2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

Stability Derivatives for a Flapping Wing MAV in a Hover Condition Using
Local Averaging

Christopher T. Orlowski
Department of Aerospace Engineering
University of Michigan
Ann Arbor, Michigan 48109
Email: cptorlo@umich.edu

Abstract— We present an analytically tractable method of
obtaining the stability derivatives for a flapping wing MAYV,
in the vicinity of a hover condition, using local averaging
techniques. The analytical stability derivatives are obtained
for the longitudinal equations of motion, under the constraint
of symmetrical flapping with respect to the longitudinal axis
of the central body. The analysis results in an eigenvalue
structure consisting of two stable subsidence modes and one
unstable oscillatory mode. Analysis shows a modal structure
consistent with the standard VITOL structure. The unstable
oscillatory mode is close to the imaginary axis, consistent with
the modal structure of hovering helicopters. Scaling properties
are consistent with previous numerical results. The method
does not require numerically intensive calculations or frequency
response analysis to gain an approximation of the stability of a
potential flapping wing MAYV in the vicinity of a hover condition.

I. INTRODUCTION

Taylor and Thomas in [1] produced a seminal work on the
flight stability of a desert locust. Using the small perturbation
form of the standard aircraft equations, available in [2], in
the vicinity of a hover condition and using experimentally
obtained aerodynamic data, Taylor and Thomas obtained the
stability derivatives of the desert locust in forward flight. Sun
and Xiong in [3] expanded on the work in [1] and conducted
the stability analysis of a bumblebee in hover. The stability
derivatives are obtained by coupling the standard aircraft
equations of motion with the Navier-Stokes Equations. The
work is expanded to four additional insect species in [4].
Faruque and Humbert obtained the longitudinal and lateral
stability derivatives for a model insect, based off a fruit
fly, using System ID techniques in [5] and [6]. Faruque
and Humbert obtained the derivatives for both ‘haltere on’
and ‘haltere off’ configurations. All of the works result in a
similar conclusion that the linearized dynamics of an insect
in a hover condition have three main modes: two stable
subsidence modes (one fast and one slow) and one unstable,
oscillatory mode. The eigenvalues show the same modal
structure of many VTOL and rotary wing aircraft, according
to the stability derivatives available in [7].

For this analysis, the flapping wing micro-air vehicle
(FWMAV) is modeled as a single body. The mass and inertial
effects of the wings on the position and orientation of the
body are neglected. We only consider the longitudinal motion
of the flapping wing under the constraint of symmetrical
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flapping of the wings, with respect to the longitudinal axis of
the body. Through the use of local averaging of the perturbed
aerodynamic equations, we obtain the system matrix for a
model FWMAV in the vicinity of a hover condition. The per-
turbations enter through the velocity of the center of pressure
of the wing and the effective angle of attack of the wing. The
aerodynamic model is a quasi-steady/blade element model.
The equilibrium solution for the hover condition is obtained
using local averaging, as used in [5], to calculate the average
aerodynamic forces and moments. The analysis results in
a modal structure consistent with previous analyses: two
subsidence modes, one fast and one slow, and one unstable
oscillatory mode. The modal structure does not change as
the stroke plane angle of the the wings is varied. The modal
structure is the most common VTOL aircraft configuration
[7] and is independently obtained in [3] and [5]. The small
magnitude of the unstable oscillatory mode is consistent with
the eigenvalues for rotary wing aircraft in the vicinity of a
hover condition and the numerical results presented in [3].

The paper is organized in the following manner. Section II
outlines the flapping wing MAV model to be used throughout
the analysis. Section III details the equilibrium hover solution
for the averaged system. Section IV will detail the calculation
of the stability derivatives using local averaging techniques.
Section IV-B details the stability derivatives due to changes
in the velocity of the wing’s center of pressure. Section I'V-
C details the addition to the stability derivatives from the
change in angle of attack of the wing relative to the stroke
plane. Section V will present the resulting eigenvalues from
the stability derivatives calculations. Section VI will present
the Conclusion and Future Work.

II. FLAPPING WING MAV MODEL

The model is based off of work previously conducted on
multiple body models of FWMAVs, available in [8]. For
reference to the inertial frame, a fixed frame is originated at
the center of mass of the central body. The frame, denoted
by the B frame, is oriented in accordance with the standard
alignment for aircraft. The x-axis points through the nose
of the aircraft, y-axis is perpendicular to the x-axis and is
positive to the right of the FWMAV. We assume a x — z
plane of mass symmetry for the central body and the z-axis
is positive downward in the x — z plane. The B frame is
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depicted in Fig. 1.

Fig. 1.

FWMAV Model with B Frame

The wings in previous work are assumed to have three
degrees of freedom relative to the stroke plane at the wing
joint. The three degrees of freedom are the deviation angle
(9), the angle of attack (o), and the flapping angle (¢). In
the vicinity of a hover condition, we are going to neglect the
deviation angle of the wings. Therefore, the effects of the
wings on the central body will be determined by the angle of
attack, the flapping angle, and the stroke plane angle (3. The
angle of attack, «, and the stroke plane angle are depicted
in Fig. 2 for the right wing. Fig. 3 shows the flapping angle
for the right and left wings.
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Fig. 2. Stroke Plane Angle, 8, and Angle of Attack, «

Fig. 3.

Flapping Angle ¢

A. Equations of Motion

For an initial analysis, we neglect the mass of the wings
and their associated inertial effects on the position and ori-
entation of the central body. We assume that the given aero-
dynamic model will produce identical normal and tangential
forces for symmetrical flapping relative to the central body.
Additionally, under the constraint of symmetrical flapping
and with the aerodynamic forces assumption, the lateral
forces, roll moments, and yaw moments will be identically

zero when resolved in the body frame. For longitudinal
motion, the equations of motion are

Fy

U= — gsinf — qw, (1)
Msys
W= —+4gcosl + qu, 2)
Msys
0=q, 3)
and M
= 0
Iy

The mass of the system is denoted by m,,s and the moment
of inertia with respect to lA)y of the B frame is I,,,. The wings
are assumed to be mounted at joints such that their y-position
in the B frame are equal in magnitude, but opposite in sign.
The z- and z-positions of the wings joints in the B frame
are identically zero.

B. Aerodynamic Model

The aerodynamic model is based off of the model used
extensively in [9] and [10]. We will make a simplifying
assumption that the angle of attack is constant during each
half-stroke, therefore the normal force contribution due to
rotation of the wing will be zero. The assumption was
previously used in [11], [12], [13], and [14]. The wing is
assumed to flip instantly at the end of each half-stroke. As a
result, we can write the angle of attack as a function of time
as

a(t) = sign({)m, 5)
where C denotes the time rate of change of the flapping angle
of the wing. The flapping angle will be a sinusoidal function,
defined by:

((t) = Cmsin (27 f1) , (6)

where (,,, is half of the total flapping amplitude. The tangen-
tial and normal forces on the wing are calculated according
to

1 1
Fr = ipAwCTUcp(tf and Fyy = ipAwC'NUcp(t)Q. 7)

The coefficients for the tangential and normal tangential
forces are calculated according to

Cr = —0.4sign (C) cos? (2a,,) 8)

and
Cn = —3.4sin (o). 9)

The coefficients are modified from [9] consistent with the
choice of wing kinematics. In Eqgs. (8) and (9), a.,, is the
constant amplitude of the angle of attack during the upstroke
and the downstroke. If the translational and angular velocity
of the body is neglected in the calculation of aerodynamic
forces and moments, then the velocity at the center of
pressure of the wing is

Uep(t) = 72b (wiy,) cos (wt) . (10)
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The normal and tangential forces generated by the motion
of the wing are transformed into the body frame. The
transformation is obtained through a series of rotations from
the wing frame to the stroke plane frame and from the stroke
plane frame to the body frame. The wings are assumed to be
thin, rigid flat plates with constant chord, ¢, and semi-span,
b. The center of pressure of the wing is calculated to be at
the normalized center of pressure, 72, and 1/ 4 of the chord
from the leading edge of the wing, based on the chosen wing
geometry.

III. HOVER SOLUTION

The hover solution is obtained through the use of local
averaging. A treatment of local averaging is available in [15].
The aerodynamic forces and moments are averaged over one
flapping cycle, according to

1 2

7=

t)dt
2 0 y( ) ’

(1D
where y(t) is representative of the aerodynamic force or
moment equation. Based on the chosen aerodynamic model
and representation of the flight dynamics, the averaged thrust
force in the stroke plane frame is zero, identical to the result
obtained in [11]. The averaged thrust force in the stroke plane
frame, for one wing, is equal to

— 17 . R
F.op= f@p Ay sin (2ay,) (TwaCm)Q . (12)

In (12), A,, is the area of the wing and w is equal to 27 f.
The average of the aerodynamic pitching moment is zero,
identical to the result in [11], due to the assumptions on wing
joint placement. Therefore, a hover solution in the B frame
is obtained when the averaged thrust is zero and the averaged
lift is equal to weight. If the stroke plane is inclined relative
to the longitudinal axis of the body, then the following two
conditions will need to be met:

F,cosf = Mgysg cos b, and F.sing = Mygys g Sin b,
(13)
where 6, denotes the nominal pitch attitude.

IV. STABILITY DERIVATIVES
A. Perturbed Aerodynamics

The stability derivatives are obtained using a combination
of averaging and a perturbed aerodynamic model. First, the
perturbed velocity of the body needs to be written in the
respective wing frames according to
A“} , (14)

AVEU = R<R5 {Aw

where Rj denotes the rotation matrix carrying the body
frame to the stroke plane frame. The matrix R details the
rotation matrix carrying the stroke plane angle to the wing
frame when the flapping angle is non-zero. In component
form, the perturbed translational velocity of the body in the
wing frame is:

cosC (cosfAu — sinBAw)

AV = sinAu + cosBAw

5)

The pitch velocity of the body is transformed into the wing
frame according to

Al =RRs[0 Ag 0] (16)

The resulting total velocity of the wing, in the wing frame,
is .
_ 72b ¢
Vwing =
wing |: 0
The aerodynamic center of pressure in the wing frame, rel-
ative to the body frame, is expressed as p.... The magnitude
of the wing velocity squared, neglecting A? terms, is

[Fwingl|? = (72b0)2 + (AVY - by + ALY - by )b, (18)

The first term, (fgbé )2, accounts for the averaged lift/thrust
force in the hover solution. Therefore, the perturbations to
the aerodynamic forces and moments will result from the
second and third terms. The hover solution is subtracted from
the perturbed aerodynamics equations obtained from the
equations of motion in vicinity of a hover condition; a more
detailed treatment is available in [2] and [5]. Therefore, with
the velocity perturbations accounted for in the aerodynamic
force and moment calculations and after eliminating the
contributions enabling the hover condition, the perturbed
equations of motion can be written as:

] FAVE +AGY x Pl (A7)

AU = X, (1) Au+ X, (1) Aw+ X4 (t) Ag— g cosf, Ab, (19)
A = Zy(t) Au+ Z, () Aw + Zy(t) Aq — g sinf, Af, (20)

and

AG = My(t)Ay + My (t)Aw + My(t)Aq,  (21)

where X[, Z[), and M| are nonlinear functions of the
flapping angle and angle of attack. The aerodynamic pertur-
bations do not directly affect the pitch angle of the FWMAV.

B. Velocity Stability Derivatives

In [7], the perturbed hover equations for VTOL aircraft
and helicopters neglect a perturbation velocity in the x-
direction due to velocity in the z-direction (w). In [5], pertur-
bations are only considered in the longitudinal direction. In
this analysis, perturbations to both the longitudinal velocity,
Aw, and vertical velocity, Aw, are considered. For brevity in
the following equations, we define the following coefficients:

er = 0.2p AyFabw G, cos? (20tm) (22)

and

ey = 1.7p AyTobw G sin (ag ) (23)

which account for the effects of the tangential and normal
forces generated on the wings due to motion of the central
body. The stability derivatives are arranged in the following
manner:

At Au
Aw - Aw
AH = Ahover AG | (24)
Aq Agq
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where the system matrix is arranged according to

Xu Xu —gcos(8,) X,

. 7 Zu —gsn(@) 7

Rpoer = | 20 v 95m0) 2ol )
M, W, 0

The overbar denotes average with respect to time ¢. The mass
and moment of inertia about the y-axis of the central body
are absorbed into the stability derivatives in Apoper, Such

that )
— 2 1 g
Xu = — X, (t)dt | .
Msys \ 2T Jo

(26)

For example, the nonlinear function describing the effect of
longitudinal velocity on the vertical dynamics of the central
body, due to the tangential force on the wing is

Zyr(t) = (;s(2ﬂ)camCQC + ¢?Bsay,sign (C) c()

*sign (C) cr cos (wt) Au,

where ‘c’ is shorthand for cosine and ‘s’
sine. The averaged result is

27)

is shorthand for

_ 1 in(2¢y,
Zur = —sin(20) cos () cr (1 + sm(()) Au.
’ T 2Cm
(28)
The integrals are calculated using assistance from [16] and
[17]. The non-zero stability derivatives for the longitudinal

motion of the body are

X = _202(5) (camer + samen) (1 + 5111(2(,n))
T 2m
(29)
and
Ko = 1520) Camer + sanen) 1+ T520m)).
(30)

The non-zero stability derivatives for the vertical motion of
the body are

Zy= %s (28) (camer + samen) (1 + bm(QCm)) (€29

2Gm
and
Zw = 7%82(5) (camer + samen) (1 + SH;(;C;M) .

(32
The results predict that if the stroke plane is zero, namely
the main flapping motion is along the longitudinal axis of
the central body, then there will be no effect on the motion
of the body in the longitudinal direction to a perturbation in
the vertical direction. Additionally, the affects on the vertical
direction of the body are zero for perturbations in velocity in
the vertical and horizontal directions. In [7], Franklin states
that the X, derivative is traditionally neglected.
The stability derivatives in the longitudinal and vertical
directions, due to the pitch rate g, are both identically zero.
For completeness,

X,=0and Z,

0, (33)

both of which are traditionally neglected due to low mag-
nitude in comparison with the other stability derivatives
[7]. The stability derivatives resulting from change in the
aerodynamic pitching moment due to perturbations in the
longitudinal and vertical velocities are

sm(2§m)> (34)

1 cos () cwen (1 +

v o 2m
and
— 1 sin(2¢mn)
Mw — *% sin (ﬂ) Cw CN (1 + 2(771) ) (35)

where c,, denotes the chord length of the wing. The time-
average of the stability derivative from the aerodynamic
pitching moment, due to change in pitch rate, is zero. We
can state formally that M, = 0.

C. Stability Derivatives due to Change in Angle of Attack

The change in total velocity of the wing, in the wing frame,
produces a change in the effective angle of attack of the wing
relative to the stroke plane. For example, as detailed in [5],
if the FWMAV has purely vertical velocity and increases
in altitude, then the effective angle of attack and lift will
be reduced. The opposite is true for a descent; the angle of
attack and lift increase. The phenomenon is referred to as
‘heave’ damping in [5]. The change in angle of attack, Aq,
is either positive or negative and is obtained from:

_ Vz,w
Aa =tan™! <Zg) ,
Vz,wg

where v, .,4 and v, ,,, denote the total velocity of the wing,
at the center of pressure, expressed in the wing frame in the
z and z directions. In vicinity of the hover condition, we
assume that the change in angle of attack is small and using
the small angle assumption: Aa = v, 44 / Ugz,wg- The change
in angle of attack is then equal to

sin BAu + cos BAw + sin (F2bAq 37)

o= .

cos € (cos fAu — sin fAw) + 7abC
The effects of A« will manifest in the coefficients for the
normal and tangential forces, previously detailed in Eqs. (8)
and (9). The resulting normal and tangential lift coefficients
will be equal to

(36)

Cr.aq = —0.45ign (C) (cos? (2ar) — 2 sin(4a)Aa) (38)
and

CN,Aa = —3.4sign (C) (sin(a@) + cos(a)Aa).  (39)

When the coefficients are substituted into the equations for
lift and drag, we make the following assumption:

Uep(t)’ A & (sBAu+ cBAW + sCPabAQ) Ugp(t),  (40)

due to the fact that over the course of a flapping cycle,
Ugp(t) >> A[]. The normal and tangential coefficients for
the additional angle of attack are:

er.ae = 0.4p Ay sin (douy,) (Fobw(n,) 41)
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and

eN.Aa = L.Tp Ay cos () (Febw(p,) - (42)

The stability derivative additions, due to the change in angle
of attack, for the longitudinal motion of the FWMAV are:

Xu,Aa = - SinQ (ﬁ) (CT,Aasam + CN,Aacam) (43)
T

and

— 1
Xw Ao = ——8In(20) (¢1,Aa80m + CN,ACOR) . (44)
T

The stability derivatives affecting the vertical motion of the
FWMAV are:

— 1
Zu,Aa = —sin (Qﬁ) (CT,Aasam - CN7Aacam) (45)
o

and

Zwra = — cos® (B) (cT.AaS0m — CN.AGCOy) . (46)
i

The stability derivative of the aerodynamic moment, due
to pitch rate, is no longer identically zero. The stability
derivative, M A, is calculated according to:

Mq,Aoz = _% (1 B SiHQ(Zim)> (72217)2

* (CT,AaS(am) + CN,AaCO‘m> .

47

Without the addition of the stability derivatives due to Ac,
the analysis does not produce the results consistent with
previous studies.

V. RESULTS
A. Variation with Stroke Plane Angle

Results are presented for a FWMAV with hawkmoth type
body parameters. The flapping frequency is set at 21 Hz
with an amplitude ¢,,, = 60°. A simple bisection algorithm,
between 0° and 45°, is used to determine the angle of attack
to maintain a hover condition. The bisection algorithm calcu-
lates an angle of attack of 35.895°. The stability derivatives
are non-dimensionalized in the manner presented in [2], [3],
and [4]. The reference length is ¢, the reference velocity is
U, and the reference time is ¢/U. The reference velocity, U,
is defined as:

U = 4Cpp, fiiab. (48)

The non-dimensional stability derivatives, denoted by a su-

perscript +, are calculated in the following manner:

X o +_ 2y o5+ My

1T U A
(49)

The stability derivatives due to the pitch rate, ¢, are non-

dimensionalized by multiplying the denominator by an ad-

ditional reference length. The mass of the system, mass

moment of inertia, and gravity are non-dimensionalized

according to:

- +
X = Z = — M
[] pU2A,,’ (] pU2A,,’ (

and g+ = 9%

U2

+_ Ty
pAy,cd’

m L Msys
SYs - ) yy
pAyc

(50)

Fig. 4 shows the variation of the pole locations for a
hawkmoth-sized FWMAV for changes in the stroke plane
angle. To maintain the equilibrium at hover, the nominal
pitch angle also changes. The stroke plane angle, /3, varies
from 5 € [0 — 22.5 — 45] and the corresponding nominal
pitch angle is 8, € [0 22.5 45]. Both angles are given in
degrees.

0.15

Q b=
01r O p=-225
o .

0.05

Imaginary
)
o
124

-0.05

i i i i i
-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05
Real

Fig. 4. Variation of Pole Locations with Stroke Plane Angle (3

For a pitch angle of zero degrees, the system has two
stable poles and a pair of unstable, oscillatory poles. As
the pitch angle increases, the magnitude of the stroke plane
angle changes to maintain the equilibrium condition. The
magnitude of the poles varies slightly with the change in
nominal pitch angle and stroke plane angle. The modal
structure is consistent with the independent results presented
in [3], [4], and [5].

The magnitude of the poles differs from the previous
efforts. The unstable oscillatory mode has a slower time
constant then the work in [4], but does not differ greatly from
[5]. The slower of the two subsidence modes is faster than the
results in [4]. The discrepancy in the magnitude of the eigen-
values could be a result of the numerous assumptions used
to obtain the approximate model. In [4], the Navier-Stokes
equations are coupled with the flight dynamics equations to
compute the equilibrium solution at hover. The aerodynamic
model is a simple quasi-steady/blade element model. The
assumption on the angle of attack results in the neglect of
the rotational lift effects of the wing. The wingstrokes in
[4] and [5] are more complicated and biomimetic. However,
the wingstroke chosen here can be replicated by current
technology [18].

B. Variation of Model Insect

The modal structure for different model insects is now
presented, based off of the parameters and analysis in [4].
The four model insects are a hoverfly (HF), dronefly (DF),
cranefly (CF), and hawkmoth (HM). Table I details the
pertinent parameters for each model. For all model insects,
the nominal pitch angle is set at #, = 25° and the associated
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Model | m (mg) | b (mm) | ¢ (mm) | {mn(®) | £ (Hz) | am(®)
HF 27.3 9.3 2.2 45 160 21.57
DF 68.4 11.4 3.19 54.5 157 15.49
CF 11.4 12.7 2.38 60 45.5 19.86
HM 1648 51.9 18.26 60.5 26.3 22.63

TABLE I
MODEL PARAMETER SUMMARY
0.06 T T T T T T
O Hoverfly O
X Dronefly
0.04r Cranefly i
8 Hawkmoth
0.02 O i
- ©
> o O O O B 1
- ()
-0.02 O 1
-0.04 4
-0.06 : ‘ : : ‘ : O
-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02
Real
Fig. 5. Modal Structure for Multiple Insects Models
stroke plane angle is 8 = —25°. The associated modal

structure is presented in Fig. 5. The modal structure is
consistent with the results presented in [4] and [5], as stated
previously. As shown in [4], the stability derivatives for the
dronefly and the hoverfly are nearly identical. The magnitude
of the slow subsidence mode is larger than expected from the
results in [4], but the magnitude of the fast subsidence mode
has less than ten percent error for all species. The results in
[4] predict approximately a half to full order of magnitude
difference between the slow and fast subsidence mode. The
worse approximation is of the unstable oscillatory mode for
the cranefly; the results differs by over an order of magnitude.
The sources of discrepancy are numerous and include the
wingstroke assumptions, wing planform instructions, and
the simplified aerodynamic model. Additional analysis will
be needed to determine the effects, or lack thereof, of the
individual assumptions on the results.

VI. CONCLUSION

We presented an effort to obtain an analytically tractable
approximation of the stability derivatives of a flapping wing
micro-air vehicle in hover. The eigenvalues are obtained
using an aerodynamic model that uses perturbed velocities
of the central body in the wing frame and local averaging
over the course of one flapping cycle. The predicted modal
structure is consistent with previous numerical and frequency
domain efforts. The analysis provides a computationally
efficient manner to approximate the stability of potential
flapping wing micro-air vehicles in the vicinity of a hover
condition. Assumptions can be changed and sizing param-
eters changed, to fit a potential design and analyze the
potential stability.

The analysis will provide a basis for the calculation of
the eigenvalues of a flapping wing MAV in other flight
conditions, as well as with the inclusion of the effects of
the mass of the wings on the position and orientation of the
central body. Numerous simplifying assumptions are utilized
to obtain an analytical results for the stability derivatives
that is consistent with previous efforts. The analysis will
be repeated with more complicated aerodynamic models,
biomimetic wing structures, and more complicated wing
kinematics, in order to gauge the sensitivity to aerodynamic
inputs.
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