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Abstract— An impulse-momentum approach is proposed for
swing-up control of the acrobot. The algorithm is based on
increasing the total energy of the system using impulsive
inputs. After increasing the energy of the system, rest-to-rest
maneuvers are employed to regulate the system energy to the
desired level that corresponds to the upright configuration of the
acrobot. The proposed algorithm is implemented with two sets
of acrobot parameters taken from the literature. As compared
to the approaches in the literature, the simulation results show
shorter swing-up time and lower maximum continuous torques.
Furthermore, the proposed algorithm does not impose any

restrictions on the initial conditions and controller gains for
swing-up.

NOMENCLATURE

For the nomenclature below, k ∈ {1, 2} and j ∈ {1, 5}.

lk length of the k-th link (m)
dk distance between the k-th joint and center-of-mass

of the k-th link (m)
mk mass of the k-th link (kg)
Ik mass moment of inertia of the k-th link about its

center-of-mass (kg.m2)
g acceleration due to gravity, (9.81 m.s−2)

θk angular displacement of the k-th link, as defined

in Fig.1 (rad)

θ̇k angular velocity of the k-th link (rad/s)

θ̇+

k angular velocity of the k-th link, immediately after

application of the impulsive torque (rad/s)

θ̇−k angular velocity of the k-th link, immediately

prior to application of the impulsive torque

(rad/s)

θ̇2des desired angular velocity of the second link after

the application of the impulsive torque (rad/s)
vk velocity of the center-of-mass of the k-th link

(m/s)

~vk
−

velocity of the center-of-mass of the k-th link,

immediately prior to application of the impulsive

torque (m/s)

~vk
+

velocity of the center-of-mass of the k-th link,

immediately after application of the impulsive

torque (m/s)
E total energy of the acrobot (J)
~F imp

k impulsive force acting at the center-of-mass of the

k-th link (N)

All authors are with the Department of Mechanical Engineering, Michi-
gan State University, East Lansing, MI, 48824, USA. The corresponding
author is R. Mukherjee, email: mukherji@egr.msu.edu

~F imp
s impulsive force acting at the shoulder joint (N)

~M imp
k impulsive moment acting at the center-of-mass of

the k-th link (N.m)
τ external torque applied on the second link (N.m)
τh external torque required to hold the second joint

fixed (N.m)
τb external torque required to instantaneously stop

the second joint (N.m)
Kk kinetic energy of the k-th link (J)

Edes total energy of the acrobot when (θ1, θ2, θ̇1, θ̇2) =
(π/2, 0, 0, 0) (J)

qj constants, whose values depend on kinematic and

dynamics parameters of the acrobot

P potential energy of the system (J)
Sk sin θk

Ck cos θk

S12 sin(θ1 + θ2)
C12 cos(θ1 + θ2)

I. INTRODUCTION

The acrobot is a two-link robot in the vertical plane with

an actuator at the elbow joint and a passive shoulder joint.

It is an underactuated system and its control problem has

similarities with that of the pendubot [1]. For the acrobot, the

control problem requires swing-up from an arbitrary initial

configuration to its configuration with maximum potential

energy, followed by stabilization. The stabilization problem

has seen many solutions, such as linear quadratic regulator

[2], [3], and robust control [4] based designs. The swing-up

control problem is more challenging and requires the system

trajectory to be driven to the neighborhood of one equilib-

rium configuration from any point in the configuration space

that contains four equilibria. Spong [2] proposed a method

based on partial feedback linearization but this approach

is very sensitive to the values of the control gains. Boone

[5] proposed bang-bang control for near-optimal swing-up

trajectories. The algorithm switches at finite time intervals

and becomes computationally expensive for a large number

of intervals. Xin and Kaneda [6] and Mahindrakar and Ba-

navar [7] used a single Lyapunov function to design swing-

up controllers. The control design by Xin and Kaneda [6]

requires an initial perturbation and a strong condition to be

imposed on controller parameters to guarantee convergence.

The design by Mahindrakar and Banavar [7], on the other

hand, results in relatively large continuous control inputs.

Lai, et al. [8] used non-smooth Lyapunov functions with

fuzzy logic to remove the constraint on the control parameter

in the design by Xin and Kaneda [6].
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The main objective of this research is to explore new

control methods for underactuated systems by enlarging the

set of admissible control inputs to include impulsive forces.

It has been pointed out [1] that conventional actuators can

apply impulse-like forces and inclusion of such inputs in the

set of admissible inputs can result in efficient swing-up of the

pendubot [1]. The pendubot and the acrobot are benchmark

problems in underactuated systems and this paper presents

an impulsive control method for swing-up of the acrobot.

There has been a fair amount of theoretical research on

impulsive control and credit for some of the early works

goes to Pavlidis [9], Gilbert and Harasty [10], Menaldi [11]

and Lakshmikantham [12]. In recent years, researchers have

studied the problems of stability, controllability and observ-

ability, optimality (see [13], [14], [15], [16], for example),

and diverse application problems, including underactuated

systems [17], [18], [1]. In this paper, an impulse-momentum

approach to swing-up control of the acrobot is proposed.

The algorithm uses impulsive control inputs to increase the

energy of the system. In section II we review the dynamic

model of the acrobot and derive expressions for jump in

velocities and change in energy due to the impulsive inputs.

The change in energy of the system due to maneuvers

involving impulsive inputs is studied in section III. The

swing-up algorithm is proposed in section IV and numerical

simulations comparing the results of our algorithm with

those in the literature are presented in section V. Concluding

remarks are provided in section VI.

II. SYSTEM DYNAMICS AND

EFFECT OF IMPULSIVE ACTUATION

A. Equations of Motion

Consider the acrobot in Fig.1. Assuming no friction in

the joints, the equation of motion can be obtained using the

Lagrangian formulation as follows [2]

A(θ)θ̈ + B(θ, θ̇)θ̇ + G(θ) = T (1)

where

θ =

(

θ1

θ2

)

, T =

(

0
τ

)

(2)

and A(θ), B(θ, θ̇), and G(θ), given by the expressions

A(θ) =

[

q1 + q2 + 2q3C2 q2 + q3C2

q2 + q3C2 q2

]

(3)

B(θ, θ̇) = q3S2

[

−θ̇2 −(θ̇1 + θ̇2)

θ̇1 0

]

(4)

G(θ) = g

[

q4C1 + q5C12

q5C12

]

(5)

are the inertia matrix, matrix containing the Coriolis and

centrifugal forces, and vector of gravity forces, respectively.

In (3), (4), and (5), qj , j = 1, 2, · · · , 5 are positive constants

obtained in the literature, (see [8], for example).
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Fig. 1. The acrobot in an arbitrary configuration: the joint angles θ1 and
θ2 are measured counter-clockwise with respect to the horizontal axis.

B. Holding Torque

We compute the torque required to hold the second link

fixed, i.e., maintain θ̇2 = 0. By substituting θ̇2 = θ̈2 = 0 in

(1), we get
[

q1 + q2 + 2q3C2

q2 + q3C2

]

θ̈1 +

[

0

q3S2 θ̇2
1

]

+ g

[

q4C1 + q5C12

q5C12

]

=

(

0
τh

)

(6)

By eliminating θ̈1 from the two equations in (6), τh can be

expressed as follows

τh = q3S2 θ̇2
1 +

g

q1 + q2 + 2q3C2

[(q1 + q3C2)q5C12

−(q2 + q3C2)q4C1] (7)

C. Impulsive Torque for Change in Velocity

We consider the action that results in exponential conver-

gence of the second link velocity, θ̇2, to some desired value,

θ̇2des. Therefore, we assume

θ̈2 = −k1(θ̇2 − θ̇2des), k1 > 0 (8)

where k1 is a positive constant that will determine the rate of

convergence of θ̇2. To compute the torque required for this

action, we multiply (1) with the inverse of the inertia matrix

to obtain
(

θ̈1

θ̈2

)

=
1

q1q2 − q2
3C

2
2

[

−(q2+q3C2)τ +h1

(q1+q2+2q3C2)τ+h2

]

(9)

where h1 and h2 are given by the expressions

h1 = q2q3(θ̇1 + θ̇2)
2S2 + q2

3 θ̇2
1S2C2

+g(q3q5C2C12 − q2q4C1) (10)

h2 = −(θ̇1 + θ̇2)
2(q2q3 + q2

3C2)S2

−(q1 + q3C2)q3θ̇
2
1S2 − g {q3q5C2C12

−(q2 + q3C2)q4C1 + q1q5C12} (11)

Substituting (8) into the second equation in (9) results in

τ =
−1

q1+q2+2q3C2

[

k1(θ̇2−θ̇2des)(q1q2−q2
3C

2
2 )+h2

]

(12)
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If the gain k1 is chosen very large, the torque in (12) will

be impulsive in nature and will converge the second link

velocity to the desired velocity in a very short period of

time.

As a special case, consider the impulsive action that results

in stopping the second link. By setting the desired velocity of

the second link in (12) to zero, i.e., θ̇2des = 0, the impulsive

braking torque is computed as

τb =
−1

q1 + q2 + 2q3C2

[

k1θ̇2(q1q2 − q2
3C

2
2 ) + h2

]

(13)

When the second joint comes to rest, the braking torque

becomes equal to the holding torque. This can be verified

from (7) and (13).

D. Impulse-Momentum Effect: Change in Velocity

An external impulsive torque results in impulsive forces

and moments acting on both links of the acrobot. From the

free-body of the second link in Fig.2(a), we can write

~F imp
2 ∆t = m2 (~v2

+ − ~v2
−) (14)

~M imp
2 ∆t = I2 (θ̇+

1 + θ̇+
2 ) − I2 (θ̇−1 + θ̇−2 ) (15)

where ∆t is the short interval of time over which the

impulsive force and impulsive moment act, and ~v2
+

and ~v2
−

are given by the expressions

~v2
+=−

[

l1θ̇
+
1 S1 + d2 (θ̇+

1 + θ̇+
2 )S12

]

~i

+
[

l1θ̇
+
1 C1 + d2 (θ̇+

1 + θ̇+
2 )C12

]

~j

~v2
−=−

[

l1 θ̇−1 S1 + d2(θ̇
−

1 + θ̇−2 )S12

]

~i

+
[

l1 θ̇−1 C1 + d2(θ̇
−

1 + θ̇−2 )C12

]

~j (16)

From the free-body diagram in Fig.2(d), we can write

~F imp
1 ∆t = m1(~v1

+ − ~v1
−) (17)

~M imp
1 ∆t = I1(θ̇

+
1 − θ̇−1 ) (18)

where

~v1
+ = d1θ̇

+
1 (−S1

~i + C1
~j)

~v1
− = d1θ̇

−

1 (−S1
~i + C1

~j) (19)

Using the force and moments diagrams in Figs.2(b) and (c),

we can express ~F imp
1 and ~M imp

1 as follows

~F imp
1 = ~F imp

s − ~F imp
2 (20)

~M imp
1 = − ~M imp

2 − (~r2 − ~r3) × ~F imp
2 − ~r1 × ~F imp

s (21)

where ~r1, ~r2 and ~r3, shown in Fig.2, have the expressions

~r1 = d1(C1
~i + S1

~j)

~r2 = d2(C12
~i + S12

~j)

~r3 = (d1 − l1)(C1
~i + S1

~j) (22)

Substituting (21) into (18) and simplifying using (14), (15),

(17), (20) and (22), we get

[q1 +q2+2q3C2](θ̇
+
1 − θ̇−1 ) = [q2 +q3C2](θ̇

+
2 − θ̇−2 ) (23)

(a) (b)

(c) (d)

~F
imp

2

~F
imp

2

~M
imp

2

~M
imp

2
+ ~r2 ×

~F
imp

2

−
~F

imp

2

−
~M

imp

2

−~r2 ×
~F

imp

2

~F
imp
s

F
imp

1

~M
imp

1

~r2

~r1

~r3

Fig. 2. Free-body diagrams showing the impulsive forces and moments
acting on the second link - (a) and (b), and first link - (c) and (d), of the
acrobot.

Assuming that the desired velocity of the second link after

the impulse is known, i.e. θ̇+
2 = θ̇2des, (23) can be rewritten

as follows to obtain expression for the velocity of the first

link:

θ̇+
1 = θ̇−1 +

[

q2 + q3C2

q1 + q2 + 2q3C2

]

(θ̇2des − θ̇−2 ) (24)

III. ENERGY CONSIDERATION OF THE SYSTEM

A. Energy Change due to Impulsive Action

The configuration of the acrobot will not change over

the small period of time, ∆t, when the impulsive torque is

applied. Therefore, the change in total energy of the system

is only due to the change in the kinetic energy, which can

be expressed as

∆E =∆K

=
1

2
q1[(θ̇

+
1 )2 − (θ̇−1 )2] +

1

2
q2[(θ̇

+
2 )2 − (θ̇−2 )2]

+ q3C2[(θ̇
+
1 + θ̇+

2 ) − (θ̇−1 + θ̇−2 )] (25)

Assuming that the second link velocity after the impulse is

equal to the desired velocity, i.e. θ̇+
2 = θ̇2des, the change in

the total energy of the system can be obtained by substituting

(24) into (25) as follows;

∆E =
q1q2 − q2

3C
2
2

2(q1 + q2 + 2q3C2)

[

(θ̇2des)
2 − (θ̇−2 )2

]

(26)

Equation (26) implies that sign of the change in the total

energy of the system depends on the magnitude of θ̇2des, i.e.

∆E > 0 if |θ̇2des| > |θ̇−2 |

∆E = 0 if |θ̇2des| = |θ̇−2 |

∆E < 0 if |θ̇2des| < |θ̇−2 |

(27)

264



If the second link is stopped using the impulsive torque, i.e.

θ̇2des = 0, the energy loss due to the braking is obtained

from (26) as:

∆E = −
q1q2 − q2

3C2
2

2(q1 + q2 + 2q3C2)
(θ̇−2 )2 (28)

B. Rest-to-Rest Maneuver of the second link

Consider a maneuver in which the second joint starts from

rest and is brought back to rest through the application of

the impulsive braking torque in (13), where gain k1 has a

large value. Taking into account the loss of energy due to

impulsive braking given by (28), the net work done on the

system during the rest-to-rest maneuver can be computed as

follows:

∆E =

∫

τ θ̇2 dt −
q1q2 − q2

3C
2
2

2(q1 + q2 + 2q3C2)
(θ̇−2 )2 (29)

If the torque in (29) is assumed to have the form

τ = k2 θ̈2 (30)

where k2 is a positive constant, the work done by the torque

to move the second link from rest to the velocity θ̇−2 , which

is the velocity prior to application of the impulsive brake, is

expressed as follows:
∫

τ θ̇2 dt =

∫

k2 θ̇2 θ̈2 dt

=

∫ θ̇
−

2

0

k2 θ̇2 dθ̇2 =
1

2
k2 (θ̇−2 )2 (31)

The total change in energy due to the rest-to-rest maneuver

can now be obtained by substituting (31) into (29):

∆E =
1

2

[

k2 −
q1q2 − q2

3C2
2

(q1 + q2 + 2q3C2)

]

(θ̇−2 )2 (32)

From (32), it can be seen that the gain k2 can be chosen to

add or remove energy from the system, namely,

k2 >
q1q2 − q2

3C2
2

(q1 + q2 + 2q3C2)
⇒ ∆E > 0

k2 <
q1q2 − q2

3C2
2

(q1 + q2 + 2q3C2)
⇒ ∆E < 0 (33)

Using (9), the torque expression in (30) can be written as:

τ =
k2 h2

q1q2 − q2
3C

2
2 − k2(q1 + q2 + 2q3C2)

(34)

The above expression will not have any singularity if k2 is

chosen based on (33).

IV. SWING-UP ALGORITHM

The swing-up of the acrobot requires its energy to be

increased to the desired level that corresponds to the upright

equilibrium configuration. We propose an algorithm where

the energy of the system is increased through the application

of impulsive torques. In particular, we propose to apply the

impulsive torque in (12) where θ̇2des is chosen to increase

the energy of the system based on (27). If the velocity of the

second link after the impulse is chosen as,

θ̇2des = −λ θ̇−2 , θ̇−2 6= 0, λ > 1 (35)

the second link will have a velocity greater in magnitude and

opposite in direction to the velocity prior to the impulse, and

the energy of the system will be higher. The change in sign of

the velocity of the second link is needed to keep the second

link angle bounded within some predefined range while the

energy is raised to the desired level.

Most of the energy gained by the application of impulsive

torques will be in the form of kinetic energy and has to

be converted into potential energy for swing-up. To convert

kinetic energy into potential energy, the torque is set to

zero and the second joint is made free. This keeps the

total energy of the system constant and kinetic energy is

exchanged into potential energy. The rest-to-rest maneuvers

are used to regulate the energy to the desired level. When the

acrobot configuration is in the neighborhood of the desired

equilibrium configuration, a linear controller is invoked to

stabilize the equilibrium.

The rest-to-rest maneuvers alone can be used to increase

the energy of the system, as proposed for the pendubot [1],

but the time required for the acrobot is significant. Therefore,

the rest-to-rest maneuvers are only used for fine tuning of

the energy level.

The following 4-step algorithm describes the proposed

approach for the acrobot swing-up in more details;

1. Initialization:

• Linearize the dynamic equations of the acrobot in

(1) about the desired equilibrium (θ1, θ̇1, θ2, θ̇2) =
(π/2, 0, 0, 0).

• Design a linear controller to render the desired equilib-

rium locally asymptotically stable. Let RA define the

region of attraction of the desired equilibrium.

• Choose a small positive constant δ, such that the system

configuration lies inside RA when θ̇1 ≈ θ̇2 ≈ 0 and

|P − Edes| < δ.

2. Increasing the energy of the system:

• At the initial time, if θ2 = 0 and θ̇2 = 0, apply the

impulsive torque in (12), where θ̇2des is chosen to be

some nonzero velocity. From (27), we know this will

increase the energy of the system.

• Using (35), apply the impulsive torque in (12) whenever

the second link approaches a bound of the interval

[−γ, γ] from inside where γ is a positive angle. Note

that γ can be always chosen such that the second link

approaches the bound of the interval [−γ, γ] for any

initial conditions or initial velocity of the second link,

θ̇2des. Applying these impulsive torques will increase

the energy of the system, mainly in the form of kinetic

energy. Continue this process till E ≥ Edes.

• Release the system by setting τ = 0. This will cause the

links to start swinging freely and there will be exchange

between kinetic and potential energies while the total

energy of the system remains the same.
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• Stop the second link using the impulsive braking torque

in (13) when the potential energy of the acrobot reaches

its local maxima, i.e, Ṗ = 0, P̈ < 0. This will reduce

the total energy of the system according to (28) but the

potential energy will remain at its local maxima.

3. Regulation of energy to the desired level:

• The energy of the system will increase significantly

in step 2. Conduct rest-to-rest maneuvers to regulate

the energy to Edes. The rest-to-rest maneuvers will be

implemented with θ2 satisfying −α ≤ θ2 ≤ α, where α
is a small positive angle. If the second link is initially

out of this bound, it will be brought inside the interval

[−α, α] by the first rest-to-rest maneuver. In particular,

the following procedure will be adopted:

The holding torque in (7) will be applied to hold the

second link fixed. For a desired motion of the second

link in the positive (counter-clockwise) direction, the

torque expression in (34) will be used when it is greater

than τh. For a desired motion in the negative (clockwise)

direction, the torque expression in (34) will be used

when it is less than τh. Based on the current level of

energy, the gain k2 is chosen from (33) to increase or

decrease the energy of the system.

• Terminate the rest-to-rest maneuvers when (E −
Edes) < δ and apply the holding torque in (7) to keep

the second link fixed.

4. Stabilization:

With −α ≤ θ2 ≤ α, θ̇2 = 0, and (E − Edes) < δ,

the first link will behave like a pendulum and reach its

highest potential energy configuration in finite time. When

the acrobot reaches its highest potential energy configuration,

i.e. (P − Edes) < δ and θ̇1 = θ̇2 = 0, the acrobot

configuration will be inside RA. Invoke the linear controller,

designed in the first step of the algorithm, to stabilize the

desired equilibrium.

In comparison to the approaches proposed by Xin and

Kaneda [6] and Mahindrakar and Banavar [7], our approach

does not impose any restrictions on the controller gains or

initial conditions for swing-up of the acrobot.

V. NUMERICAL SIMULATION

We compare the efficacy of our algorithm with those

proposed in [6] and [7]. The kinematic and dynamic pa-

rameters of the first simulation are taken from Mahindrakar

and Banavar [7]:

m1 =1.0kg, l1 =1m, d1 =0.5m, I1 =0.083N.m2

m2 =2.0kg, l2 =2m, d2 =1.0m, I2 =0.667N.m2 (36)

The parameters of our algorithm are chosen as follows,

λ = 2.5, δ = 0.1 J, γ = 70◦, α = 5◦ (37)

For the parameters given in (36), the energy of the acrobot

at the upright configuration was calculated to be Edes =
88.29 J . The simulation results plotting the joint angles,

joint velocities, the total energy and the potential energy, and
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Fig. 3. Plot of joint angles (rad), joint angle velocities (rad/s), total energy
(solid line) and potential energy (dashed line) (J), continuous control input
(N.m) and impulsive control input (N.m) for the first simulation

the continuous and impulsive control torques are shown in

Fig.3. Since the magnitude of the continuous torque is much

smaller than that of the impulsive torque, they are plotted

separately such that the continuous torque can be viewed

with greater resolution. The total energy (solid line) of the

system increases through discrete jumps at times when the

impulsive torques are applied. When the condition E > Edes

is satisfied, the second joint is released. This results in

increase in the potential energy (dashed line) while the total

energy remains constant. The slight drop in the energy is due

to the impulsive brake when the potential energy reaches its

local maxima. In this simulation, the rest-to-rest maneuvers

are not required because the conditions −α ≤ θ2 ≤ α,

θ̇2 = 0, and (E − Edes) < δ are all satisfied. The linear

controller is invoked a short time later, at approximately

2.6 sec, when the acrobot configuration enters the region

of attraction of the desired equilibrium.

The simulation results in Fig.3 show very fast swing-up of

the acrobot. The linear controller is invoked at t = 2.61 sec

as compared to 18 seconds required by the algorithm in [7].

The maximum continuous torque required by our algorithm

is 3.2 N.m which is significantly smaller than the maximum

torque of 80 N.m used in [7]. Our algorithm, of course,

requires impulsive torques which are large in magnitude but

act over small time intervals. Some discussion on practical

implementation is provided in the remark following the next

simulation.

For the second simulation, we used the kinematic and

dynamic parameters from Xin and Kaneda [6]:

m1 =1.0kg, l1 =1m, d1 =0.5m, I1 =0.083N.m2

m2 =1.0kg, l2 =2m, d2 =1.0m, I2 =0.33N.m2 (38)

The parameters of our algorithm were chosen as:

λ = 2.5, δ = 0.15 J, γ = 60◦, α = 5◦ (39)

For the parameters in (38), the desired level of energy

was computed to be Edes = 49.05 J . Fig.4 shows the
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Fig. 4. Plot of joint angles (rad), joint angle velocities (rad/s), total energy
(solid line) and potential energy (dashed line) (J), continuous control input
(N.m) and impulsive control input (N.m) for the second simulation

simulation results. As in the first simulation, the total energy

(solid line) is discretely increased through the application

of impulsive torques until E ≥ Edes, which is the time the

second joint is released. As the potential energy (dashed line)

reaches its local maxima, the second link is stopped using

an impulsive brake and this results in a drop in the total

energy of the system. Unlike the first simulation, the energy

after the impulsive brake does not satisfy the condition

|E−Edes| < δ, and therefore, the rest-to-rest maneuvers are

used to regulate the energy to Edes. The linear controller is

invoked at t = 7.3 sec which is marginally better compared

to 7.33 seconds required in [6]. The maximum continuous

torque is 6.81 N.m which is significantly smaller than the

maximum torque, 20 N.m, used in [6].

Remark 1: In addition to continuous torques, our algo-

rithm uses impulsive torques. Although our analysis is based

on modeling the impulsive torques as Dirac delta functions,

the numerical simulations indicate that the swing-up algo-

rithm is effective even when the magnitude of the impulse

is bounded and its time support is not infinitesimal. The

magnitude of the impulsive inputs are however much larger

than the continuous torque required by our controller, or

the controllers proposed in [6] and [7]. This should not be

seen as a problem since actuators such as motors can apply

substantially larger torques1 than the maximum continuous

torque over small time intervals.

VI. CONCLUSION

We proposed a new algorithm for swing-up control of the

acrobot. The algorithm is based on regulation of the energy

of the system to some desired value, which is achieved using

impulsive inputs. As the acrobot gets to its local maximum

potential energy configuration, rest-to-rest maneuvers are

used to regulate the system energy to the desired level.

The simulation results show that our approach results in a

1This is referred to as the peak torque [19] and it can be twice to ten
times larger than the maximum continuous torque for different motors.

faster swing-up while requiring lower maximum continuous

torque as compared to those in [6] and [7]. Furthermore,

our algorithm does not impose any restrictions on the initial

conditions or controller gains, as is the case for the algorithm

proposed in [6] and [7]. Our future work will focus on

experimental verification of the impulsive control methods

proposed here for swing-up of the acrobot as well as for the

pendubot [1].
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