t),c1(t), . . . ,cp(t) and d1(t),d2(t), . . . ,dr2(t) are the

coefficients in the representations of the terms E( f (x, t) |FY
t )

and E((∂ (tr{b(x, t)bT (x, t)})/∂x) | FY
t ) in the right-hand

sides of (5) and (6), respectively, as polynomials of m, that

is,

E( f (x, t) | FY
t ) = c0(t)+ c1(t)m+ c2(t)mmT + . . .+

cp(t)m . . .p times . . .m,

E((∂ (tr{b(x, t)bT (x, t)})/∂x) | FY
t ) = d1(t)+d2(t)m+

d3(t)mmT + . . .+dr2(t)m . . .r2−1 times . . .m.

Upon substituting the optimal control (14) into the equa-

tion (5), the following optimally controlled state estimate

equation is obtained

dm(t) = (c0(t)+ c1(t)m+ c2(t)mmT + . . .+ cp(t)m . . . (17)

p times . . .m)dt +B(t)R−1(t)BT (t)[Q(t)m(t)+ p(t)]dt+

P(t)AT (t)(B(t)BT (t))−1(dy(t)− (A0(t)+A(t)m(t))dt).

with the initial condition m(t0) = E(x(t0) | FY
t ).

Thus, the optimally controlled state estimate equation (17),

the gain matrix constituent equations (15) and (16), the

optimal control law (14), and the variance equation (6) give

the complete solution to the optimal controller problem for

polynomial systems with linear control input and a quadratic

cost function. This solution is not yet written in a closed

form due to non-closeness of the filtering equations (5),(6)

in the general situation; however, as noted in Remark 1, the

closed-form solution can be obtained for any specific form of

the polynomial drift f (x, t) and polynomial diffusion b(x, t)
in the equation (1). In the next subsection, the closed-form

optimal solution is obtained for the particular case of second

degree polynomial functions f (x, t) and b(x, t).
1) Optimal controller problem solution for second degree

polynomial state: Let the function

f (x, t) = a0(t)+a1(t)x+a2(t)xxT (18)

be a second degree polynomial, where x is an n-dimensional

vector, a0(t) is an n-dimensional vector, a1(t) is an n× n-

dimensional matrix, and a2(t) is a 3D tensor of dimension

n×n×n. In this case, the representations for E( f (x, t) | FY
t )

and E((x(t)−m(t))( f (x, t))T | FY
t ) as functions of m(t) and

P(t) are derived as follows (see also the results in [21], [22])

E( f (x, t) | FY
t ) = a0(t)+a1(t)m(t) + (19)

a2(t)m(t)mT (t)+a2(t)P(t),

E( f (x, t)(x(t)−m(t))T ) | FY
t ) + (20)

E((x(t)−m(t))( f (x, t))T | FY
t ) = a1(t)P(t)+

P(t)aT
1 (t)+2a2(t)m(t)P(t)+2(a2(t)m(t)P(t))T .

Substituting the expression (19) in (5) and the expression

(20) in (6), the filtering equations for the optimal estimate

m(t) and the error variance P(t) are obtained

dm(t) = (a0(t)+a1(t)m(t)+a2(t)m(t)mT (t) + (21)

a2(t)P(t))dt +B(t)u(t)dt +P(t)AT (t)(G(t)GT (t))−1[dy(t)−

(A0(t)+A(t)m(t))dt], m(t0) = E(x(t0) | FY
t )),

dP(t) = (a1(t)P(t)+P(t)aT
1 (t)+2a2(t)m(t)P(t) + (22)

2(a2(t)m(t)P(t))T +E(b(x, t)bT (x, t) | FY
t ))dt−

P(t)AT (t)(G(t)GT (t))−1A(t)P(t)dt.

P(t0) = E((x(t0)−m(t0))(x(t0)−m(t0))
T | FY

t ).

Taking into account the representation (19): c0(t) =
a0(t)+a2(t)P(t), c1(t) = a1(t), c2(t) = a2(t), the equations

(15) and (16) take the following particular forms in the case

of a second degree polynomial function (18)

Q̇(t) = L(t)− [a1(t)+2a2(t)m(t)]T Q(t)− (23)

Q(t)[a1(t)+a2(t)m(t)]−Q(t)B(t)R−1(t)BT (t)Q(t),

with the terminal condition Q(T ) =−ψ , and

ṗ(t) =−Q(t)(a0(t)+a2(t)P(t))− [a1(t) + (24)

2a2(t)m(t)]T p(t)−Q(t)B(t)R−1(t)BT (t)p(t) +

Q(t)[d1(t)+d2(t)m(t)+d3(t)m(t)mT (t)+ . . .

+dr2(t)m(t) . . .r2−1 times . . .m(t)],

with the terminal condition p(T ) = 0.

The optimally controlled state estimate equation (17) takes

the the following particular form

dm(t) = (a0(t)+a1(t)m(t)+a2(t)m(t)mT (t)+ (25)

a2(t)P(t))dt +B(t)R−1(t)BT (t)[Q(t)m(t)+ p(t)]dt+

P(t)AT (t)(G(t)GT (t))−1(dy(t)− (A0(t)+A(t)m(t))dt).

with the initial condition m(t0) = E(x(t0) | FY
t ).

Thus, the optimally controlled state estimate equation (25),

the gain matrix constituent equations (23) and (24), the

optimal control law (14), and the variance equation (22) give

the complete closed-form solution to the optimal controller

problem for second degree polynomial systems with linear

control input and a quadratic cost function. In the next

section, performance of the designed closed-form optimal

controller for second degree polynomial systems is verified

in an example.
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III. EXAMPLE

This section presents an example of designing the optimal

controller for a second degree polynomial system (1) with a

third degree multiplicative noise over linear observations (2)

with a quadratic criterion (4), using the scheme (21)–(25),

and comparing it to the best linear controller available for a

linearized system.

Consider a scalar quadratic polynomial state equation

ẋ(t) = 0.1x2(t)+u(t)+0.1x2(t)ψ1(t), x(0) = x0, (26)

and linear observations

y(t) = x(t)+ψ2(t), (27)

where ψ1(t) and ψ2(t) are white Gaussian noises, which

are the weak mean square derivative of standard Wiener

processes (see [24]), and x0 is a Gaussian random variable.

The equations (26) and (27) present the conventional form for

the equations (1) and (2), which is actually used in practice

[25].

The controller problem is to find the control u(t), t ∈ [0,T ],
T = 0.5, that minimizes the criterion

J =
1

2
E[

∫ T

0
u2(t)dt +

∫ T

0
x2(t)dt]. (28)

In other words, the control problem is to minimize the overall

energy of the state x using the minimal overall energy of

control u.

Let us first construct the controller where the control law

u(t) and the matrices P(t) and Q(t) are calculated in the same

manner as for the optimal linear controller for the linearized

system (26) without multiplicative noise

ẋ(t) = 0.2m(t)x(t)+u(t)+0.1ψ1(t), x(0) = x0, (29)

which yields u(t) = R−1(t)BT (t)Q(t)m(t) (see [2] for refer-

ence). Since B(t) = 1 in (26) and R(t) = 1 in (28), the control

law is actually equal to

u(t) = Q(t)m(t); (30)

where m(t) satisfies the equation

ṁ(t) = a(t)m(t)+B(t)u(t)+P(t)AT (t)G(t)GT (t))−1(y(t)−

(A0(t)+A(t)m(t))), m(t0) = m0 = E(x0 | FY
t0
);

Q(t) satisfies the Riccati equation

Q̇(t) =−aT (t)Q(t)−Q(t)a(t)+L(t)−

Q(t)B(t)R−1(t)BT (t)Q(t)),

with the terminal condition Q(T ) = ψ; and P(t) satisfies the

Riccati equation

Ṗ(t) = P(t)a(t)+a(t)P(t)+b(t)bT (t)−

P(t)AT (t)(G(t)GT (t))−1A(t)P(t),

with the initial condition P(t0) = E((x0 − m0)(x0 − m0)
T |

y(t0)). Since t0 = 0, a(t) = 0.2m(t), B(t) = 1, b(t) = 0.1 in

(29), A0(t) = 0, A(t) = 1, G(t) = 0.1 in (27), and L = 1 and

Φ = 0 in (28), the last equations turn to

ṁ(t) = 0.2m2(t)+u(t)+P(t)(y(t)−m(t)), (31)

m(0) = m0,

Q̇(t) = 1−0.4m(t)Q(t)− (Q(t))2, Q(0.5) = 0, (32)

Ṗ(t) = 0.01+0.4m(t)P(t)− (P(t))2, P(0) = P0. (33)

Upon substituting the control (30) into (31), the controlled

estimate equation takes the form

ṁ(t) = 0.2m2(t)+Q(t)m(t)+P(t)(y(t)−m(t)), (34)

m(0) = m0.

For numerical simulation of the system (26),(27) and the

controller (30)-(34), the initial values x(0) = 1, m(0) = 2,

and P(0) = 10 are assigned. The disturbance ψ(t) in (27) is

realized using the built-in MatLab white noise function.

The results of applying the controller (30)–(34) to the

system (26),(27) are shown in Fig. 1, which presents the

graph of control function (30) and the graph of the criterion

(28) J(t) in the interval [0,0.5]. The values of the estimation

error x(t)−m(t) and the criterion (28) at the final moment

T = 0.5 are x(0.5)−m(0.5) =−0.29 and J(0.5) = 0.252.

Let us now apply the optimal controller for second de-

gree polynomial systems designed according to the optimal

scheme (21)–(25),(14) to the system (26), (27). The control

law (14) takes the form

u∗(t) = Q(t)m(t)+ p(t), (35)

where

ṁ(t) = 0.1m2(t)+0.1P(t)+u(t)+P(t)(y(t)−m(t)), (36)

m(0) = m0,

and

Q̇(t) = 1−0.3m(t)Q(t)− (Q(t))2, Q(0.5) = 0, (37)

ṗ(t) = 0 (38)

Ṗ(t) = 0.4m(t)P(t)−0.97(P(t))2 +0.06m2(t)P(t)+ (39)

0.01m4(t), P(0) = P0.

Upon substituting the control (35) into (36), the optimally

controlled estimate equation takes the form

ṁ(t) = 0.1m2(t)+0.1P(t)+Q(t)m(t)+ p(t)+ (40)

P(t)(y(t)−m(t)), m(0) = m0,

For numerical simulation of the system (26),(27) and the

controller (35)-(40), the initial values x(0) = 1, m(0) = 2,

and P(0) = 10 are assigned. The disturbance ψ(t) in (27) is

realized using the built-in MatLab white noise function.

The results of applying the controller (35)–(40) to the

system (26),(27) are shown in Fig. 2, which presents the

graph of control function (30) and the graph of the criterion

(28) J(t) in the interval [0,0.5]. The values of the estimation
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error x(t)−m(t) and the criterion (28) at the final moment

T = 0.5 are x(0.5)−m(0.5) =−0.26 and J(0.5) = 0.09513,

which is three times less than for the preceding controller

(30)–(34).

It can be observed that the final criterion values at T = 0.5
are definitively better for the designed optimal controller for

second degree polynomial systems in comparison to the best

controller available for a linearized system. This successfully

verifies overall performance and computational accuracy of

the designed optimal controller for polynomial systems.
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Fig. 1. Graphs of the control (30) u(t), the criterion (28) J(t), the state (26)
x(t), and the estimate (34) m(t) corresponding to the controller (30)–(34)
in the interval [0,0.5].
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Fig. 2. Graphs of the control (35) u(t), the criterion (28) J(t), the state (26)
x(t), and the estimate (40) m(t) corresponding to the controller (35)–(40)
in the interval [0,0.5].
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