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Abstract— A recent addition to the biped literature is the
Synthetic-Wheel Biped. This platform has arc-shaped feet and
is prone to rolling on its feet when disturbed. A disturbance
rejection algorithm is proposed for the Synthetic-Wheel Biped
such that it can stop moving and regain its upright posture. The
algorithm imposes a symmetric gait and uses impulsive control
inputs to keep the states of the system bounded and reject
the effect of the disturbance. It is assumed that the external
disturbances are applied when the biped is in its upright posture
and the disturbances are modeled by initial velocity conditions.
The biped takes a few steps to recover its upright configuration.

Numerical simulations show the effectiveness of the proposed
algorithm in rejecting the external disturbances applied on the
Synthetic-Wheel Biped.

NOMENCLATURE

For the nomenclature below, subscript k ∈ {st, sw, t} where

st, sw, t denote the stance leg, swing leg and torso and

i, j ∈ {1, 2, 3}.

dk distance of center of mass of the k-th link, (m)
lt length of the torso, (m)
g acceleration due to gravity, (9.81 m.s−2)

R radius of curvature of the feet and length of the

stance and swing legs, (m)
α angle of the torso with respect to the vertical axis,

measured positive in the ccw direction, (rad)
αd constant desired value of α, (rad)
θj angular displacement of the j-th link, (rad)

θ̇j angular velocity of the j-th link, (rad/s)

θ̇+
j angular velocity of the j-th link, immediately

after the application of impulsive torque, (rad/s)

θ̇−j angular velocity of the j-th link, immediately be-

fore the application of impulsive torque, (rad/s)
τ1 generalized force corresponding to θ2, (N.m)
τ2 generalized force corresponding to θ3, (N.m)
θ vector of generalized coordinates: θ1, θ2 and θ3

θ̄ vector of generalized coordinates: θ1, v1 and v2

θ̂ vector of control variables v1 and v2

P coordinate transformation matrix describing

stance and swing-leg interchange

θnew the value of θ after interchange of stance and

swing legs

θold the value of θ before interchange of stance and

swing legs

I1 impulse corresponding to θ2 coordinate, (N.m.s)
I2 impulse corresponding to θ3 coordinate, (N.m.s)

All authors are with the Department of Mechanical Engineering, Michi-
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author is R. Mukherjee, email: mukherji@egr.msu.edu

Sj sin θj

Cj cos θj

Sij sin(θi + θj)
Cij cos(θi + θj)

I. INTRODUCTION

Bipeds can provide greater maneuverability over a wide

variety of terrains as compared to wheeled mobile robots

and their anthropomorphic characteristics make them well

suited to sharing the workspace with humans. The design

and control of bipeds has been a subject of considerable

research for the past four decades and has resulted in the

development of a number of different biped platforms, [1],

[2], [3], [4], for example, and walking strategies [5], [6], [7],

[8].

The dynamics of bipeds are complicated, nonlinear, and

often unstable due to impact from footground interaction

and discrete events, such as switching support between legs.

This makes the control problem difficult, and it is not

surprising that stability and robustness of human locomotion

has been difficult to emulate in bipeds. The concept of Zero-

Moment-Point (ZMP) developed by Vukobratovic and Juricic

[5] has been widely used to design robust controllers to

handle external disturbances [9], [10], [11], [12]. Abdallah

and Goswami [13] developed an algorithm based on ZMP

approach for balance maintenance of a fully actuated biped

standing upright and subjected to an external disturbance.

Their two-phase algorithm consists of reflex and recovery

phases in which the external disturbance is absorbed and

the biped home position is recovered. Prahlad et al. [14]

proposed a ZMP compensation method in which the joint

trajectories, instead of joint torques, are changed to keep

the ZMP inside the support polygon. Zheng [15] developed

an acceleration compensation approach, which is based on

choosing the biped joint accelerations to reduce the angle

deviation of the supporting foot due to the external distur-

bance. Hobbelen and Wisse [16] investigated the effect of leg

retraction on the disturbance rejection of limit cycle walkers1

and used the Gait Sensivity Norm [17], to find the optimal

swing-leg retraction. Other nonlinear control methods such as

sliding mode control and passivity-based control have been

proposed for a 5-DOF under-actuated biped [18] and a force-

controllable humanoid [19] for disturbance rejection.

We consider the problem of control design to reject impul-

sive disturbances which cause discrete jumps in the system

velocities. To this end we enlarge the set of admissible

controls to include impulsive inputs. An impulsive input

1limit cycle walkers are the bipeds that show stable limit cycle motion
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can produce large changes in system velocities over a short

duration of time. There has been a fair amount of theoretical

research on impulsive control [20], [21], [22], [23] and in

recent years, researchers have studied diverse application

problems that include under-actuated systems [24], [25],

[26].

In this paper, an algorithm is proposed to cancel the effect

of impulsive disturbances applied to the Synthetic-Wheel

Biped [27] in its upright configuration. The Synthetic-Wheel

Biped, which appeared in the literature recently, has curved

feet and will roll on its feet when disturbed. Our algorithm

allows the biped to take a few steps in the direction of the

applied disturbance and recover its upright posture.

II. BIPED DYNAMICS AND CONTROL

A. Equations of Motion

A schematic of the Synthetic-Wheel Biped [27] is shown

in Fig.1. It is an under-actuated three-DOF system described

by the generalized coordinates θ1, θ2 and θ3. The two actu-

ators that correspond to θ2 and θ3 coordinates can actively

control the torso and the swing leg motion while the stance

leg motion is completely passive. Assuming no friction in the

joints, the equations of motion for the biped can be obtained

using the Lagrangian formulation as follows,

A(θ)θ̈ + B(θ, θ̇)θ̇ + G(θ) = T (1)

where

θ =





θ1

θ2

θ3



 , T =





0
τ1

τ2



 (2)

In (1), A(θ) represents the symmetric inertia matrix, B(θ, θ̇)
is the matrix containing the Coriolis and centrifugal forces,

and G(θ) is the vector of gravitational forces. The coordinate

θ1 denotes the passive DOF and hence its corresponding

generalized force is zero. The terms A(θ), B(θ, θ̇) and G(θ)
are defined as follows:

A = [Aij ]3×3
, B = [Bij ]3×3

, G = [Gi]3×1 (3)

and can be obtained following the Lagrangian Formulation.

B. Symmetric Gait

A symmetric gait for the Synthetic-Wheel Biped is gen-

erated by imposing the following constraints on the motion

of the torso and the swing leg [27]:

C1 : α = αd

C2 : θ3 = −2θ1

(4)

where α, depicted in Fig.2, is defined by the relation

α = θ1 + θ2 − π (5)

The constraint C1 ensures that the torso maintains angle αd

with respect to the vertical axis while constraint C2 ensures

that the swing leg is symmetric with respect to the stance leg

about the vertical axis at all times. The constrained system

X

Y

g

dsw

dst

dt

lt

R

R

θ1

θ2

θ3

Fig. 1. A schematic of the Synthetic-Wheel Biped. the link angles θ1, θ2

and θ3 are measured counter-clockwise with respect to the horizontal axis.

has one passive DOF with the following dynamics, which is

derived by substituting (4) into (1):

Ac(θ1) θ̈1 + Bc(θ1, θ̇1) θ̇1 + Gc = 0 (6)

where the expressions for Ac(θ1), Bc(θ1, θ̇1) and Gc can be

found in [27]. For any set of reasonable parameter values, it

can be verified that θ̈1 will be positive for positive angle αd

and vice versa. This implies that we can slow down the biped

velocity θ̇1 by applying the constraints in (4) and choosing

αd to have the opposite sign of θ̇1.

C. Interchange of Stance and Swing Legs

Assuming that the biped has a positive velocity, it will roll

on its stance leg and the point of contact with the ground will

move from the heel to the toe. The stance and swing legs

can be interchanged at any time; but to have the maximum

step size, the swing leg should touch down when the heel of

the swing leg is right in front of the toe of the stance leg, as

seen in Fig.2.

Without assuming maximum step size, an interchange of

stance and swing legs will result in a transformation of

the generalized coordinates and their velocities given by the

following relations:

θnew = P θold

θ̇new = P θ̇old
(7)

where the entries of the transformation matrix P are

P =





1 0 1
0 1 −1
0 0 −1



 (8)

and can be obtained from Fig.2.

D. Control Design for Symmetric Gait

In this section, we present the controller for imposing

the symmetric gait constraints in (4). First, the new set of

generalized coordinates is defined as

θ̄ =
[

θ1 v1 v2

]T
(9)
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Fig. 2. Biped configuration at the time of interchange of stance and swing
legs.

where

v1 = α − αd

v2 = θ3 + 2θ1 (10)

The original generalized coordinates θ2 and θ3 are related

to the new coordinates v1 and v2 according to the following

relations, which can be derived from (5) and (10):

θ2 =v1 − θ1 + π + αd

θ3 =v2 − 2θ1 (11)

Substituting (11) into (1), we obtain the dynamics of the

system in terms of the new generalized coordinates as

follows:

Ā(θ̄) ¨̄θ + B̄(θ̄, ˙̄θ) ˙̄θ + Ḡ(θ̄) = T (12)

where Ā, B̄, and Ḡ have the same dimensions as A, B, and

G respectively. The generalized force corresponding to θ1

in (12) is zero and this allows us to eliminate θ̈1 from the

two equations corresponding to the generalized coordinates

v1 and v2. The reduced-order equations have the form

Â(θ̄)
¨̂
θ + B̂(θ̄, ˙̄θ)

˙̂
θ + Ĝ(θ̄) = T̂ (13)

where Â ∈ R2×2, B̂ ∈ R2×2 and Ĝ ∈ R2×1, and

θ̂ = [v1 v2]
T , T̂ = [τ1 τ2]

T
(14)

Equation (13) represents a completely actuated system and

we use feedback linearization to design our controller as

follows:

T̂ = B̂(θ̄, ˙̄θ)
˙̂
θ + Ĝ(θ̄) − Â(θ̄)(Kd

˙̂
θ + Kp θ̂) (15)

where Kd and Kp are diagonal, positive-definite matrices of

dimension two. Indeed, substitution of (15) into (13) yields

¨̂
θ + Kd

˙̂
θ + Kp θ̂ = 0 (16)

which implies θ̂ → 0 as t → ∞. This simply follows that

v1, v2 → 0 as t → ∞, i.e., the constraints in (4) are

satisfied.

The controller in (15) has been implemented and exper-

imentally verified in our laboratory biped [27]. The experi-

mental results show that v1 and v2 do not converge to zero

but oscillate around zero due to impulsive disturbances from

the ground at the time of swing-leg touchdown. The distur-

bance rejection algorithm presented in this paper provides a

way to avoid these impulsive disturbances from the ground

while taking steps that are initiated to maintain balance after

the biped has been subjected to an external disturbance.

III. IMPULSIVE TORQUES AND EFFECTS

A. Braking Torque for the Swing Leg

Consider the action that results in exponential convergence

of the swing leg velocity θ̇3 to zero while keeping θ̇1

unchanged. To this end, the following dynamics are assumed,

θ̈1 =0

θ̈3 = − k1θ̇3 (17)

where k1 is a positive constant determining the rate of

convergence of θ̇3 to zero. To compute the torque required

for this action, we multiply (1) with the inverse of the inertia

matrix to obtain




θ̈1

θ̈2

θ̈3



=
1

A33(A11A22 − A2
12) − A22A2

13





h1 − A12A33τ1 − A13A22τ2

h2+(A11A33−A2
13)τ1+A12A13τ2

h3+A12A13τ1+(A11A22−A2
12)τ2



 (18)

where h1, h2 and h3 are given by the following expressions,

h1 = − A22A33(B11θ̇1 + B12θ̇2 + B13θ̇3)

− A22A33G1 + A12A33G2 + A22A13G3

h2 =A12A13(B11θ̇1+B12θ̇2+B13θ̇3)

+A12A33G1+(A2
13−A11A33)G2−A12A13G3

h3 =A22A13(B11θ̇1 + B12θ̇2 + B13θ̇3)

+A13A22G1−A12A13G2+(A2
12−A11A22)G3 (19)

Substituting (17) into the first and third equations in (18)

results in

τ1 =
1

A12

[

A2
12h1−A22(A11h1+A13h3)

A2
13A22+(A2

12−A11A22)A33

+k1A13A22θ̇3

]

τ2 =
A13h1 + A33h3

A2
13A22 + (A2

12 − A11A22)A33

− k1A33θ̇3 (20)

If the constant k1 has a very large value, the torque expres-

sions in (20) will be impulsive in nature and will stop the

swing leg relative velocity, θ̇3, in a very short period of time

without changing the stance leg velocity.

B. Braking Torque for the Torso

Consider an action which results in exponential conver-

gence of the torso absolute velocity, α̇, to zero while main-

taining equal and opposite velocities for the stance and swing

legs, i.e. θ̇3 = −2 θ̇1, in conformity with the symmetric gait.
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Using (5), we consider the following dynamics to achieve

the goal,

θ̈1 + θ̈2 = − k2(θ̇1 + θ̇2)

θ̈1 + 2θ̈3 = − k3(θ̇1 + 2θ̇3) (21)

where k2 and k3 are some positive constants determining

the rate of convergence of the velocities to their desired

values. The control inputs that result in the dynamics in (21)

can be obtained by substituting (18) into (21) and solving

for τ1 and τ2. The complicated torque expressions are not

explicitly mentioned here for the sake of simplicity. If we

choose very large values for k2 and k3 in (21), the resulted

torque expressions will be impulsive in nature and stop the

motion of the torso in a very short period of time without

affecting the symmetric velocity condition associated with

the symmetric gait.

C. Effect of Impulse on the System Velocities

The application of impulsive torques for θ2 and θ3 gen-

eralized coordinates results in velocity jumps in all three

coordinates θ1, θ2 and θ3. The relationship between the

jumps in velocities can be derived from Lagrange’s equations

as discussed next. Consider the integral of the equations of

motion in (1) over the short interval of time ∆t during which

the impulsive forces and moments act, i.e.
∫ ∆t

0

[

A(θ)θ̈ + B(θ, θ̇)θ̇ + G(θ)
]

dt =

∫ ∆t

0

T dt (22)

The above equation can be rewritten as:

A(θ)∆θ̇ + B(θ, θ̇)∆θ +

∫ ∆t

0

G(θ) dt =

∫ ∆t

0

T dt (23)

Since ∆t is very short time interval and the configuration

of the biped does not change during this time, i.e. ∆θ = 0,

(23) will be simplified to

A(θ)∆θ̇ = Timp (24)

where Timp = [0 I1 I2]
T represents the vector of impulses

applied to the biped. The above equation can be decomposed

into the following three equations:

A11(θ̇
+
1 −θ̇−1 )+A12(θ̇

+
2 −θ̇−2 )+A13(θ̇

+
3 −θ̇−3 )=0 (25)

A21(θ̇
+
1 −θ̇−1 )+A22(θ̇

+
2 −θ̇−2 )+A23(θ̇

+
3 −θ̇−3 )=I1 (26)

A31(θ̇
+
1 −θ̇−1 )+A32(θ̇

+
2 −θ̇−2 )+A33(θ̇

+
3 −θ̇−3 )=I2 (27)

As the first special case, consider the impulsive action

described in section III-A in which θ̇+
3 = 0 and θ̇+

1 = θ̇−1 .

Using (25), the relative velocity of torso after the impulsive

action can be obtained as

θ̇+
2 = θ̇−2 +

A13

A12

θ̇−3 (28)

As the second case, consider the impulsive action in section

III-B which results in θ̇+
2 = −θ̇+

1 and θ̇+
3 = −2 θ̇+

1 . Then the

velocity of the swing leg after the impulse can be obtained

from (25) as follows:

θ̇+
1 =

A11θ̇
−

1 + A12θ̇
−

2 + A13θ̇
−

3

A11 − A12 − 2A13

(29)

It should be noted that the impulses I1 and I2 can be

computed from (26) and (27). These impulses can also be

approximated by the time integral of the torque expressions

obtained in sections III-A for large gain k1 and the torque

expressions in section III-B for large gains k2 and k3.

IV. DISTURBANCE REJECTION ALGORITHM

We propose an algorithm to reject the external distur-

bances applied to the Synthetic-Wheel Biped. The distur-

bances are assumed to be of the form of impulsive forces

that are applied to the torso while the biped is standing

upright and their effects are therefore modeled by jumps in

the generalized velocities. The disturbances are assumed to

be large enough that precludes the possibility of stabilizing

the upright posture without taking a step. The problem at

hand is therefore to reject the disturbances and stabilize the

upright posture by taking a few steps in the forward or

backward direction.

The disturbance rejection algorithm is based on slowing

down the biped using the symmetric gait while imposing

constraints on the legs and torso. These constraints are:

C3 : −β/2 ≤ θ1 ≤ β/2 (30)

C4 : −γ ≤ α ≤ γ (31)

where β is the foot arc angle (see Fig.2) and γ is some

small positive angle. The constraint in (30) guarantees that

the stance leg does not go beyond the foot arc angle and the

biped does not fall. The constraint in (31) ensures that the

torso deviation from the upright configuration is too large

since a large deviation may be irrecoverable.

We propose the following three-step algorithm to reject

external impulsive disturbances and stabilize the upright

posture of the Synthetic-Wheel Biped:

1. Initialization:

(a) Linearize the dynamic equations in (1) about the

desired equilibrium point (θ1, θ̇1, θ2, θ̇2, θ3, θ̇3) =
(0, 0, π, 0, 0, 0).

(b) Design a linear controller to render the desired

equilibrium locally asymptotically stable 2. Let RA

be the region of attraction of the desired equilib-

rium.

(c) Choose a small positive angle γ such that any

configuration of the biped satisfying |θ1| ≤ β/2,

θ̇1 ≈ 0, |α| ≤ γ, α̇ ≈ 0, |θ3| ≤ β and θ̇3 ≈ 0 lies

inside RA.

2. Disturbance Rejection:

(a) Following the external disturbance, apply the

torque expression in (15) to implement the sym-

metric gait. The torque expression in (15) depends

on the value of the torso desired angle, αd, which

is chosen to have the opposite sign of the stance leg

velocity, θ̇1, so the biped slows down. This follows

from our discussion in section II-B.

2This is always possible because the linearized system is controllable
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Fig. 3. Plot of joint angles (rad), joint angular velocities (rad/s), and
control inputs (N.m) for the first simulation. The dashed lines correspond

to the plots of θ3 and θ̇3.

(b) If the stance leg angle θ1 reaches the boundary of

the interval [−β/2, β/2], apply the torque expres-

sions in (20) to quickly enforce θ̇3 = 0 while keep-

ing the stance leg velocity unchanged. The stance

leg and swing leg are immediately interchanged

using (7) and the control torques in step 2(a) are

applied thereafter. By enforcing θ̇3 = 0, we avoid

impulsive disturbance from the ground to the biped

(swing leg) at the time of leg interchange. It can be

seen from (7) that this also eliminates jumps in θ̇1

at the time of leg interchange, which is necessary

for smooth walking.

(c) If the torso angle α reaches the boundary of the

interval [−γ, γ], apply the torque expressions ob-

tained in section III-B to quickly stop the torso

while keeping the velocity of the legs symmetric.

Then continue to apply the control torques in step

2(a).

e) If the stance leg velocity is close to zero, i.e.

θ̇1 ≈ 0, terminate this step and go to step 3. If

the constraints in (30) and (31) are not violated, θ̇1

will go to zero since αd was chosen to have a sign

opposite to that of θ̇1.

3. Stabilization:

With the biped satisfying the constraints in (30) and (31)

while maintaining the symmetric gait, θ̇1 ≈ 0 ensures

that the biped configuration will be inside the region of

attraction RA. Invoke the linear controller designed in

step 1 to stabilize the desired equilibrium.

V. NUMERICAL SIMULATIONS

We present the simulation results for the Synthetic-Wheel

Biped with kinematic and dynamic parameters shown in

Table I. Since β = 22.5◦, the constraint in (30) is given by

−11.25◦ ≤ θ1 ≤ 11.25◦. The value of γ for the constraint

in (31) was chosen as γ = 10◦.
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Fig. 4. Plot of joint angles (rad), joint angular velocities (rad/s), and control
inputs (N.m) for the second simulation. The dashed lines correspond to the

plots of θ3 and θ̇3.

In the first simulation, the impulsive disturbance on the

biped is modeled by the following initial conditions:

(θ10, θ̇10, θ20, θ̇20, θ30, θ̇30) = (0, 0, π, 3, 0,−1) (32)

Figure 3 shows the simulation results which includes the

plots of the joint angles and angular velocities and the control

inputs. To illustrate the symmetric gait condition in (4), the

angular positions of the stance and swing legs are shown on

the same subplot using solid and dashed lines, respectively.

The angular velocity plots of the stance and swing legs (solid

and dashed lines) also satisfy the symmetric gait condition

except at times when impulsive torques are applied. The

desired angle of torso in (4) was chosen to be αd = −4◦. A

negative value of αd was chosen since the biped moves in the

positive direction due to the external disturbance, i.e., θ̇1 > 0.

It can be seen form the plots in Fig.3 that the biped is able to

reject the initial disturbance and stabilize its upright posture

in about 8 seconds. The biped takes four steps to reject the

initial disturbance before the linear controller is invoked at

t = 4.22 s. The peaks in the torque plots correspond to

impulsive torques in (20) and are applied when the stance

leg gets to the boundary of the interval [−11.25◦,−11.25◦].
In the second simulation, the initial disturbance is larger

and is modeled by the following initial condition:

(θ10, θ̇10, θ20, θ̇20, θ30, θ̇30) = (0, 0.1, π, 5.5, 0,−3) (33)

TABLE I

PARAMETERS OF THE SYNTHETIC-WHEEL BIPED [27]

Kinematic parameters

Length (m) Foot radius, R (m) Foot arc, β (deg)

Inner leg 0.635 0.635 22.5

Outer leg 0.635 0.635 22.5

Torso 0.457 - -

Dynamic parameters

Mass (kg) Inertia (kgm2) d in Fig.2 (m)

Inner leg 1.64 0.094 0.285

Outer leg 3.64 0.128 0.355

Torso 11.87 0.198 0.307
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The simulation results are shown in Fig.4. As in the first

simulation, dashed lines are used to plot the swing-leg angle

and angular velocity. The desired angle of torso is chosen to

be αd = −6◦. This is larger in magnitude than the value of

αd in the first simulation since the magnitude of the initial

disturbance is larger. Nevertheless, the biped has to take a

greater number of steps to reject the initial disturbance. The

linear controller is invoked at t = 5.05 s to stabilize the its

upright posture. The first peaks in the torque plots correspond

to the impulsive torques in section III-B which are applied

to stop the torso from violating the constraint in (31). The

subsequent peaks correspond to the impulsive torques in (20)

which are applied to brake the swing leg immediately prior

to swing-leg touchdown.

Remark 1: The continuous torques in Figs.3 and 4 are

well below the maximum continuous torques of the motors

used in the Synthetic-Wheel Biped prototype. The impulsive

torques were modeled as Dirac delta functions but the

numerical simulations show that our algorithm is effective

even when the input is bounded and its time support is not

infinitesimal. The large value of the impulsive torques is not

a problem since electric motors can apply substantially larger

torques3 than their maximum continuous torque over small

intervals of time.

VI. CONCLUSIONS

We proposed an algorithm to reject the effect of impulsive

disturbances applied to the Synthetic-Wheel Biped in its

upright configuration. The impulsive disturbance is modeled

by initial velocity conditions of the biped. The algorithm uses

a combination of continuous and impulsive control inputs

to generate a symmetric walking gait and bound the states

of the system. The symmetric gait is designed to allow

the biped to take a few steps to reject the effect of the

disturbance and the states are bounded to avoid the biped

from falling down during the gait cycle. The algorithm was

implemented on the Synthetic-Wheel Biped using kinematic

and dynamic parameters provided in [27]. Simulation results

show the effectiveness of the algorithm in rejecting the effect

of the disturbance and stabilization of the upright posture.

Our future work will focus on experimental verification of

the proposed algorithm.
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