
State Splitting and State Merging

in Probabilistic Finite State Automata⋆

Patrick Adenis Kushal Mukherjee Asok Ray

pxa154@psu.edu kum162@psu.edu axr2@psu.edu

The Pennsylvania State University

University Park, PA 16802, USA

Abstract— Probabilistic finite state automata (PFSA) are
constructed from symbol sequences for modeling the behavior
of dynamical systems. This paper presents construction of finite
history automata from symbol sequences; such automata, called
D-Markov machines, are structurally simple and computa-
tionally efficient. The construction procedure is based on: (i)
state splitting that generates symbol blocks of different lengths
according to their relative importance; and (ii) state merging
that assimilates histories from symbol blocks leading to the
same symbolic behavior. A metric on probability distribution
of symbol blocks is introduced for trade-off between modeling
performance and the number of PFSA states. These algorithms
have been tested by two examples.

Index Terms— Probabilistic Finite State Automata, D-Markov Machines,

Symbolic Dynamics, State Splitting, State Merging

I. INTRODUCTION

Probabilistic finite states automata (PFSA) [1] have been

used for behavior modeling of dynamical systems in a variety

of applications (e.g., anomaly detection [2] [3] and pattern

recognition [4]). In these applications, the performance of

PFSA has been comparable to that of existing techniques

(e.g., Bayesian filters, Artificial Neural Networks, and Princi-

pal Component Analysis [5]. The procedure for construction

of PFSA from the output of a dynamical system is as follows:

1) Coarse-graining of time series to convert the scalar or

vector valued data into symbol sequences, where the

symbols are drawn from a finite alphabet [6] [7].

2) Identification of statistical patterns from the symbol

sequences [4].

In the process of symbol generation, the phase space of

time series is partitioned into finitely many non-intersecting

and exhaustive segments, each corresponding to a symbol of

the alphabet. As the dynamical system evolves in time, it

travels through or touches various partition segments in its

phase space and the corresponding symbol is assigned to it.

In this way, a time series is converted into a symbol sequence.

A probabilistic finite state automaton (PFSA) is then used to

encode the statistical behavior of this symbol sequence. The

statistical patterns depict the dynamical system’s behavior in

a compact form. Figure 1 illustrates the concept.

⋆This work has been supported in part by the U.S. Army Research Lab-
oratory and the U.S. Army Research Office under Grant No. W911NF-07-
1-0376, and by the U.S. Office of Naval Research under Grant No. N00014-
09-1-0688. Any opinions, findings and conclusions or recommendations
expressed in this publication are those of the authors and do not necessarily
reflect the views of the sponsoring agencies.

A PFSA consists of a finite set of states Q that are

connected by transitions [1]. Each transition corresponds

to a symbol σ in the finite alphabet Σ. At each step, the

automaton moves from one state to another (including a self

loop) using these transitions, and thus generates a corre-

sponding block of symbols (si)i∈N so that the probability

distributions over the set of all possible strings defined over

the finite alphabet Σ are represented in the space of PFSA.

The advantage of such a representation is that a PFSA is

simple to encode as it is characterized by the set of states,

transitions (one for each symbol σ ∈ Σ and state q ∈ Q),

and transition’s probabilities.

… ! ""#"" !…

Symbol Sequence

Finite State Machine

Partitioning of Pre-

processed Sensor Data

!

"

#

#

"

!

"
!

A B

C D

"

"

#
#

!

!

#

Alphabet

$={0,1,2,3}

States

Q={A,B,C,D}

Fig. 1. Underlying concept of a PFSA

The main issue addressed in this paper is the identifica-

tion of a PFSA model for representing the quasi-stationary

probability distribution of the symbolic sequences obtained

from a dynamical system.

In a PFSA, a transition from one state to another is

independent of the previous history of states. Therefore,

states and transitions form a Markov process, which is a

special class of Hidden Markov Models [1]. However, from

the perspectives of symbol generation, the states are implicit

and generation of the next symbol may depend on the com-

plete history of the symbol sequence. Given a probability-

distribution, construction of an exact PFSA model appears

to be computationally infeasible. That is the motivation of

focusing on a certain class of PFSA, namely, the D-Markov

machines [2] whose properties are briefly described below.

In a D-Markov machine, generation of the next symbol

depends only on a finite history, i.e., a symbol block of length

not exceeding D, where D is a positive integer, that is called

the depth of the machine. Therefore, D-Markov machines

belong to the class of shifts of finite type, i.e., shift spaces

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 5145

that can be described by a finite set of forbidden symbol

blocks [8].

Considering the set of all symbol blocks of length D as

the set of states, one may directly construct a D-Markov

Machine from a symbol sequence by frequency counting to

approximate the probabilities of each transition [9]. Since

the number of states increases exponentially as the depth D
increases, state merging is necessary for PFSA with relatively

large values of D. For example, with |Σ| = 4 symbols and

a depth D = 5, the D-Markov machine could have at most

|Σ|D = 1024 states. Along this line, the major contribution

of this paper is formulation of algorithms for:

1) Merging of (possibly redundant) states of the PFSA.

2) Retaining the D-Markov properties, subject to the

constraint of a specified bound on the error between

the constructed PFSA and the symbolic sequence.

This paper is organized into five sections including this

introduction. Section II presents a brief background on PFSA

including the definition of a D-Markov machine. Section III

develops the algorithms of state splitting and state merging.

Section IV presents two examples to explain and validate

the algorithms; in the first example, the symbolic sequence

is generated from a PFSA that is not D-Markov; and the

second example is constructed from a chaotic system. Sec-

tion V concludes this paper with recommendations for future

research.

II. BACKGROUND

This section presents pertinent information regarding D-

Markov machines and other pertinent mathematical tools

(e,g., entropy rate H(Σ|Q) and the metric d) that are used

to measure the effectiveness of the algorithms.

A. D-Markov Machines

A probabilistic finite state automaton (PFSA) [10] is a

quadruple K = (Σ, Q, δ, π̃), where

• Σ is a (nonempty) finite set, called alphabet;

• Q is a (nonempty) finite set, called set of states;

• δ : Q × Σ → Q is the state-transition map;

• π̃ : Q×Σ → [0, 1] is the probability matrix (also known

as morph matrix) which satisfies to
∑

σ∈Σ π̃(q, σ) = 1
for all q ∈ Q.

A PFSA generates a symbol sequence (si)i∈N, si ∈ Σ on

the underlying Markov-Process of states (Xi)i∈N, Xi ∈ Q.

The matrix π̃ implicitly alludes to the fact that the PFSA

satisfies the Markov condition, where, generation of a symbol

only depends on the previous state. However, if the state is

unknown, the next symbol generation may depend on the

complete past history of the symbols generated by the PFSA.

A D-Markov machine generates symbols that solely de-

pend on the (immediate past) history of at most D symbols

of the sequence. The positive integer D is called the depth

of the machine. In other words, for any word1 w ∈ ΣD

of length D, δ∗(q, w) is independent of the state q, where

1Σℓ denotes the set of all the words of length ℓ made from the alphabet
Σ, and Σ∗ is the set of all finite-length words including the empty word ǫ.

δ∗ denotes the extended state-transition function of the

automaton [10]. Whatever the initial state q is, the finite

sequence of transitions represented by the word w ∈ ΣD

always leads to the same final state that could be represented

by the word w itself. Consequently, in a D-Markov machine,

a certain set of words in ΣD can be associated to a state of

the machine. Moreover, the state transition map δ can be

automatically constructed from the words that correspond to

individual states.

This paper considers the case where, given a symbol

sequence, the task is to identify an underlying D-Markov ma-

chine model. Then, the morph matrix π̃ can be computed by

observing the frequency of appearance of all the words [2].

B. Entropy rate

The entropy rate denoted as H(Σ|Q) [11] represents the

predictability of a machine given the previous state. The

lower the entropy rate is, the more predictable is the machine

conditioned on the previous state. As the entropy rate reaches

0, the machine is completely deterministic. The entropy rate

is computed as follows:

H(Σ|Q) ,
∑

q∈Q

P(q)H(Σ|q)

= −
∑

q∈Q

∑

σ∈Σ

P(q)P(σ|q) log P(σ|q)

= −
∑

q∈Q

∑

σ∈Σ

℘(q)π̃(q, σ) log π̃(q, σ) (1)

where ℘ is the stationary state probability vector of the

PFSA, which represents the probability of being in a state at

any instant of time.

C. Distance d between two PFSA

A metric is introduced to measure the distance between

two PFSA K1 and K2.

Let Pi(Σ
ℓ) , [Pi(w)]w∈Σℓ , i = 1, 2, be the steady state

probability of generating any word of length ℓ from the PFSA

Ki. The metric is then computed as:

d(K1, K2) ,

+∞
∑

i=1

∥

∥P1(Σ
ℓ) − P2(Σ

ℓ)
∥

∥

1

2i+1
(2)

where ‖·‖1 is the traditional L1-norm, which is guaranteed

to converge due to the dominating weight 1
2i+1 and satisfies

the relation 0 ≤ d(·, ·) ≤ 1.

Since this metric assigns more weight to shorter words, the

infinite sum could be truncated to a relatively small order

D (typically 8 or 9) for a given tolerance ε ≪ 1. This

implies that the distance effectively compare the probability

of generating words of length D, and is therefore especially

adaptable to D-Markov machines whose dynamical behavior

is characterized by words of a given maximal depth.

Remark 1: The metric d can also be used to calculate

the distance between a PFSA and a symbol sequence, in

which case the probabilities are expressed in terms of rel-

ative frequency of appearance of each word. In fact, it has

been shown that this metric measures the distance between

probability-distributions [1].

5146

III. ALGORITHM DEVELOPMENT

This section develops the algorithms to generate reduced-

order D-Markov machines. The procedure consists of two

major steps, namely state splitting and state merging.

State splitting increases the number of states to gain

more precision in the representation of the data sequence.

This is performed by splitting the states that minimize the

entropy rate H(Σ|Q), thereby, allowing to focus only on

the most critical states. Although this process is executed by

controlling the exponential growth of states with increasing

depth D, the D-Markov machine still may have a large

number of states. The subsequent state merging algorithm

reduces the number of states in a D-Markov machine, say

K1, by merging those states that behave similarly. This

finally leads to a reduced order c from the original D-Markov

machine K1.

A. State Splitting Algorithm

In D-Markov machines, a finite symbol sequence of length

D is sufficient to describe the current state. This implies that

the number of states of a D-Markov machine of depth D is

bounded by |Σ|D , where |Σ| is the cardinality of the alphabet

Σ. As this relation is exponential in nature, the number of

states rapidly explodes as D is increased. However, form the

perspective of modeling a symbol sequence, some states may

be more important than others. Therefore, it is advantageous

to have a set of states that correspond to symbol sequences of

variable lengths. This is accomplished by starting off with

the simplest set of states (i.e., Q = Σ for D = 1) and

subsequently splitting the existing states that result in the

largest decrease of the entropy rate. The process of splitting

a state q ∈ Q is done by replacing q by its branches as

described by the set {σq : σ ∈ Σ}. Maximum reduction of

the entropy rate is the governing criterion for selecting the

state to split. In addition, the generated set of states must

satisfy the self-consistency criterion, which only permits

a unique transition to emanate from a state for a given

symbol. If δ(q, σ) is not unique ∀σ ∈ Σ, then the state q
is split further. The state-splitting algorithm is described in

Algorithm 1.

Figure 2 illustrates the process of state-splitting in a PFSA

whose alphabet is Σ = {0, 1}. The notation Σ∗w refers

to the D-Markov state consisting of all symbol sequences

with the word w as the suffix. The final states have been

marked in ellipses. In the third layer (i.e., D = 2) from

the top in Figure 2, the states are Σ⋆00, Σ⋆10, Σ⋆01,

and Σ⋆11, of which all but Σ⋆10 are terminated as final

states. Consequently, the state Σ⋆10 is further split as Σ⋆010
and Σ⋆110 that are terminated as final states. Hence, Q =
{Σ⋆00, Σ⋆01, Σ⋆11, Σ⋆010, Σ⋆110} as seen in Figure 2.

Given an alphabet Σ and an associated set Q of states, the

symbol generation probability matrix π̃ is computed at every

stage as follows:

π̃(σ, q) = P (σ|q) =
P (qσ)

P (q)
(3)

Algorithm 1 State splitting

Input: Symbol sequence s1s2s3..... ,

alphabet set Σ
User defined Input: Max. num. of states ηs,

threshold ηt

Output: PFSA K1 = {Σ, Q, δ, π̃}
Initialize: Create a 1-Markov machine Q∗ := Σ
repeat

Q := Q∗

Q∗ = argminQ′ H(Σ|Q′)
where, Q′ = Q\q ∪ {σq : σ ∈ Σ} and q ∈ Q

until |Q∗| < ηs or H(Σ|Q) − H(Σ|Q∗) < ηt

for all q ∈ Q∗ and σ ∈ Σ do

if δ(q, σ) is not unique then

Q∗ := Q∗\q ∪ {σq : σ ∈ Σ}
end if

end for

return K1 = {Σ, Q, δ, π̃}

00
*
0
*

10
*
1
*

0
*
0
*

1
*
1
*

**

010
*
0
* 110

*
1
*

01
*
0
* 11

*
11
*

Fig. 2. Tree-representation of state splitting in D-Markov machines

where σ ∈ Σ, q ∈ Q, and P (w) is the probability of

observing a word w in the symbol sequence. An estimate

of the morph matrix π̃ is the ratio of number of times the

state q is followed by the symbol σ, denoted as N(qσ), to

the number of times the state q occurs (N(q)). Therefore,

π̃(σ, q) ≃
N(qσ)

N(q)
(4)

B. State Merging Algorithm

Once state splitting is performed, the resulting D-Markov

machine represents the statistical characteristics of the sym-

bol sequence. Depending on the alphabet size |Σ| and depth

D, the number of states after splitting may run into hundreds.

Although, increasing the number of states of the machine

allows for better representation of the sequence, it creates a

rapidly increasingly large computational load and memory

requirements. The motivation behind the state merging is to

reduce the number of states, while preserving the D-Markov

structure of the machine. Of course, such a process may

cause the PFSA to have degraded precision due to loss of

information. This algorithm attempts to minimize this loss.

In the merging algorithm, a stopping rule is constructed by

specifying a certain acceptable threshold η on the distance d

5147

between the merged PFSA and the original data sequence.

An alternative stoping rule for the algorithm is to provide a

maximal number of states Nmax instead of the threshold η.

1) Merging two states: Before the complete state merging

algorithm is explained, this subsection details the conditions

under which two given states may be merged. The procedure

for merging of two states is also delineated.

The process of state merging is addressed by creating

an equivalence relation [12] (denoted as ∼) between the

states. An equivalence relation specifies which states are

identified together, thereby partitioning the original set of

states into a smaller number of equivalence classes of states,

each being a union of original states. The new states are, in

fact, equivalence classes as defined by ∼.

Let K1 = {Σ, Q1, δ1, π̃1} be the split PFSA, and let q, q′ ∈
Q1 be two states that are to be merged together. Initially, an

equivalence relation is constructed, where none of the states

are equivalent to any other state except itself. To proceed

with merging q and q′, an equivalence relation is imposed

between q and q′, denoted as q ∼ q′; however, the transition

between original states may not be well-defined anymore, in

the following sense: there may exist a σ ∈ Σ such that states

δ1(q, σ) and δ2(q
′, σ) are not equivalent. In other words, the

same symbol may cause a transition to two different states

from the merged state {q, q′}. As the structure of D-Markov

machines does not permit this ambiguity [2], these states

δ1(q, σ) and δ2(q
′, σ) are forced to be merged together, i.e.,

δ1(q, σ) ∼ δ2(q
′, σ). This process is recursive and must be

performed until ambiguity in state transitions does not occur.

Indeed at each iteration, we reduce the number of states of

the future machine, and the machine where all the states are

merged is always consistent. Therefore the number of states

is a decreasing sequence of positive integers, which must

eventually converge. (See Algorithm 2 for the details.)

The state-transition map δ2 and associated transition prob-

abilities π̃2 for the merged PFSA are defined on Q2 ,
Q1/ ∼, the quotient set. If [q] ∈ Q2 denotes the equivalence

class of q ∈ Q1, then the associated morph matrix π̃2 is

obtained by:

π̃2 ([q], σ) = P



si+1 = σ |
⋃

q̃∈[q]

{Xi = q̃}





=

∑

q̃∈[q]

P [si+1 = σ ; Xi = q̃]

∑

q̃∈[q]

P(Xi = q̃)

=

∑

q̃∈[q]

π̃1(q̃, σ) × ℘1(q̃)

∑

q̃∈[q]

℘1(q̃)
(5)

Hence π̃2 is simply the weighted sum of π̃1 by ℘1 the

stationary-probabilities of K1.

By construction, δ2 is naturally obtained by:

δ2 ([q], σ) = [δ1(q, σ)] (6)

Algorithm 3 explains the procedure to obtain the PFSA,

where we want qa and qb to be merged.

Algorithm 2 Minimal equivalence relation given q ∼ q′

Input: δ, q, q′, Initial equivalence relation ∼
Output: Updated equivalence relation ∼
NOTE: Recursive function (∼) := Merge(δ, q, q′,∼)
Set q ∼ q′;
for all σ ∈ Σ do

if δ(qa, σ) ≁ δ(qb, σ) then

Set ∼:= Merge(δ, δ(q, σ), δ(q′, σ),∼);
end if

end for

return ∼

Algorithm 3 Minimal PFSA K2 with qa and qb merged

Input: K1 = {Σ, Q1, δ1, π̃1}, qa, qb

Output: Merged PFSA K2 = {Σ, Q2, δ2, π̃2}
Compute ∼ using algo.2;

Set Q2 := Q1/ ∼;

Compute ℘1 the stationary-probability of K1;

for all [q] ∈ Q2 do

for all σ ∈ Σ do

Set δ2([q], σ) := [δ1(q, σ)];
Compute π̃2([q], σ) using (5);

end for

end for

return K2 = {Σ, Q2, δ2, π̃2}

2) State Merging Algorithm: The aim of this algorithm is

to decide which states have to be merged. States that behave

similarly (i.e., have similar symbol generation probabilities)

have a higher priority for merging. A norm H(q, q′) ,
‖π̃(q, ·) − π̃(q′, ·)‖1 is defined to measure the similarity of

two states in terms of future symbol generation. A small

value of H(q, q′) indicates that the two states have very

close probabilities of generating each symbol σ. Note that

this norm is upper bounded, H(q, q′) ≤ 2.

First, the two closest states are merged using Algorithm.3.

Subsequently, distance d (see subsection II-C) of this merged

PFSA from the initial data sequence is evaluated. If the

distance is less than a threshold η, this machine is kept and

the states next on the priority are merged. On the other hand,

if the distance d is greater that the threshold, the process

of merging the two particular states is aborted and pair of

states with the next smallest value of H(q, q′) are selected

for merging. This procedure is terminated if no such pair of

states exist, for which the distance d between the states is

less that η. Details of the procedure are given in Algorithm.4.

Indeed, for any word w ∈ ΣD, the extended transition

map δ∗K1
(q, w) is independent of q for K1; and it is easy

to check that δ∗K2
([q], w) is also independent of [q], since

δ∗K2
([q], w) = [δ∗K1

(q, w)]. Thus, the D-Markov property of

the automaton is preserved.

IV. EXAMPLES

This section described two illustrative examples. In the

first example, a symbolic sequence is generated from a non-

5148

Algorithm 4 Merging algorithm

Input: PFSA K1 = {Σ, Q1, δ1, π̃1}, threshold η, symbol

sequence (si)
Output: Merged PFSA K2 = {Σ, Q2, δ2, π̃2}
Set K2 := K1

for all q, q′ ∈ Q2 do

if q 6= q′ then

Set LIST STATES(q, q′) = H(q, q′);
else

Set LIST STATES(q, q′) = 2;

end if

end for

sort(LIST STATES);

Set (q, q′) := pop(LIST STATES);
loop

Compute K3 from K2, q and q′ using Algorithm.3;

if d [K3, (si)] < η then

Set K2 := K3;

Recompute LIST STATES;

Set (q, q′) := pop(LIST STATES);
else

Set (q, q′) := pop(LIST STATES);
if q==q’ then

Break loop;

end if

end if

end loop

return K2

D-Markov PFSA and the symbol sequence is modeled as

a reduced order D-Markov model. In the second example,

a (real-valued) data sequence, generated from a chaotic

dynamical system, is partitioned. The resulting symbolic

sequence is modeled as a D-Markov process by using the

algorithms developed in the previous section.

A. Modeling Sequences from a Non-D-Markov PFSA

A

B C

1/1.0
2/1.0

1 / 0.25

0 / 0.5

2 / 0.25

S = {0,1,2}

Fig. 3. The PFSA K0 to generate the symbol sequences in Example 1

The PFSA K0, presented in Figure 3, is used to generate

a data sequence (1,000,000 points in the sequence). K0 is a

variation of the even shift machine with three symbols [8].

The state splitting algorithm(1) is used to obtain a D-

Markov PFSA (K1) with depth D = 8 and Q| = 3 states

from the symbol sequence. Note that, without sequential state

splitting, the PFSA would have at most |Σ|D = 38 = 6561
possible states). The evolution of the entropy rate during

5 10 15 20 25 30 35
0.65

0.7

0.75

0.8

0.85

0.9

Number of states |Q|

E
n

tr
o

p
y
 r

a
te

 H

Split machine K
1

Entropy rate of K
0

Fig. 4. Entropy rate in Example 1

the splitting process is presented on Figure 4. Moreover, the

entropy rate of K1tends to that of initial machine K0 as

the number of states increases. This is evident from the fact

K1 would represent K0 better if the number of states is

increased.

The algorithm splits the states 111 . . .1 and 222 . . .2 that

are the non-synchronizing words2 of the PFSA K0. State

splitting is continued until the probability of being in one of

these states becomes very low. The state merging algorithm

(see Subsection III-B.2)) is used to construct a reduced order

D-Markov PFSA (K2).

TABLE I

RESULTS OF EXAMPLE 1

d(·, K0) d(·, {sn}) |Q| depth

K0 0 0.1004 3 non D-Markov
K1 0.0892 0.0293 31 8
K2 0.8075 0.7875 11 8

For Example 1, Table I summarizes the following results:

– distance of D-Markov PFSA (K1) and distance of the

reduced order D-Markov PFSA (K2) from the original PFSA

K0; distances of K0, K1, and K2 from the generated symbol

sequence {sn}; the number of states |Q|; and the depth of

the D-Markov machine, if applicable.

Although there is loss of information by modeling K0 as

K2, the results show that this loss is minimal (see Table I).

The D-Markov machine has a depth D = 8 and its order is

diminished to only 11 states from 28 = 256. This example

illustrates how a non-D-Markov PFSA can be modeled by a

significantly reduced order D-Markov machine by making

trade-off between number of D-Markov states and good

precision.

B. Modeling Sequences Generated from a Chaotic System

The sequence {xn} is generated iteratively from a logistic

map with the initial state x1 , 0.5 and the iterative map

xk+1 , rxk(1− xk), where the parameter r is chosen to be

r = 3.75, and the iterations xn always lies in the interval

2Non-synchronizing words are those that do not uniquely determine the
current state of the PFSA.

5149

[0, 1]. The space [0, 1] is partitioned into three mutually

disjoint intervals that are associated to the symbol 0, 1

or 2, respectively. The boundaries of disjoint intervals are

shown in black dotted-line in Figure 5. A symbol sequence

(sn) ∈ {0, 1, 2} is generated by replacing the value of xn

by the corresponding symbol associated with the partition

within which xn lies.

1050 1100 1150 1200 1250 1300 1350 1400

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Iteration n

L
o

g
is

ti
c
 m

a
p

 (
x

n
)

(x
n
)

Partitioning

Partitioning

{0}

{1}

{2}

Fig. 5. Output {xn} of the logistic map

As seen in Figure 5, this map exhibits two types of

behaviors. The first is an oscillation between a high value and

a low value, and the second is oscillations of small amplitude

around 0.73.

. . . 2 0 1 1 0 2 0 2 0 1 1 1 1 1 0 2 0 2 0 1 0 2 0 2 0 0 2 0 2 0 1 2 0 2 0 2 0 2 0 0 2

0 2 0 1 2 0 2 0 1 1 1 2 0 2 0 2 0 2 0 0 2 0 2 0 0 2 0 2 0 1 2 0 2 0 1 2 0 2 0 1 1 1 1

1 1 2 0 2 0 1 1 1 1 1 1 2 0 2 0 1 0 2 0 2 0 0 2 0 2 0 1 2 0 2 0 2 0 2 0 0 2 0 2 0 0 2

0 2 0 0 2 0 2 0 0 2 0 2 0 1 1 0 2 0 2 0 1 1 1 2 0 2 0 1 2 0 2 0 1 2 0 2 0 1 1 1 . . .

Fig. 6. Excerpt of the symbol sequence {sn}

Figure 6 shows an excerpt of the symbol sequence, where

the two behaviors are well reproduced in terms of ‘0202’

sequences alternating with ‘11’ sequences.

Figure 7 shows that the reduced order PFSA K2 is capable

of capturing these two behaviors. The state E in Figure 7

randomly switches between the ‘02’ swapping mode (in blue-

green) and the ‘11’ mode (in red).

TABLE II

RESULTS OF EXAMPLE 2

d(·, (sn)) |Q| depth

K1 0.0124 55 10
K2 0.2689 8 6

The pertinent results of this state merging are presented

in Table II, where it is seen that the merging step allows

reduction of the number of states from 55 to 8 while

maintaining a specified bound on the metric d.

V. SUMMARY, CONCLUSIONS, AND FUTURE WORK

This paper presents the underlying concepts and algo-

rithms for modeling dynamical systems as finite history

automata from symbol sequences. These automata, called

D-Markov machines [2], are structurally simple and com-

putationally efficient to execute. While a large depth in

Fig. 7. The D-Markov PFSA K2 obtained after state merging

D-Markov machines provides a longer history resulting in

(possibly) better model prediction, it is accompanied by

exponential growth of the number of PFSA states. The

proposed algorithm focuses on order reduction in D-Markov

machines.

The state merging algorithm, presented here, is heuristic

and therefore suboptimal. An important topic for future

research is to further investigate this issue and justify the gen-

eral problem of approximation of a probability-distribution

by a PFSA, and more precisely by a D-Markov machine. In

this regard, the key topics of future research are as follows.

1) Development of a rigorous mathematical framework

for approximation of probability-distribution by a gen-

eral class of PFSA.

2) Identification of a general relation between the bound

of modeling error and the number of states of the D-

Markov machine.

REFERENCES

[1] E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta, and R. Car-
rasco, “Probabilistic finite-state machines: Parts I and II,” IEEE Trans.

Pattern Analysis and Machine Intelligence, vol. 27, pp. 1013–1039,
2005.

[2] A. Ray, “Symbolic dynamic analysis of complex systems for anomaly
detection,” Signal Process., vol. 84, no. 7, pp. 1115–1130, 2004.

[3] S. Gupta and A. Ray, “Symbolic dynamic filtering for data-driven pat-
tern recognition,” PATTERN RECOGNITION: Theory and Application,

Chapter 5, Nova Science Publishers, Hauppage, NY, USA ISBN 978-

1-60021-717-3, pp. 17–71, 2007.
[4] ——, “Staistical mechanics of complex systems for pattern identifica-

tion,” Journal of Statistical Physics, vol. 134, pp. 337–364, 2009.
[5] C. Rao, A. Ray, S. Sarkar, and M. Yasar, “Review and comparative

evaluation of symbolic dynamic filtering for detection of anomaly
patterns,” Signal, Image, and Video Processing, vol. 3, no. 2, pp. 101–
114, 2009.

[6] T. W. Liao, “Clustering of time series data-a survey,” Pattern Recog-

nition, vol. 38, pp. 1857–1874, 2005.
[7] X. Jin, K. Mukherjee, S. Gupta, and A. Ray, “Wavelet-

based feature extraction using probabilistic finite state automata
for pattern classification,” Pattern Recognition, in press, doi:
10.1016/j.patcog.2010.12.003, 2011.

[8] D. Lind and B. M. Rudin, Symbolic Dynamics and Coding. Cam-
bridge University Press, Cambridge, UK, 1995.

[9] Y. Wen and A. Ray, “A stopping rule for symbolic dynamic filtering,”
Applied Mathematics Letters, vol. 23, pp. 1125–1128, 2010.

[10] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to

automata theory, languages, and computation 2nd ed. New York,
NY, USA: ACM, 2001, pp. 45–138.

[11] T. Cover and J. Thomas, Elements of Information Theory, 2nd ed.

Wiley, Hoboken, NJ, 2006.
[12] P. R. Halmos, Naive Set Theory. Princeton, NJ: Van Nostrand, 1960,

pp. 26–29.

5150

