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Abstract— An efficient swing-up algorithm for the acrobot
is proposed. The algorithm is based on using a combination
of continuous torque and impulsive braking torque. The con-
tinuous torque is derived from a positive definite Lyapunov-
like function, proposed earlier in the literature. The impulsive
braking torques are applied at specific instants of time which
result in discrete jumps in certain states of the system and a
discrete reduction in the value of the Lyapunov-like function.
We prove asymptotic stability of the closed-loop impulsive
dynamical system and use simulation results to show that the
proposed algorithm is more efficient than the algorithms using

only continuous torques derived from the same Lyapunov-like
function.

NOMENCLATURE

For the nomenclature below, k ∈ {1, 2} and j ∈ {1, 5}
lk length of the k-th link (m)
dk distance between the k-th joint and center-of-mass

of the k-th link (m)
mk mass of the k-th link (kg)
Ik mass moment of inertia of the k-th link about its

center-of-mass (kg.m2)
g acceleration due to gravity, (9.81 m.s−2)

qj constants, whose values depend on kinematic and

dynamics parameters of the acrobot

θk angular displacement of the k-th link, as defined

in Fig.1 (rad)

θ̇k angular velocity of the k-th link (rad/s)

θ̇+
k angular velocity of the k-th link, immediately after

application of the impulsive torque (rad/s)

θ̇−k angular velocity of the k-th link, immediately

prior to application of the impulsive torque

(rad/s)
vk velocity of the center-of-mass of the k-th link

(m/s)

~vk
−

velocity of the center-of-mass of the k-th link,

immediately prior to application of the impulsive

torque (m/s)

~vk
+

velocity of the center-of-mass of the k-th link,

immediately after application of the impulsive

torque (m/s)
E total energy of the acrobot (J)

Edes total energy of the acrobot when (θ1, θ2, θ̇1, θ̇2) =
(π/2, 0, 0, 0) (J)

Kk kinetic energy of the k-th link (J)

All authors are with the Department of Mechanical Engineering, Michi-
gan State University, East Lansing, MI, 48824, USA. The corresponding
author is R. Mukherjee, email: mukherji@egr.msu.edu

τ external torque applied on the second link (N.m)
τb external torque required to instantaneously stop

the second joint (N.m)
~F imp

k impulsive force acting at the center-of-mass of the

k-th link (N)
~F imp

s impulsive force acting at the shoulder joint (N)
~M imp

k impulsive moment acting at the center-of-mass of

the k-th link (N.m)
Sk sin θk

Ck cos θk

S12 sin(θ1 + θ2)
C12 cos(θ1 + θ2)

I. INTRODUCTION

The acrobot is a two-link robot in the vertical plane with

an actuator at the elbow joint and a passive shoulder joint.

It is an underactuated system and its control problem has

similarities with that of the pendubot [1]. For the acrobot, the

control problem requires swing-up from an arbitrary initial

configuration to its configuration with maximum potential

energy, followed by stabilization. The stabilization problem

has seen many solutions, such as linear quadratic regulator

[2], [3], and robust control [4] based designs. The swing-up

control problem is more challenging and requires the system

trajectory to be driven to the neighborhood of one equilib-

rium configuration from any point in the configuration space

that contains four equilibria. Spong [2] proposed a method

based on partial feedback linearization but this approach

is very sensitive to the values of the control gains. Boone

[5] proposed bang-bang control for near-optimal swing-up

trajectories. The algorithm switches at finite time intervals

and becomes computationally expensive for a large number

of intervals. Xin and Kaneda [6] and Mahindrakar and Ba-

navar [7] used a single Lyapunov function to design swing-

up controllers. The control design by Xin and Kaneda [6]

requires an initial perturbation and a strong condition to be

imposed on controller parameters to guarantee convergence.

The design by Mahindrakar and Banavar [7], on the other

hand, results in relatively large continuous control inputs.

Lai, et al. [8] used non-smooth Lyapunov functions with

fuzzy logic to remove the constraint on the control parameter

in the design by Xin and Kaneda [6].

The main objective of this research is to explore new

control methods for underactuated systems by enlarging the

set of admissible control inputs to include impulsive forces.

It has been pointed out that conventional actuators can apply

impulse-like forces and inclusion of such inputs in the set

of admissible inputs can result in efficient swing-up of the
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pendubot [1]. The pendubot and the acrobot are benchmark

problems in underactuated systems and this paper presents

an impulsive control method for swing-up of the acrobot.

There has been a fair amount of theoretical research on

impulsive control of dynamical systems and credit for some

of the early works goes to Pavlidis [9], Gilbert and Harasty

[10], Menaldi [11] and Lakshmikantham [12]. In recent

years, researchers have studied the problems of stability,

controllability and observability, optimality (see [13], [14],

[15], for example), and diverse application problems, includ-

ing underactuated systems [16], [17], [1]. In this paper, we

develop an impulse-momentum approach for swing-up of

the acrobot. We review the dynamic model of the acrobot

in section II. In section III, the expressions for jump in

velocities and the change in energy due to the impulsive

torque is derived. The control design is developed in section

IV and the numerical simulations comparing the results with

the results in [6], [7] are presented in section V. Concluding

remarks are provided in section VI.

II. SYSTEM DYNAMICS

A. Equations of Motion

Consider the acrobot in Fig.1. Assuming no friction in

the joints, the equation of motion can be obtained using the

Lagrangian formulation as follows [2]

A(θ)θ̈ + B(θ, θ̇)θ̇ + G(θ) = T (1)

where

θ =

(

θ1

θ2

)

, T =

(

0
τ

)

(2)

and A(θ), B(θ, θ̇), and G(θ), given by the expressions

A(θ) =

[

q1 + q2 + 2q3C2 q2 + q3C2

q2 + q3C2 q2

]

(3)

B(θ, θ̇) = q3S2

[

−θ̇2 −(θ̇1 + θ̇2)

θ̇1 0

]

(4)

G(θ) = g

[

q4C1 + q5C12

q5C12

]

(5)

are the inertia matrix, matrix containing the Coriolis and

centrifugal forces, and vector of gravity forces, respectively.

In (3), (4), and (5), qj , j = 1, 2, · · · , 5 are positive constants

obtained in literature, (see [8], for example).

B. Braking Torque

We consider the action that results in exponential decay of

the second link velocity, θ̇2, to zero. Therefore, we assume

θ̈2 = −k1θ̇2, k1 > 0 (6)

where k1 is a positive constant that will determine the rate of

decay of θ̇2. To compute the torque required for this action,

we multiply (1) with the inverse of the inertia matrix to

obtain
(

θ̈1

θ̈2

)

=
1

q1q2 − q2
3C

2
2

[

−(q2 + q3C2)τ + h1

(q1 + q2 + 2q3C2)τ + h2

]

(7)

gY

X

l 1

d 1

d
2

l 2

θ 

c.m
.
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m

.
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2

τ

Fig. 1. The acrobot in an arbitrary configuration: the joint angles θ1 and
θ2 are measured counter-clockwise with respect to the horizontal axis.

where h1 and h2 are given by the expressions

h1 = q2q3(θ̇1 + θ̇2)
2S2 + q2

3 θ̇2
1S2C2

+g(q3q5C2C12 − q2q4C1) (8)

h2 = −(θ̇1 + θ̇2)
2(q2q3 + q2

3C2)S2

−(q1 + q3C2)q3θ̇
2
1S2 − g {q3q5C2C12

−(q2 + q3C2)q4C1 + q1q5C12} (9)

Substituting (6) into the second equation in (7) results in

τb =
−1

q1 + q2 + 2q3C2

[

k1θ̇2(q1q2 − q2
3C

2
2 ) + h2

]

(10)

If the gain k1 is chosen very large, the torque expression

in (10) will act like an impulsive brake stopping the second

link in a very short period of time.

III. EFFECT OF IMPULSIVE BRAKING

A. Velocity Change

An impulsive braking torque will result in impulsive forces

and moments acting on both links of the acrobot. From the

free-body of the second link in Fig.2(a), we can write

~F imp
2 ∆t = m2 (~v2

+ − ~v2
−) (11)

~M imp
2 ∆t = I2 (θ̇+

1 + θ̇+
2 ) − I2 (θ̇−1 + θ̇−2 ) (12)

where ∆t is the short interval of time over which the

impulsive force and impulsive moment act, and ~v2
+

and ~v2
−

are given by the expressions

~v2
+=−

[

l1θ̇
+
1 S1 + d2 (θ̇+

1 + θ̇+
2 )S12

]

~i

+
[

l1θ̇
+
1 C1 + d2 (θ̇+

1 + θ̇+
2 )C12

]

~j

~v2
−=−

[

l1 θ̇−1 S1 + d2(θ̇
−

1 + θ̇−2 )S12

]

~i

+
[

l1 θ̇−1 C1 + d2(θ̇
−

1 + θ̇−2 )C12

]

~j (13)

From the free-body diagram in Fig.2(d), we can write

~F imp
1 ∆t = m1(~v1

+ − ~v1
−) (14)

~M imp
1 ∆t = I1(θ̇

+
1 − θ̇−1 ) (15)
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Fig. 2. Free-body diagrams showing impulsive forces and moments acting
on the second link - (a) and (b), and first link - (c) and (d).

where

~v1
+ = d1θ̇

+
1 (−S1

~i + C1
~j)

~v1
− = d1θ̇

−

1 (−S1
~i + C1

~j) (16)

Using the force and moments diagrams in Figs.2(b) and (c),

we can express ~F imp
1 and ~M imp

1 as follows

~F imp
1 = ~F imp

s − ~F imp
2 (17)

~M imp
1 = − ~M imp

2 − (~r2 − ~r3) × ~F imp
2 − ~r1 × ~F imp

s (18)

where ~r1, ~r2 and ~r3, shown in Fig.2, have the expressions

~r1 = d1(C1
~i + S1

~j)

~r2 = d2(C12
~i + S12

~j)

~r3 = (d1 − l1)(C1
~i + S1

~j) (19)

Substituting (18) into (15) and simplifying using (11), (12),

(14), (17) and (19), we get

[q1 +q2+2q3C2](θ̇
+
1 − θ̇−1 ) = [q2 +q3C2](θ̇

+
2 − θ̇−2 ) (20)

Since impulsive braking results in θ̇+
2 = 0, (20) can be used

to obtain the velocity of the first link after braking:

θ̇+
1 = θ̇−1 −

[

q2 + q3C2

q1 + q2 + 2q3C2

]

θ̇−2 (21)

B. Energy Change

The configuration of the acrobot will not change over

the small period of time, ∆t, when the impulse is applied.

Therefore, the change in total energy of the system is only

due to the change in the kinetic energy which can be

expressed as

∆E =∆K

=
1

2
q1[(θ̇

+
1 )2 − (θ̇−1 )2] +

1

2
q2[(θ̇

+
2 )2 − (θ̇−2 )2]

+ q3C2[(θ̇
+
1 + θ̇+

2 ) − (θ̇−1 + θ̇−2 )] (22)

Substituting (20) into (22) and having θ̇+
2 = 0, the change

in total energy of the system due to impulsive braking is

resulted as:

∆E = −
q1q2 − q2

3C2
2

2(q1 + q2 + 2q3C2)
(θ̇−2 )2 (23)

which implies energy loss.

IV. SWING-UP CONTROLLER

A. Preliminaries

Consider the following impulsive system [14],

ẋ(t) = f(t, x), t 6= ηi(x)

∆x(t) = Hi(x), t = ηi(x), i = 1, 2, ... (24)

and let Ω be a domain in Rn containing the origin and

x(t0) ∈ Ω where t0 is the initial time. Then assume the

following conditions hold for the system in (24):

(a) f(t, x) is a bounded function that is continuous with

respect to t and Lipschitz continuous with respect to x
with f(t, 0) = 0 for all t ≥ t0.

(b) (x + Hi(x)) : Ω → Ω and Hi(0) = 0, i = 1, 2, ...
(c) ηi(x) satisfies t0 < η1 < η2 < ..., ηi(x) → ∞ as

i → ∞ uniformly on x ∈ Ω, and ηi(x) : Ω → (t0,∞)
is a continuous function of x for i = 1, 2, ....

(d) If we consider the hypersurfaces

σi = {(t, x) : t = ηi(x), x ∈ Ω}, i = 1, 2, ... (25)

then the integral curves of the system (24) meet succes-

sively each one of the hypersurfaces σ1, σ2, ... exactly

once.

The following theorem can be stated on the stability of the

impulsive system in (24):

Theorem 1: [14] Consider the system in (24) and assume

that:

(1) Conditions (a)-(d) hold.

(2) There exists a function V (t, x) ∈ V0 such that V (t, 0) =
0 for all t > t0;

β(‖x‖) ≤ V (t, x) (26)

where β is a class K function and (t, x) ∈ [t0,∞) × Ω;

V (t+, x + Hi(x)) ≤ V (t, x) (27)

for (t, x) ∈ σi, i = 1, 2, ... and the following inequality is

valid for t ∈ [t0,∞), x ∈ Ω:

D+V (t, x)1 ≤ 0, t 6= ηi(x), i = 1, 2, ... (28)

then the zero solution of the system (24) is stable.

1D+V is the upper right Dini Derivative with respect to time.
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B. Controller Design

The control objective is to find a controller such that

the following conditions corresponding to the second link

configuration and the total energy are satisfied:

θ2 = 0 , θ̇2 = 0 , E = Edes (29)

With θ2 = 0 and θ̇2 = 0, the system acts as a pendulum.

Then, by choosing E = Edes, the system converges to a

heteroclinic orbit with equilibrium points corresponding to

the upright configuration.

Considering the control objective in (29), the states of the

impulsive system in (24) can be defined as follows for this

problem:

x(t) =
[

θ2 , θ̇2 , E − Edes

]T
(30)

Using the results of Theorem 1, we proceed to prove stability

of the equilibrium x = 0. We first satisfy the conditions of

Theorem 1. Condition (a) is automatically satisfied by the

choice of x in (30).

The times t = ηi(x), i = 1, 2, ... are the instants when an

impulsive braking torque is applied to the second link using

the torque expression in (10) with large gain k1. We choose

ηi as follows:

ηi(x) = { t ∈ [t0,∞) | x ∈ ρi(x)} (31)

where

ρi(x) = {x ∈ R3 | θ̇2θ̈2 < 0} (32)

Applying the impulsive brake on the second link will result

in a jump in x, namely

∆x = Hi(x) (33)

Since there is no jump in θ2, Hi(x) is given by

Hi(x) =







0

−θ̇−2
−

q1q2−q2

3
C2

2

2(q1+q2+2q3C2)
(θ̇−2 )2






(34)

which satisfies the condition (b) in Theorem 1.

To satisfy conditions (c) and (d), we must ensure that the

time between impulses is nonzero. To this end, let us first

define the set ρ⊥i (x) as

ρ⊥i (x) = {x ∈ R3 | θ̇2θ̈2 ≥ 0} (35)

such that x ∈ ρ⊥i (x) for all times t 6= ηi(x). Impulsive

braking results in θ̇2 = 0 or θ̇2θ̈2 = 0 which implies that

x is on the boundary of ρ⊥i (x). By taking the derivative of

θ̇2θ̈2 with respect to time immediately following the impulse,

we get

D(θ̇2θ̈2) = (θ̈2)
2 + θ̇2θ

(3)
2 = (θ̈2)

2 ≥ 0 (36)

which means that θ̇2θ̈2 is nondecreasing after the impulse.

It follows from continuity that following an impulse, there

exists a nonzero time interval ǫ > 0 before x can enter the

set ρi(x) again, i.e.,

ηi+1(x) − ηi(x) ≥ ǫ ∀ i = 1, 2, ... (37)

Therefore, conditions (c) and (d) are satisfied.

Now, we consider a positive definite locally Lipschitz

scalar function V as

V (x) =
1

2

[

kp(θ2)
2 + kd(θ̇2)

2 + ke(E − Edes)
2
]

(38)

where kp, kd, ke are positive constants. At times t 6= ηi(x),
the upper right Dini derivative of (38) is equivalent to taking

the time derivative, and is equal to:

V̇ =[ kpθ2+kd{a(θ, θ̇)+b(θ)τ}+ke(E−Edes)τ ] θ̇2 (39)

where we used Ė = τ θ̇2 and

θ̈2 = a(θ, θ̇) + b(θ)τ (40)

The variables a(θ, θ̇) and b(θ) can be obtained from (7) as

a(θ, θ̇) =
1

q1q2 − q2
3C2

2

h2

b(θ) =
1

q1q2 − q2
3C

2
2

(q1 + q2 + 2q3C2) (41)

If the torque expression in (39) is chosen as

τ = −
kp(θ2) + kd a(θ̇, θ) + kcθ̈2

kdb(θ) + ke(E − Edes)
(42)

then

V̇ = −kc θ̇2 θ̈2 (43)

where kc is a positive constant. Since x ∈ ρ⊥i (x) when t 6=
ηi(x), we have

D+V = −kcθ̇2θ̈2 ≤ 0, ∀ t 6= ηi(x) (44)

The above equation implies that the inequality condition in

(28) is satisfied. By substituting (40) into (42) and solving

for τ , we get

τ = −
kp(θ2) + (kd + kc) a(θ̇, θ)

(kd + kc)b(θ) + ke(E − Edes)
(45)

The torque expression in (45) will encounter a singularity if

(kd + kc) b(θ) + ke(E − Edes) = 0 (46)

Since b(θ) > 0 and kc, kd, ke > 0, it is sufficient to choose

the gains as follows:

kd

ke

min{b(θ)} > Edes (47)

to avoid the singularity.

Finally, consider an instant of time t = ηi(x) when there is

a jump in x. From (38) and using (23), (33) and (41), the

change in V (x(t)) can be written as

V (x(t+)) − V (x(t−))

=−
1

2
kd(θ̇

−

2 )2+
1

2
ke

[

(E+−Edes)
2−(E−−Edes)

2
]

=−
1

2
kd(θ̇

−

2 )2+
1

2
ke(E

++E−−2Edes) ∆E

=−
1

2b(θ)
(θ̇−2 )2[kdb(θ)+

ke

4b(θ)
(θ̇−2 )2+ke(E

+−Edes)]

(48)
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Using (47), it can be shown

V (x(t+)) ≤ V (x(t−)), ∀ t = ηi(x), i = 1, 2, ... (49)

which satisfies the inequality (27).

With all conditions in Theorem 1 satisfied, we conclude that

the continuous torque in (45) and the braking torque in (10)

applied at the times t = ηi(x) defined in (31), guarantees

stability of the equilibrium x = 0.

Having proved stability of the equilibrium x = 0, we

investigate the largest invariant set in which the system

trajectories converge. Since D+V ≤ 0 for all t 6= ηi(x)
and V (x(t+)) ≤ V (x(t−)) for all t = ηi(x), we use the

Invariance Principle in [18]. In order to find the largest

invariant set, we must first find a set Z which is the union

of the sets where V̇ = 0 and the sets where the impulse

results in no change in V (x), namely V (x(t+)) = V (x(t−)).
Therefore, using (43) and (48), the set Z can be found as,

Z ={x ∈ R3 | θ̇2θ̈2 = 0, x ∈ ρ⊥i (x)} ∪

{ x ∈ R3 | θ̇2 = 0, x ∈ ρi(x)} (50)

Note that from (32), if x ∈ ρi(x) then θ̇2 6= 0. Therefore Z
may be simplified to

Z = {x ∈ R3 | θ̇2θ̈2 = 0, x ∈ ρ⊥i (x)} (51)

The invariant set M in Z is obtained when θ̇2θ̈2 ≡ 0. Since

θ̇2 ≡ 0 implies θ̈2 ≡ 0, we need only investigate θ̈2 ≡ 0. If

θ̈2 ≡ 0 and θ̇2 6= 0, then we find that θ2 = θ̇2t + c where

c is a constant, implying that V → ∞ as t → ∞. This is a

contradiction to V̇ ≡ 0 and V bounded. Therefore, θ̇2 ≡ 0
forms the largest invariant set M . Using equation (40) and

(42), the invariant set may be written as

M = { x ∈ Z | θ̇2 ≡ 0, ke(E−Edes)τ+kp(θ2) ≡ 0 } (52)

The set M is the same as that obtained in [6] and [7] and

therefore, there exists conditions on kp, kd, and ke as well

as initial conditions such that the system trajectories asymp-

totically converge to the equilibrium x = 0. For the sake

of brevity, those conditions are not explicitly discussed here.

As x → 0, the acrobot behaves as a pendulum and reaches

a neighborhood of its desired equilibrium configuration in

finite time. The linear controller is then invoked to stabilize

this equilibrium configuration (θ1, θ2, θ̇1, θ̇2) = (π/2, 0, 0, 0).

V. NUMERICAL SIMULATIONS

We compare the efficacy of our controller with the con-

trollers proposed in [6] and [7], which use the same positive

definite function V as in (38). The gains kp, kd, and ke

and the initial conditions are chosen such that the conditions

required for convergence, presented in [6] and [7], are

satisfied. By satisfying these conditions, we ensure that the

condition for singularity-free torque is also satisfied.

For the first simulation, the kinematic and dynamic pa-

rameters are taken from Mahindrakar and Banavar [7]:

m1 =1.0kg, l1 =1m, d1 =0.5m, I1 =0.083N.m2

m2 =2.0kg, l2 =2m, d2 =1.0m, I2 =0.667N.m2 (53)
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Fig. 3. Plot of joint angles (rad), joint angle velocities (rad/s), total energy
(J), Lyapunov-like function and control input (N.m) for the first simulation.
In the last three plots, solid and dashed lines show the results for our
algorithm and the algorithm presented in [7].

Consistent with the choice in [7], the control gains and initial

conditions were chosen as:

kp = 1, kd = 1, ke = 0.005, kc = 1.37

(θ1, θ2, θ̇1, θ̇2) = (−
π

2
, 0, 0, 0.1) (54)

For the parameters given in (53), Edes was computed to

be 88.29 J . The simulation results are shown in Fig.3

and they plot the joint angles and angular velocities, the

total energy of the system, the positive definite function

V , and the control input. The total energy, the function

V and the control input are shown for our controller in

solid line and for the algorithm in [7] in dashed line. Our

controller used impulsive braking twice, at times t = 3.45 s
and t = 5.38 s approximately. At these times, there is a

sudden jump in the values of θ̇1, θ̇2, V and E. Using our

controller, swing-up is achieved in 8.33 s (shown by the

vertical dotted line in Fig.3), after which the linear controller

is invoked, as compared to the 18 seconds required by the

controller in [7]. The maximum continuous torque for our

controller is approximately 28 N.m, which is considerably

less than the maximum continuous torque of 80 Nm required

by the controller in [7]. The impulsive torque required to

brake the second link has a large magnitude and we allay

concerns regarding its magnitude in our remark after the next

simulation.

For the second simulation, we used the kinematic and

dynamic parameters from Xin and Kaneda [6]:

m1 =1.0kg, l1 =1m, d1 =0.5m, I1 =0.083N.m2

m2 =1.0kg, l2 =2m, d2 =1.0m, I2 =0.33N.m2 (55)

The control gains and initial conditions were chosen as:

kp = 61.2, kd = 61.2, ke = 1, kc = 75.6

(θ1, θ2, θ̇1, θ̇2) = (−1.4, 0, 0, 0) (56)

For the parameters in (55), Edes was computed to be 49.05 J .

The simulation results are shown in Fig.4. As in the last
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Fig. 4. Plot of joint angles (rad), joint angle velocities (rad/s), total
energy (J), Lyapunov-like function and control input (N.m) for the second
simulation. In the last three plots, solid and dashed lines show the results
for our algorithm and the algorithm presented in [6].

simulation, the solid and dashed lines in the plots for energy,

function V and control input correspond to our controller and

the controller in [6], respectively. It can be seen from Fig.4

that two impulses were applied at t = 5.14 s and t = 7.09 s,

which cause jumps in the velocities and sudden changes in

the function V and energy. With our controller, swing-up was

achieved and the linear controller was invoked at t = 7.09 s
which is shown by the vertical dotted line in Fig.4. This is

marginally better than the time required by the controller

in [6], which is 7.33 s. The maximum continuous torque

required by our controller is also lower, approximately 15
N.m as compared to 20 N.m required by the controller in

[6].

Remark 1: Although the impulsive torques were assumed

to provide instantaneous braking of the second link, the

numerical simulations above indicate that the impulsive

torques need not to be Dirac delta functions and the swing-

up algorithm is effective even when the magnitude of the

impulse is bounded and its time support is not infinitesimal.

The magnitude of the impulsive inputs are however much

larger than the continuous torque required by our controller,

or the controllers proposed in [6] and [7]. This should not be

seen as a problem since actuators such as motors can apply

substantially larger torques2 than the maximum continuous

torque over small time intervals.

VI. CONCLUSION

We proposed an efficient algorithm for swing-up control

of the acrobot. The new algorithm uses a continuous torque

derived from a positive definite Lyapunov-like function and

applies impulsive braking torques at specific instants of time.

The impulsive braking torque causes jumps in certain states

of the system and thereby results in sudden decrease in the

Lyapunov-like function. The asymptotic convergence of the

2This is referred to as the peak torque [19] and it can be twice to ten
times larger than the maximum continuous torque for different motors.

acrobot configuration to the upright equilibrium configura-

tion is proved using stability theory for impulsive dynamical

systems. For the sake of comparison, the proposed algorithm

is implemented using two sets of acrobot parameters that

have appeared in the literature [6], [7]. Both simulation

results show faster swing-up and lower maximum continuous

torques as compared to the results in [6] and [7]. Our future

work will focus on experimental verification of the proposed

algorithm for further development of control methods that

include impulsive inputs.
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