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Abstract— In this paper, the problem of reduced order H∞

filter design for time-invariant discrete-time linear systems is
investigated. The filtering problem is rewritten as a static output
feedback control problem and the elimination lemma is applied
to derive the design conditions for both precisely known and
uncertain linear systems. An algorithm is proposed to solve the
problem in two stages involving only linear matrix inequalities.
A robust filter of arbitrary order is obtained by solving an
optimization problem that minimizes an upper bound to the
H∞ performance of the estimation error dynamics. Numerical
examples are presented to illustrate the advantages of the
approach when compared to other techniques.

I. INTRODUCTION

In the literature to date, the filtering problem for lin-

ear systems has been faced by many different approaches.

Considering the Lyapunov theory, design conditions ranging

from those obtained using quadratic Lyapunov functions, as

for instance [1–3], to parameter-dependent ones [4, 5] can

be observed. The strategies appeared so far can be used in

different contexts as robust filtering [3, 6], gain scheduling

filtering [7–10] and filtering of time-delayed systems [11],

to mention some.

Several efforts were made to reduce the conservatism of

filter design methods in cases where only sufficient condi-

tions are available. It is significant the use of extra variables

and polynomial relaxations in the search of better design

conditions, which can be noted in many papers dealing

with systems subject to parametric uncertainties, such as

[6, 10, 12] and internal references. As discussed in [13], the

design of robust filters for uncertain systems via parameter-

dependent Lyapunov functions is an advanced topic, whose

main objective is to reduce the conservatism of the quadratic

approach.

What many of these results have in common is the way

they treat the products involving the augmented system

matrices, that is, the state space matrices obtained after

coupling the filter to the plant. In general, the Lyapunov

matrix is partitioned, auxiliary matrices are conveniently

defined and congruence transformations applied to provide

design conditions in terms of a optimization problem based

on linear matrix inequalities (LMIs).
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In this paper, a different approach is proposed. The method

consists of rewritten the augmented system as a closed-loop

system by static output feedback where the filter matrices are

embedded in a static gain K. This approach has been mainly

explored in controller design problems, as for instance to

design reduced order dynamic output compensators [14],

with some results in the filtering context [15, 16]. The main

contribution of this paper is to present a new filter design

strategy based on static output feedback. An immediate

advantage is the facility to deal with reduced order filter.

The proposed approach does not require the definition of

a partitioned Lyapunov matrix nor of the auxiliary matrices

mentioned above. The robust filter is obtained by the solution

of an optimization problem that minimizes an upper bound

to the H∞ index of performance subject to a finite number of

LMI constraints. The optimization process is divided into two

stages, similarly to the strategy proposed in [17–20]. First,

a state feedback gain is obtained and, in the sequel, it is

used to get the filter matrices at the second stage. Numerical

simulations indicate that the realization and the quality (H∞

performance) of the filter provided by the proposed method

is related with the choice of the state feedback gain in the

first stage. One can search for better H∞ performance of

the estimation error dynamics by simply exploring different

strategies in the first stage. Numerical examples illustrate

the advantages of the proposed approach when compared to

other techniques from the literature.

II. PROBLEM STATEMENT AND PRELIMINARY RESULTS

Consider a stable time-invariant discrete-time linear sys-

tem

x(k+1) = Asx(k)+Bww(k)

z(k) =Czx(k)+Dzww(k) (1)

y(k) =Cyx(k)

where x(k) ∈Rn is the state space vector, w(k) ∈Rm is the

noise input belonging to l2[0,∞), z(k) ∈Rp is the signal to

be estimated and y(k) ∈Rq is the measured output.

A robust proper filter of order r is investigated here, being

given by
x f (k+1) = A f x f (k)+B f y(k)

z f (k) =C f x f (k)+D f y(k)
(2)

where x f (t) ∈Rr is the filter state space vector and z f (t) ∈
Rp the estimated signal.

The estimation error dynamics is given by

ς(k+1) = Âς(k)+ B̂w(k)

e(k) = Ĉς(k)+ D̂w(k)
(3)
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where ς(k) = [x(k)′ x f (k)
′]′, e(k) = z(k)− z f (k) and

Â =

[

As 0

B fCy A f

]

, B̂ =

[

Bw

0

]

Ĉ =
[

Cz −D fCy −C f

]

, D̂ =
[

Dzw

]

(4)

The filtering problem considered is stated as follows.

Problem 1: Given an order r, find matrices A f ∈ Rr×r,

B f ∈ Rr×q, C f ∈ Rp×r and D f ∈ Rp×q, of the filter (2),

such that the estimation error system (3) is asymptotically

stable, and an upper bound γ to the H∞ performance of the

estimation error dynamics is minimized.

The following lemma, known as the discrete version of

the bounded real lemma, provides a result that relates an

upper bound γ to the H∞ norm of a stable dynamic system

with the existence of a Lyapunov function v(x) = x′Px (see,

for instance, [21, 22]). The lemma can be used in seeking a

solution to Problem 1.

Lemma 1: If there exist filter matrices A f , B f , C f , D f , a

scalar γ and a matrix P = P′ > 0 such that1









−P Â′P 0 Ĉ′

(⋆) −P −PB̂ 0

(⋆) (⋆) −γ2I −D̂′

(⋆) (⋆) (⋆) −I









< 0 (5)

then the estimation error system (3) is asymptotically stable

with an H∞ norm upper bounded by γ .

As presented Lemma 1 provides a nonlinear design condi-

tion due to the filter matrices appeared inside the augmented

system matrices. In this case, some algebraic manipulations

are required.

By rewriting the estimation error system (3) as

ς(k+1) = (A+B2KC2)ς(k)+ B̃w(k)

e(k) = (C1 +D2KC2)ς(k)+ D̃w(k)
(6)

with matrices

A =

[

As(n×n) 0(n×r)

0(r×n) 0(r×r)

]

, B2 =

[

0(n×r) 0(n×p)

I(r×r) 0(r×p)

]

,

C1 =
[

Cz(p×n) 0(p×r)

]

, C2 =

[

0(r×n) I(r×r)

Cy((q×n)) 0(q×r)

]

,

B̃′ =
[

(Bw(n×m))
′ (0r×m)

′
]

, D2 =
[

0(q×r) −I(q×q)

]

,

D̃ = Dzw(p×m)

and a static output feedback gain

K =

[

A f (r×r) B f (r×q)

C f (p×r) D f (p×q)

]

, (7)

a solution to Problem 1 is equivalently obtained by designing

(7) that minimizes an upper bound to the H∞ index of

performance of system (6).

1The symbol (⋆) stands for symmetric blocks.

A. H∞ filtering through a noisy-output measurement

As can be seen in (1), the filtering problem considered

previously assumes only the presence of noise in the process,

that is, in the equation that describes the dynamics, being

the measured output free of disturbances. However, in most

practical applications, the measurements made in physical

systems are not free of errors caused by the presence of

noise. In this case, the output y(k) of (1) becomes

y(k) =Cyx(k)+Dyww(k)

and the matrices B̂ and D̂ of the estimation error system (3)

B̂ =

[

Bw

B f Dyw

]

, D̂ =
[

Dzw −D f Dyw

]

. (8)

The main difference with respect to the case without noise

occurs when one rewrite the estimation error system as a

closed loop system by static output feedback. The noise

matrices become similar to those of a static feedback of the

noise, although there is not such physical interpretation. The

system (6) becomes

ς(k+1) = (A+B2KC2)ς(k)+(B̃+B2KD̃2)w(k)

e(k) = (C1 +D2KC2)ς(k)+(D̃+D2KD̃2)w(k)
(9)

with the new term

D̃′
2 =

[

(0r×m)
′ (Dyw(q×m))

′
]

.

In order to design the output feedback gain K, an extension

of the method proposed in [18, 19] is applied. It consists of

adding extra variables to decouple the Lyapunov matrix and

the static output gain, similarly to what has been done in the

context of robust control in [23]. The output feedback gain is

obtained as the solution of an LMI problem, after the choice

of a state feedback controller.

For completeness, the elimination lemma, used in the

proofs of the main results, is reproduced in the sequel [24]

Lemma 2: Given the matrices U ∈ Cn×m, V ∈ Ck×n and

Φ = Φ∗ ∈ Cn×n, the following statements are equivalent:

i) there exists a matrix X ∈ Cm×k satisfying

V XU +(V XU )∗+Φ < 0

ii) the following two conditions hold:

NvΦN ∗
v < 0 or V V ∗ > 0

N ∗
u ΦNu < 0 or U ∗U > 0

where Nv and N ∗
u are respectively orthogonal complement

of V and U ∗, that is (considering appropriate matrix dimen-

sions)

NvV = 0, N ∗
u U ∗ = 0.

III. MAIN RESULTS

Theorem 1: For a given positive scalar γ and state

feedback gain K0 ∈ R(r+p)×(r+n), if there exist symmetric
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matrices P ∈ R(n+r)×(n+r), W ∈ Rm×m and matrices G ∈
R(r+p)×(r+p) and L ∈R(r+p)×(r+q), such that












−P A′
0P C′

2L′−K′
0G′ 0 C′

1 +K′
0D′

2

(⋆) −P PB2 −PB̃ 0

(⋆) (⋆) −(G+G′) −LD̃2 D′
2

(⋆) (⋆) (⋆) −γ2I −D̃′

(⋆) (⋆) (⋆) (⋆) −Ip×p













< 0 (10)

where A0 = A+B2K0, then there exists a robust filter in the

form of (2) ensuring the asymptotic stability of the estimation

error dynamics (3) and an upper bound γ to the H∞ index

of performance. The filter matrices are given by (7) with

K = G−1L.

Proof: First, note that LMI (10) can be rewritten as

statement i) of Lemma 2 with matrices X = G,

U =
[

S 0 −I −S̃ 0
]

, V ′ =
[

0 0 I 0 0
]

where S = KC2 −K0, S̃ = KD̃2, and

Φ =













−P A′
0P 0 0 C′

1 +K′
0D′

2

(⋆) −P PB2 −PB̃ 0

(⋆) (⋆) 0 0 D′
2

(⋆) (⋆) (⋆) −γ2I −D̃′

(⋆) (⋆) (⋆) (⋆) −I













together with the change of variables GK = L. Second,

defining Nu and Nv as follows

Nv =

[

I 0 0 0 0

0 I 0 0 0

]

,

Nu =













I 0 0 0

0 I 0 0

S 0 −S̃ 0

0 0 I 0

0 0 0 I













,

the inequalities N ∗
u ΦNu < 0 and NvΦN ∗

v < 0 yield, re-

spectively








−P F12 0 (C1 +D2KC2)
′

(⋆) −P −P(B̃+B2KD̃2) 0

(⋆) (⋆) −γ2I −(D̃+D2KD̃2)
′

(⋆) (⋆) (⋆) −I









< 0

F12 = (A+B2KC2)
′P

and
[

−P (A+B2K0)
′P

P(A+B2K0) −P

]

< 0

where the first one is equivalent to (5) when Lemma 1

is applied to system (6) and the second one certifies the

stability of A+B2K0. Then, in accordance with Lemma 2,

one can conclude that the estimation error dynamics (3) is

asymptotically stable with an upper bound γ to the H∞ index

of performance, what ends the proof.

Theorem 1 was obtained using the elimination lemma

(specially interesting in the context of uncertain systems, as

discussed in the sequel) extending the method proposed in

[19] by considering the H∞ index of performance, similar to

[17, 18] in the context of H2 controller design. The solution

proposed here is given in two steps as shown bellow.

Algorithm 1:

1) Find a state feedback control law u = K0ς(k) that

stabilizes the system

ς(k+1) = Aς(k)+B2u(k)+(B̃+B2KD̃2)w(k)

e(k) =C1ς(k)+D2u(k)+(D̃+D2KD̃2)w(k)
(11)

and minimizes the H∞ index of performance with

respect to the noise input w(k);
2) Fix K0, γ and r and solve Theorem 1.

Theorem 1 provides a way to solve the H∞ filtering

problem as an equivalent static output feedback problem by

appropriately exploring Algorithm 1. Some advantages of

this approach, known from the results concerned with con-

troller design problems, include the facility in dealing with

reduced, or augmented, order filter design by manipulating

the parameter r. Moreover, the methods appeared so far in

the literature to design static output feedback controllers can

be explored in the search of a solution to Problem 1.

It is worth mentioning the importance of the first step in

Algorithm 1 in the solution of Theorem 1, and its relation

with the quality of the filter to be obtained. In the case of

discrete systems, the hypothesis of stability of system (1)

implies the stability of the estimation error dynamics (6)

(note that the eigenvalues of the matrix A are equal to the

eigenvalues of the matrix As plus ‘r ’extra eigenvalues in the

origin). Consequently, K0 = 0 is a feasible choice for the sec-

ond step of the proposed algorithm and obviously a feasible

K0 will always exists. However, this choice may eventually

lead to unfeasible filters (unfeasible gains, realizations). Note

by the augmented system matrices in (4) for example, that a

static filter (A f = 0) provides an estimation error dynamics

asymptotically stable under the assumption of As be stable. In

this case, despite the asymptotic stability of the estimation

error dynamics, the H∞ performance of the filter may be

affected. One possible way to overcome this situation is by

using a performance criterion in both stages of Algorithm 1,

especially in the first step. Other heuristics could be used to

find the best filter provided by the conditions of Theorem 1,

by letting γ as a variable in both steps of Algorithm 1. In this

paper, K0 has been selected as the stabilizing state feedback

gain that minimizes the H∞ norm of the transfer function

from the noise input w(k) to the error e(k). By minimizing

an upper bound to the H∞ performance in the first step, it

is possible to avoid trivial solutions such as A f = 0, B f = 0,

C f = 0, D f = 0, arising from choices as K0 = 0. Exceptions

occur when K0 = 0 coincides with the lowest value of H∞

norm, or when Theorem 1 has no feasible solution.

In order to find the state feedback gain K0 that minimizes

the H∞ norm of system (11), the method proposed in [22,

Theorem 10] was applied. The main issue that appears at

this point is concerned with the use of the matrices that

multiply the noise vector w(k), that is, (B̃ + B2KD̃2) and

(D̃+D2KD̃2). For obvious reasons, the variable K can not

be used as an input parameter in the first step of Algorithm 1

because its value will be determined only at the second step.

The proposed alternative is to use random values different
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from zero. The goal is to achieve an effect similar to the ma-

trices (B̃+B2KD̃2) and (D̃+D2KD̃2), meanwhile reducing

the chances of having only trivial solutions (K0 = 0). In the

second stage of the algorithm the original noise matrices (8),

along with the designed gain K0, are used.

The difficulty appeared in the design of the state feedback

gain is related to the use of the elimination lemma to

introduce extra variables and decouple the Lyapunov matrix

from the static feedback gain. If the value of the H∞ norm

found in the second stage is not satisfactory, the method can

be applied again with different values for the state feedback

gain. New values of K0 can be tunned using the information

contained in the matrices B̃ and D̃ with random choices

for the terms (B2KD̃2) and (KD2D̃2), or with different

performance criteria in the first stage (as for instance, H2

norm instead of H∞, pole placement, besides others).

A. Robust filter

Assuming system (1) uncertain, with matrices belonging

to the polytope

P̃ ,











As(α) Bw(α)
Cz(α) Dzw(α)
Cy(α) Dyw(α)



=
N

∑
i=1

αi





Asi Bwi

Czi Dzwi

Cyi Dywi











(12)

where α ∈ UN models the uncertainties, with

UN =
{

δ ∈R
N :

N

∑
i=1

δi = 1, δi ≥ 0 , i = 1, . . . ,N
}

,

Theorem 1 can be extended as follows.

Theorem 2: For a given positive scalar γ and state feed-

back gain K0 ∈R(r+p)×(r+n), if there exist symmetric matri-

ces Pi ∈R(n+r)×(n+r), Wi ∈Rm×m, i = 1, . . . ,N, and matrices

G ∈R(r+p)×(r+p) and L ∈R(r+p)×(r+q), such that

Ψi =













−Pi G12 C′
2iL

′−K′
0G′ 0 C′

1i +K′
0D′

2i

(⋆) −Pi PiB2i −PiB̃i 0

(⋆) (⋆) −(G+G′) −LD̃2i D′
2i

(⋆) (⋆) (⋆) −γ2I −D̃′
i

(⋆) (⋆) (⋆) (⋆) −Ip×p













< 0

(13)
i = 1, . . . ,N

G12 = A′
iPi +K′

0B′
2iPi

Ψi j =













−Pi −Pj T12 T13 0 T15

(⋆) −Pi −Pj T23 T24 0

(⋆) (⋆) T33 T34 T35

(⋆) (⋆) (⋆) −2γ2I T45

(⋆) (⋆) (⋆) (⋆) −2Ip×p













< 0

(14)
i = 1, . . . ,N −1, j = i+1, . . . ,N

T12 = A′
iPj +A′

jPi +K′
0B′

2 jPi +K′
0B′

2iPj

T13 =C′
2iL

′+C′
2 jL

′−2K′
0G′

T15 =C′
1i +C′

1 j +K′
0D′

2i +K′
0D′

2 j

T23 = PiB2 j +PjB2i

T24 =−PiB̃ j −PjB̃i

T33 =−2(G+G′)
T34 =−LD̃2i −LD̃2 j

T35 = D′
2i +D′

2 j

T45 =−D̃′
i − D̃′

j

then there exists a robust filter in the form of (2) ensuring

the asymptotic stability of the estimation error dynamics (3)

and an upper bound γ to the H∞ index of performance. The

filter matrices are given by (7) with K = G−1L.

Proof: Applying the following operation [25]

Ψ(α) =
N

∑
i=1

α2
i Ψi +

N−1

∑
i=1

N

∑
j=i+1

αiα jΨi j (15)

to the LMIs (13) and (14) one gets

Ψ(α) =













−P(α) X12(α) X13(α) 0 X15(α)
(⋆) −P(α) X23(α) X24(α) 0

(⋆) (⋆) X33(α) X34(α) D2(α)′

(⋆) (⋆) (⋆) −γ2I −D̃(α)′

(⋆) (⋆) (⋆) (⋆) −Ip×p













X12(α) = A(α)′P(α)+K′
0B2(α)′P(α)

X13(α) =C2(α)′L′−K′
0G′

X15(α) =C1(α)′+K′
0D2(α)′

X23(α) = P(α)B2(α)
X24(α) =−P(α)B̃(α)
X33(α) =−(G+G′)
X34(α) =−LD̃2(α)

with Ψ(α)< 0.

From this step on the proof follows similar to the proof of

Theorem 1 but with respect to a parameter-dependent version

of Lemma 1.

The use of Lemma 2 makes possible to develop an inter-

esting design procedure to face Problem 1 by an equivalent

static output feedback problem. By appropriately exploring

the first stage of Algorithm 1 one may find a sequence of

decreasing H∞ upper bound γ . Several strategies can be

used to select the matrices of the noise in the first stage,

such as random inputs, proposed earlier, or more elaborate

techniques such as evolutionary algorithms (genetic algo-

rithms, ant colonies, among others). Moreover, in the case of

uncertain systems, Lemma 2 can be applied in an iterative

process to provide more extra variables to the problem,

increasing the degree of freedom during the solution of

Theorem 2. As can be seen, the H∞ robust filters design

methods presented in theorems 1 and 2 may be extended in

many different ways. These topics are under investigation by

the authors.

Finally, it is important to stress that reduced-order filters

are very important from a practical point of view, especially

for implementation purposes. As an example, one can cite

the multirate filter bank design problem, as can be seen in

[15, 16], where the authors also rewrite the filtering problem

as a static output feedback problem, but apply a different

algorithm to solve it (a comparison with [16] is presented

in the next section). The use of the proposed method in

the design of filter banks is also under investigation by the

authors.

IV. NUMERICAL EXPERIMENTS

All the experiments have been performed in a PC equipped

with: Linux Ubuntu 9.04, Athlon 64 X2 6000+ (3.0 GHz),
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2GB RAM (800 MHz), using the SDP solver SeDuMi [26]

interfaced by the parser YALMIP [27], MATLAB 7.0.1.

Example I (Precisely known case)

Consider system (1) with the following matrices

As =

















0.6 0.1 0.2 −0.3 −0.2 0

0 0.4 −0.3 0.2 0.1 0.1

0.3 −0.2 0.1 −0.1 0 −0.2

−0.1 0.3 0.1 −0.3 0.1 0.05

0.1 0.2 −0.1 0.1 0.3 0.1

0.3 0.1 −0.2 0.3 0.2 −0.3

















,

Bw =

















1

0

0

0

1

0

















, C′
y =

















2

0

2

0

0

0

















, Dyw =
[

1
]

, C′
z =

















1

0

0

0

0

1

















and null Dzw. This system was also considered in [16].

Theorem 1 was applied using random values for matrices

(B2KD̃2) and (D2KD̃2) in the first stage of Algorithm 1,

given a reduced order filter with better performance than the

one proposed in [16]. The results are summarized in Table I.

TABLE I

RESULTS FOR EXAMPLE I.

Method Filter order γ
[16] 3 0.56

Theorem 1 3 0.47

The reduced order (n = 3) filter matrices synthesized by

the proposed conditions are

A f =





0.73 1.21 0.01

−0.91 −1.42 0.02

1.32 1.20 −0.67



 ,

B f =





0.0057

−0.0001

−0.0284



 , C′
f =





37.47

60.82

−1.21



 , D f =
[

0.41
]

Example II (Uncertain case)

Consider system (1) with the following matrices

As =

[

0 −0.5

1 1+δ

]

,Bw =

[

−6 0

1 0

]

,

C′
y =

[

−100

10

]

, Dyw =

[

0

1

]

, C′
z =

[

1

0

]

and null Dzw with |δ | ≤ 0.45. This system was also con-

sidered in [6] and can be represented by a polytope with

two vertices. Theorem 2 was applied using random values

for matrices (B2KD̃2) and (D2KD̃2) in the first stage of

Algorithm 1. The results are summarized in Table II.

As can be noticed, the reduced order (n= 1) filter designed

by the proposed method outperforms the full order filters

designed by the methods appeared in [4] and [28] and has

a performance close to the full order filter proposed in [6]

(15% greater).

TABLE II

RESULTS FOR EXAMPLE II.

Method Filter order γ
[6] 2 1.82
[28] 2 2.15
[4] 2 3.20

Theorem 2 1 2.11

V. CONCLUSION

This paper presented an H∞ robust filter design procedure

for both uncertain and precisely known systems. The pro-

posed approach rewrites the problem of filtering as a static

output feedback problem. The main feature of the proposed

conditions is in the separation of the design matrix variables

from the Lyapunov matrix and in the use of slack variables.

The filter is obtained by solving an optimization problem

with LMIs constraints. The reduced-order filter design can

also be faced by the proposed conditions by simply setting

a specific parameter. The proposed algorithm for solving the

problem can be exploited in different ways in the search

of better H∞ performance, as some suggestions presented,

providing more flexibility for the designer. The numeri-

cal experiment section reinforces the discussion presented

throughout the text.

REFERENCES

[1] J. C. Geromel, J. Bernussou, G. Garcia, and M. C. de Oliveira, “H2

and H∞ robust filtering for discrete-time linear systems,” SIAM J.

Control Optim., vol. 38, no. 5, pp. 1353–1368, May 2000.

[2] M. C. de Oliveira and J. C. Geromel, “H2 and H∞ filtering design
subject to implementation uncertainty,” SIAM J. Control Optim.,
vol. 44, no. 2, pp. 515–530, 2005.

[3] J. C. Geromel and R. A. Borges, “Joint optimal design of digital filters
and state-space realizations,” IEEE Trans. Circuits & Syst. II: Exp.

Briefs, vol. 53, no. 12, pp. 1353–1357, December 2006.

[4] J. C. Geromel, M. C. de Oliveira, and J. Bernussou, “Robust filtering
of discrete-time linear systems with parameter dependent Lyapunov
functions,” SIAM J. Control Optim., vol. 41, no. 3, pp. 700–711, 2002.

[5] C. E. de Souza, K. A. Barbosa, and A. Trofino, “Robust H∞ filtering
for discrete-time linear systems with uncertain time-varying param-
eters,” IEEE Trans. Signal Process., vol. 54, no. 6, pp. 2110–2118,
June 2006.

[6] Z. S. Duan, J. X. Zhang, C. S. Zhang, and E. Mosca, “Robust H2

and H∞ filtering for uncertain linear systems,” Automatica, vol. 42,
no. 11, pp. 1919–1926, November 2006.

[7] G. I. Bara, J. Daafouz, and F. Kratz, “Advanced gain scheduling
techniques for the design of parameter-dependent observers,” in Proc.

40th IEEE Conf. Decision Control, Orlando, FL, USA, December
2001, pp. 3892–3897.

[8] M. Sato, “Filter design for LPV systems using biquadratic Lyapunov
functions,” in Proc. 2004 Amer. Control Conf., Boston, MA, USA,
July 2004, pp. 1368–1373.

[9] H. Gao, J. Lam, P. Shi, and C. Wang, “Parameter-dependent filter
design with guaranteed H∞ performance,” IEE Proc. — Control

Theory and Appl., vol. 152, no. 5, pp. 531–537, September 2005.

[10] R. A. Borges, V. F. Montagner, R. C. L. F. Oliveira, P. L. D. Peres,
and P.-A. Bliman, “Parameter-dependent H2 and H∞ filter design for
linear systems with arbitrarily time-varying parameters in polytopic
domains,” Signal Process., vol. 88, no. 7, pp. 1801–1816, July 2008.

[11] F. O. Souza, R. M. Palhares, and K. A. Barbosa, “New improved
delay-dependent H∞ filter design for uncertain neutral systems,” IET

Control Theory & Appl., vol. 2, no. 12, pp. 1033–1043, December
2008.

1309



[12] R. A. Borges, R. C. L. F. Oliveira, C. T. Abdallah, and P. L. D.
Peres, “H∞ filtering for discrete-time linear systems with bounded
time-varying parameters,” Signal Process., vol. 90, no. 1, pp. 282–
291, January 2010.

[13] H. Gao, X. Meng, and T. Chen, “A new design of robust H2 filters for
uncertain systems,” Syst. Control Letts., vol. 57, no. 7, pp. 585–593,
July 2008.

[14] V. L. Syrmos, C. T. Abdallah, P. Dorato, and K. Grigoriadis, “Static
output feedback – A survey,” Automatica, vol. 33, no. 2, pp. 125–137,
February 1997.

[15] H. D. Tuan, T. T. Son, P. Apkarian, and T. Q. Nguyen, “Low-order
IIR filter bank design,” IEEE Trans. Circuits Syst. I, vol. 52, no. 8,
pp. 1673–1683, August 2005.

[16] Z. Duan, J. Zhang, C. Zhang, and E. Mosca, “A simple design method
of reduced-order filters and its applications to multirate filter bank
design,” Signal Process., vol. 86, no. 5, pp. 1061–1075, May 2006.

[17] D. Peaucelle and D. Arzelier, “An efficient numerical solution for H2

static output feedback synthesis,” in Proc. 2001 Eur. Control Conf.,
Porto, Portugal, September 2001.

[18] D. Arzelier, D. Peaucelle, and S. Salhi, “Robust static output feedback
stabilization for polytopic uncertain systems: improving the guaranteed
performance bound,” in Proc. 4th IFAC Symp. Robust Control Design,
Milan, Italy, June 2003.

[19] D. Mehdi, E. K. Boukas, and O. Bachelier, “Static output feedback
design for uncertain linear discrete time systems,” IMA J. Math.

Control Inform., vol. 21, no. 1, pp. 1–13, March 2004.
[20] D. Arzelier, E. N. Gryazina, D. Peaucelle, and B. T. Polyak, “Mixed

LMI/Randomized methods for static output feedback control design,”

in Proc. 2010 Amer. Control Conf., Baltimore, MD, USA, June-July
2010, pp. 4683–4688.

[21] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix

Inequalities in System and Control Theory. Philadelphia, PA: SIAM
Studies in Applied Mathematics, 1994.

[22] M. C. de Oliveira, J. C. Geromel, and J. Bernussou, “Extended H2 and
H∞ characterization and controller parametrizations for discrete-time
systems,” Int. J. Control, vol. 75, no. 9, pp. 666–679, June 2002.

[23] M. C. de Oliveira, J. Bernussou, and J. C. Geromel, “A new discrete-
time robust stability condition,” Syst. Control Letts., vol. 37, no. 4, pp.
261–265, July 1999.

[24] R. E. Skelton, T. Iwasaki, and K. Grigoriadis, A Unified Algebraic

Approach to Linear Control Design. Bristol, PA: Taylor & Francis,
1998.

[25] D. C. W. Ramos and P. L. D. Peres, “An LMI condition for the robust
stability of uncertain continuous-time linear systems,” IEEE Trans.

Autom. Control, vol. 47, no. 4, pp. 675–678, April 2002.
[26] J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization

over symmetric cones,” Optim. Method Softw., vol. 11, no. 1–4, pp.
625–653, 1999, http://sedumi.mcmaster.ca/.
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