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Abstract— This paper investigates a traditional navigational
technique, known as “off-course navigation,” “landfall inter-
cept,” “single line-of-position,” and “aiming off,” which has
been extensively used by navigators on foot, ancient ships, pre-
GPS aircraft, and modern submarines. Using this technique, the
navigator deliberately aims to one side of their objective with
the intention of following a line feature (e.g., a road, coastline,
celestial bearing, or radio beacon) that is known to intersect the
objective. Despite its extensive use, the question of “How much
should one aim off?” has never been rigorously addressed.

The main difficulty in quantifying the benefit of aiming off is
that it entails optimal search as a sub-problem; how does one
proceed once the line feature is reached? Recent scholarship has
provided a strong heuristic policy for search on the real line.
Given this policy, which we use as a black box, we are able pose
the problem of “aiming off” as a straightforward optimization
problem. This problem is relevant not only to path planning,
e.g., in a GPS-denied environment, but also to search problems
such as target acquisition.

I. INTRODUCTION

In this paper we analyze a traditional navigation practice
called “aiming off” in which a navigator deliberately aims
at a point to one side his destination so that he can be more
confident about which direction to search. Figure 1 is an
example from The Proficient Pilot[9]. This is a sophisticated
strategy because it considers the value of information about
the direction to the destination. Unsurprisingly, then, path
planning to mitigate uncertainty has been left to human
experts—to quote a 1657 navigation text “[such things] are
better learned by practice, than taught by pen.”[5] In this
paper we will attempt, by pen, to confirm this practice and
determine the optimal amount of off-aim.

In addition to navigational applications, another practical
application is in search for mobile targets. Suppose an Un-
manned Aerial Vehicle (UAV) is being routed to take video
of a suspicious mobile target on a road. Rather than move
directly toward the mean of the target’s position distribution
it might be better for the UAV to aim off and acquire the
target while following the road.

Previously this problem would have been difficult to tackle
because it entails as a sub-problem the problem of optimal
search. However recent work on the Cow Path Problem, [10]
has provided an efficient means tackle search on the real line.
Given a black-box algorithm for line-search, determining
optimal heading off-aim is a tractable optimization problem.

By way of contrast, the previously accepted solution to the
Cow Path Problem was a “doubling strategy.”[1] Under such
a strategy the navigator pursues a search pattern in which
each time he changes direction he searches twice as far in

Fig. 1. from The Proficient Pilot[9]. Used with permission.

the opposite direction. With such a search strategy it is never
optimal to aim off.

A similar problem was posed in [8] which they called the
Coastal Navigation Problem (CNP) in which a mobile robot
attempted to robustly reach a goal location in the presence
of features. The most general and exact form of their model
encompasses our problem but is a continuous state Partially
Observable Markov Decision Problem (POMDP) which is
intractable. The approach taken was to use an augmented-
state Markov Decision Problem (MDP) in which they tracked
the mean and entropy of the agent location distribution. This
approach is promising in that it predicts behaviors similar
to aiming off, e.g., wall following. However, to illicit these
behaviours they had to apply an artificial reward model
in which the robot was penalized for entropy when the
distribution mean reached the goal. For the problem we will
pose here, even with the modified reward structure, their
approach would not aim off.

The main contribution of this paper is to demonstrate a
methodology for determining an optimal control policy in
a commonly arising navigation situation. We believe this
is particularly interesting because it verifies a practice that
human experts have known for centuries but could not be
produced by any automated planner.

Another important contribution of this paper is a careful
analysis of search of Gaussian distributions. In particular, we
provide a Whittle index policy and compute the expected
search distance of that policy as a function of the starting
point and sensor radius.
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II. PROBLEM SPECIFICATION AND ASSUMPTIONS

Assume that the objective is on a straight, featureless road.
For the moment assume that the navigator can only detect the
objective if he is at its location, Section V will discuss the
effects of a non-zero sensor radius. Assume that the navigator
starts at an initial position with no uncertainty and that the
navigator–objective vector is perpendicular to the road and
has length `. We will assume that the navigator is a single
integrator

ẋ = u+ w,

with control ||u|| ≤ v and noise w ∼ N (0, Iσ2). This is a
natural model for a navigator with a compass, for example.

The location of the navigator evolves according to a
Wiener process with drift u. That is, at time t, the position
is a Gaussian random variable with mean x(t) =

∫ t
0
u(τ)dτ

and variance tσ2I . In the UAV search example, this would
be equivalent to the target undergoing Brownian motion.

III. THE COW PATH PROBLEM

Once the navigator arrives at the road, he should pursue
an optimal search strategy. Searching a one-dimensional road
is an instance of the Cow Path Problem, which we briefly
review.

In the Cow Path Problem (CPP), m agents are searching
for a unique goal that lies on one of n rays diverging from
a single origin (with m < n). The probability that the goal
lies on path i at a distance less than z is given by Fi(z).
The agents know their positions with certainty, and each has
a sensor that can detect the goal only if the agent is at the
location of the goal; otherwise it gives no information. The
goal is to find a routing policy for the cows that minimizes
the expected time at which the goal is found.

In [10] the authors proved that Whittle’s index heuristic
can be applied to the CPP. This is significant because al-
though optimal search is provably difficult, Whittle’s heuris-
tic has very strong empirical backing (see e.g., [2], [4],
[6]). Such a heuristic involves computing a function called
a Whittle index γ∗i for each path i and then pursuing
the paths of highest index. For detailed requirements on
the requirements of a Whittle index function refer to our
references.

We here repeat the Whittle index for the CPP from [10].
For each path i, let ai ∈ {0, 1} indicate whether there is a
cow searching it and let zi denote the maximum distance to
which path i has been previously searched. For compactness,
let F (a, b) ≡ F (b)− F (a).

Policy III.1 (Whittle Index Policy for CPP[10]). Pursue
the m paths maximizing

γ∗(ai, zi) = inf
z′>zi

E [c((ai, zi), z
′)]

Fi(zi, z′)
. (1)

The term E [c((ai, z), z
′
i)] is the expected travel distance

associated with extending the search from zi to z′i and

returning if unsuccessful.

E [c((ai, zi), z
′
i)] ≡ 2(1− ai)zi + (2)∫ z′i

zi

χdFi(χ) + (1− Fi(z, z′i))2(z′i − zi)

A. Index Policy for Gaussian Search

We now describe the application of Policy III.1 to the case
of a single agent searching a Gaussian distribution. Note that
Equation 2 scales linearly under a scaling of distance. Since
our error model ensures that the uncertainty will always
be normally distributed we need only determine the search
behavior in general by the search behavior for the standard
normal. The actual search behavior can be recovered with
appropriate transformation of units.

At the moment that the agent arrives at the road, define
zero to be mean of the distance-to-objective distribution and
define the unit of distance to be its standard deviation. With
respect to this zero, let x̃ denote the mean of the agent
location distribution and z+, z− as the extent to which the
agent has searched in the positive and negative directions,
respectively. Let φ and Φ denote the density and cumulative
of the standard normal, respectively.

We can simplify Policy III.1 by redefining the origin (of
the CPP) to be the agent’s location, which makes a = 0 for
both directions. Rewriting Equation 2 and correcting signs
in the negative direction,

E
[
c+
]

=

∫ z′

z+
(χ− x̃)φ(χ)dχ+ (1− Φ(z+, z′))2(z′ − x̃)

E
[
c−
]

=

∫ z′

z−
(χ− x̃)φ(χ)dχ+ (1− Φ(z′, z−))2(z′ − x̃)

Making use of ∫ b

a

χφ(χ)dχ = φ(a)− φ(b)

we arrive at Policy III.2.

Policy III.2 (Index Policy for Gaussian Search). The
agent will move in the positive direction whenever

inf
z′>z+

x̃− 2z′ +
φ (z+)− φ (z′) + 2(z′ − x̃)

Φ (z+, z′)
≤

inf
z′<z−

2z′ − x̃+
φ (z−)− φ (z′) + 2(x̃− z′)

Φ (z′, z−)

By forward-simulating Policy III.2, we determine the
expected search time for N (0, 1) as a function of starting
location, shown in Figure 2. We will denote this function
d̃s(x̃) with domain and range in units of standard deviations.
The expected search distance of a normal distribution with
standard deviation σ is given by σd̃s(x/σ).

IV. OPTIMIZATION

We assume that since the navigator is trying to minimize
travel time he always applies maximum control ||u|| = v
and attempts to travel in a straight line. Under this type of
control, and given a search strategy, the problem is simply
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Fig. 2. Expected search distance (in standard deviations) as a function of
starting location in standard deviations from the mean.

to select an initial heading. Given d̃s, we can now write
the expected search time as a function of heading θ and the
initial distance to the road `.

dT (`, θ) ≡ 1

v

(
` sec(θ) + σrd̃s

(
` tan θ

σr

))
(3)

The two terms are, respectively, the distance to the road and
the search distance subject to a unit transformation. When
the agent reaches the road the standard deviation of error is

given by σr ≡
√

` sec(θ)σ2

v .
All that remains is to optimize Equation 3 over θ. The

functions

d∗T (`) ≡ min
θ
dT (`, θ)

θ∗(`) ≡ arg min
θ
dT (`, θ)

are shown in Figures 3 and 4.

A. Discussion

The interesting shape of these curves results from the fact
that the difficulty of searching grows with the square root of
the initial distance to the road, `. At large values of `, the
amount of offset that corresponds to the minimum in Figure 2
grows at a rate proportional to

√
` and so the optimal heading

goes to zero. For the same reason, the search time becomes
a vanishing component of the travel time.

When the navigator starts very close to the road, search
time dominates and is proportional to

√
`. In this limit it

is best to immediately move to the road. This can be seen
by linarizing dT about some particular θ0 and examining
the limit of ` → 0. In this limit we can approximate
d̃s(x) ≈ a− bx for a, b ≥ 0. Plugging this linearization into

Fig. 3. Minimum expected search time as a function of initial distance
from the objective, shown with linear and square-root asymptotes.

Fig. 4. Optimal heading as a function of initial distance from the objective.

Equation 3,

dT (`, θ0 + dθ) ≈ ` sec(θ0 + dθ)/v +√
` sec(θ0 + dθ)σ2/v(1/v)

(
a− b ` tan(θ0 + dθ)√

` sec(θ0 + dθ)σ2/v

)
= ` sec(θ0 + dθ)/v +

√
` sec(θ0 + dθ)σ2/v ×

a− b
√
` sec(θ0 + dθ)v/σ2 sin(θ0 + dθ))

= (1/v)
[
` sec(θ0 + dθ)(1− b sin(θ0 + dθ)) +

a
√
` sec(θ0 + dθ)σ2/v

]
≈ (`/v)(sec(θ0) + dθ sec(θ0) tan(θ0)) ×

(1− b(sin(θ0) + dθ cos(θ0)) +

aσ
√

(`/v) sec(θ0) (1 + dθ tan(θ0)/2)

Small changes of θ decrease dT proportionally to ` but
increase it proportionally to

√
`. Therefore in the limit of

`→ 0, θ∗ → 0.
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Fig. 5. Modification of the normal distribution to reflect non-zero sensor
radius.

In between these two regimes we see that it is sometimes
optimal to choose large heading offsets—over 15 degrees.
Referring to Figure 2, this should not be surprising. There is
a substantial benefit as we move the start point away from the
mean. On the other hand, the extra distance only increases
as sec(θ) and the additional search time as

√
sec(θ).

V. SENSOR RADIUS

Suppose that the navigator can see a distance rs = σr r̃s
in either direction along the road. We apply Policy III.1 to
the distribution formed by removing the center 2rs/σr about
the agent’s starting location x̃ = x/σr from the normal
distribution. This transformation is shown in Figure 5.

Let d̃s
′
(x̃, r̃s) denote the expected search time of such a

policy. To determine the actual search time we make the
following correction. Let χ be the random variable denoting
the distance to goal.

d̃s(x̃, r̃s) = (Pr |χ| ≤ r̃s)E [|χ||χ ≤ r̃s] +

(Pr |χ| > r̃s)(d
′
s(x̃, r̃s) + r̃s)

The first term is the case in which the agent can immediately
see the goal. Otherwise we simply add one sensor radius to
the search time. Figure 6 shows d̃s(x̃, r̃s) for sample values
of r̃s between 0 and 1.75. Above this value it no longer helps
to aim off.

We adjust Equation 3 to now include the sensor radius

dT (`, θ) ≡ ` sec(θ) + σrd̃s

(
` tan θ

σr
,
rs
σr

)
(4)

and optimize over θ.
Figure 7 shows the heading that minimizes Equation 4 for

a variety of speeds and sensor radii. These parameters were
chosen to bracket those of a person navigating on foot and

Fig. 6. Expected standardized search distance as a function of starting
location for sensor radii between 0 (blue) and 1.75 (red) standard deviations.

the variances are scaled such that the asymptotic behaviors
match.

As a function of starting distance `, expected travel
distance is qualitatively unchanged from Figure 3 and we
do not show it. Primarily this is because the navigator must
still move to the road and then to the actual location of the
objective. In the ` → 0 limit, the performance improves by
the ratio of E [|N (0, 1)|] : ds(0) which is an improvement
of about 45%. This improvement decreases along with the
probability of immediately seeing the objective.

A. Discussion

Unsurprisingly, for large distances, Figure 7 matches Fig-
ure 4: the sensor radius is becoming increasingly negligible.
The interesting behavior is the very steep rise in heading off-
aim from zero up to the asymptote. Generally we see a rise
from no offset to the asymptote in a doubling of distance.
It seems that the once it is no longer “very likely” that the
navigator will be able to see the objective immediately, off-
aim very becomes attractive very quickly.

We see a maximum heading offset of 0.2 radians for
the fast navigator with the most limited visibility. For these
conditions it is advisable to aim off even over very short
distances (a few tens of meters). On the other extreme the
slower, more careful navigator with the best visibility has
a maximum heading offset of 0.02 radians. In this case the
navigator prefers the direct route for distances up to nearly
two kilometers.

Orienteering books recommend between 2–3 and 10 de-
grees of off-aim (e.g., [7],[3]). The surprising degree of non-
linearity in this regime explains the lack of any standard
’rules of thumb’ for aiming off in orienteering.

VI. CONCLUSION AND EXTENSIONS

This problem was made easy by the fact that we were
able to pre-compute a function that takes a measure over the
road as an input and returns a mean search time. Given that,
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Fig. 7. Optimal heading as a function of starting distance from the road for various speeds and sensor radii. Within each color, the three curves show
increasing sensor radii from left to right. These parameters were chosen to bracket those of a person navigating on foot and the variances are scaled such
that the asymptotic behaviors match.

the path planning problem was just a matter of optimizing
over trajectories. The approach here, then, can be straight-
forwardly applied to more difficult problems, for instance
more complex noise or dynamics. The main difficulty in
those cases would be determining the set of trajectories over
which we should optimize. In any problem in which all
“reasonable” trajectories can be efficiently enumerated, this
approach will remain tractable.

Approaching this problem directly via dynamic program-
ming would have been very difficult because the state space
includes not only continuous variables, but also a mea-
sure over a continuous variable. What made this approach
tractable was the fact that we evaluated a black-box policy
to determine the value function for the tiny subset of states
reachable from the initial conditions. In the terms of dynamic
programming, what we are doing is using the value function
from the Cow Path Policy to determine the cost-to-go for a
searchable set of trajectories. On the surface this is trivial—
given an optimal policy it is tractable simply to use it. More
deeply, though, it represents an exploitation of hierarchy: We
used the policy from a relatively simple, one-dimensional
problem to tackle a seemingly difficult two-dimensional
problem. Ongoing work extends this approach to dynamic

search and surveillance problems on road networks.
Other work extends this approach to search problems

on higher-dimensional manifolds. For example suppose a
robotic arm is attempting place a component but only gets
binary feedback about whether it is properly aligned. In this
scenario it is likely that “aiming off,” i.e., following a longer
trajectory than the deterministic optimum, will be preferable
if it eases the process of alignment.
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