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Abstract— This paper investigates constrained control design
problems involving mixed magnitude and rate saturations. We
show that simultaneous design of structured feedback and anti-
windup gains can be recast as minimizing two H∞-norm objec-
tives. One is associated with nominal system operation while
the other also captures the saturations effects. Because of the
two-block structure of the controller, the problem is inherently
difficult. We use recently available tools in nonsmooth optimiza-
tion to compute controller components in a single run thereby
alleviating the conservatism of more conventional schemes. The
proposed methodology is applied to an aircraft control problem
for which a PID feedback controller and a second-order anti-
windup compensator are optimized simultaneously.
keywords: Anti-windup, magnitude and rate saturations,
structured controllers, hinfstruct, nonsmooth program-
ming.

I. INTRODUCTION

New direct nonsmooth optimization techniques for con-
troller design have have been developed over the past 10
years [1], [2]. The main thrust of these new tools lie
in their flexibility to optimize arbitrary single- or multi-
loop controller architectures built from linear time-invariant
elements including static gains, PIDs, transfer functions,
state-space models as well as custom components to suit
most practical needs. We refer the reader to the routine
hinfstruct from the Robust Control Toolbox, Matlab
Release 2010b or higher. See [3] for details. Controller
design with architecture/structure constraints is a complex
problem and global solutions are not generally accessible.
As demonstrated in a number of applications, nonsmooth
H∞ synthesis techniques turn out very effective to find good
practical solutions if one exists. Also, since these techniques
work in the reduced space of tunable controller elements they
are only mildly sensitive to the plant dimension. Anti-windup
control is another context where nonsmooth optimization can
prove useful. Introduced in the 80′s, this specific control
structure aims at preserving the nominal behavior of the plant
while minimizing the adverse effects of magnitude and rate
saturations of the control signals. In most standard schemes
(see the tutorial papers [4], [5] and references therein), the
anti-windup involves a two-block architecture consisting of
a feedback controller and of an anti-windup component.
The anti-windup component is optimized after the feedback
controller has been tuned in the conventional approach which
incurs some conservatism. In this paper, the focus is on
simultaneous design of both the feedback controller and the
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anti-windup compensator using hinfstruct. In the special
case of full-order feedback controllers and static anti-windup
gains, an LMI-based solution was recently proposed in [6]
for the restricted instance of magnitude saturations. In the
general case, based on the formalism from [7], we show
that the problem can be recast as a multi-objective synthesis
problem involving two H∞ constraints with a two-block
structured controller. We then compare the conventional two-
step approach with the nonsmooth method for a longitudinal
aircraft model where the feedback controller is a simple
PID and the anti-windup compensator is subject to order
limitations.

The paper is organized as follows. The anti-windup control
structure is first detailed in section II with a particular atten-
tion to magnitude and rate saturations models. Simplifying
[8], we propose a model where the two nonlinearities are
captured by a single parameter. Then, following a standard
approach, a multi-objective H∞ design formulation is pro-
posed in section III. A brief overview of the nonsmooth
technique is given in section IV. Finally, section V addresses
a realistic illustration of the proposed methodology.
Notation. The notation used throughout the paper is stan-
dard. The normalized saturation operator is denoted by sat(.)
i.e. for u ∈ R, sat(u) = u if |u| ≤ 1 and sat(u) = sign(u)
otherwise. Given two matrices M and N of appropriate
dimensions, the (assumed well-posed) lower LFT is defined
as Fl(M,N) := M11 + M12N(I −M22N)−1M21, where the
matrices Mi j define a suitable partition for M. For any (of
arbitrary sizes) matrices M and N, diag(M,N) denotes the
block-diagonal matrix. Given a square matrix M ∈ Cn×n,
λi(M) is the ith eigenvalue of M and σi(M) denotes the ith

singular value. As usual, σ(M) = maxi=1...n σi(M). Finally,
for any locally Lipschitz function f : Rn→R, ∂ f (x) denotes
its Clarke subdifferential at x [9].

II. ON THE ANTI-WINDUP CONTROL STRUCTURE

Although they are not necessarily limited to that case, anti-
windup schemes are most often used to minimize the adverse
effects of magnitude and rate limitations of control input
signals (see Figure 1).
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Fig. 1. Anti-windup structure
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Consider a linear plant G(s) to be controlled via rate and
magnitude saturated inputs. With the notation of Figure 1,
if no saturation occurs then the anti-windup signal verifies
w = v− u = 0 and the control input u is described by its
nominal expression:

u = K̃(s)
[

0
ȳ

]
= K(s)ȳ (1)

Otherwise, the anti-windup loop becomes active:

u = K̃(s)
[

z
ȳ

]
, z = J(s)w 6= 0 (2)

where the LTI operator J(s) denotes the anti-windup gain.
In standard approaches, the latter is optimized for a fixed
controller K(s). In this contribution, as is also proposed in
[6], we will focus on the simultaneous design of J(s) and
K(s).

Remark 1: In the proposed structure, the nonlinear bound-
ing operator is integrated into the global controller which
eventually results from the interconnection of three elements
as shown by the shaded region in Figure 1. Hence, the
controller output v will never saturate, so that the actuator
at the plant input can be accurately described by linear
dynamics. The latter are included in the LTI model G(s).
Not only for design purposes, but also for implementation
aspects, simple and accurate descriptions of the nonlinear
operator (MR-LIM) are required.

A. Exact and approximated representations of mixed magni-
tude and rate limitations

An exact representation of the mixed magnitude & rate
limiter is described by the diagram in Figure 2. Let denote
LM and LR the maximum magnitude and rate limitations
respectively, which for simplicity of the presentation are
assumed symmetrical. In the scalar case, the two-input static
nonlinear operator Φ(., .) verifies:

Φ(v,w) =
{

LR sign(w) if sign(w)v < LM
0 otherwise (3)
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Fig. 2. Exact representation of MR-LIM

The above description is of high interest since the two
nonlinearities are captured by a single and static operator Φ.
However, because of the discontinuities in Φ, it cannot be
implemented as depicted in Figure 1. Let us now rewrite Φ

in a factorized form:

Φ(v,w) = ΦR(w)ΦM(v,w) (4)

where ΦR(w) = LRsign(w) ∈ {0,±LR} is related to the rate
limitation, while ΦM(v,w) ∈ {0,1} reflects the magnitude

constraint. Using the approximation sign(w)≈ sat(w/ε), and
replacing sat(.) by an input-dependent gain one obtains:

Φ(v,w)≈ΦM(v,w)LR
sat(w/ε)

w
= λ(v,w)w (5)

from which the diagram of Figure 3 is readily deduced.
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Fig. 3. Approximation of MR-LIM

Remark 2: It is easily checked that ∀v, ∀w, λ(v,w) ∈
[0 ,LR/ε]. The lower bound corresponds to cases for which
the magnitude constraint is activated, while the upper bound
can be associated to the nominal situation for which |v−u| ≤
ε and no saturation is active. The proposed approximation
can be tightened by reducing ε. But this will also shrink the
linear region and induce chattering problems in the control
laws (see [10]). In the context of this paper, since it can be
observed that:

∀ε > 0, ∀t ≥ 0, |v(t)| ≤ LM, |v̇(t)| ≤ LR (6)

the choice of "large" values for ε will have no dramatic
effects outside a (possibly significant) loss of performances.
In practice, the designer will be guided by the actuators’
dynamics. Let us denote for example ωa the pulsation of a
second-order actuator model. It should then be checked that
ωaε� LR, so that the interactions between the actuators’
dynamics and those introduced by the magnitude-and-rate
limiter (in the linear region) remains negligible.

B. A design-oriented representation

From the diagram of Figure 3, a design-oriented represen-
tation of the magnitude-and-rate limiter can be derived by
simply rewriting λ(v,w) as a linear function of a normalized
time-varying parameter δ(t):

λ(v,w) = λ2(1−δ(t))λ1 (7)

where λ1 and λ2 are tuned so that the nominal case is
recovered for δ(t) = 0, which implies λ1λ2 = LR/ε. From
(7), it readily follows that rate-limited cases correspond to
δ(t)∈]0,1[ while the magnitude-limited behavior is obtained
with δ(t) = 1. The new model, illustrated on Figure 4.a, can
be redrawn in a compact LFT format, as shown in Figure
4.b.
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Fig. 4. Design-oriented version of MR-LIM
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III. FORMULATION AS AN H∞ DESIGN PROBLEM

Using the above ingredients and the standard upper-LFT
notation for J(s) and K(s):

J(s) = Fu (ΩJ , InJ/s) , K(s) = Fu (ΩK , InK/s) (8)

the initial diagram of Figure 1 is readily redrawn in a design-
oriented format as illustrated by Figure 5.
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Fig. 5. H∞ synthesis model for simultaneous feedback and anti-windup
design

The LTI operator T (s) is computed by straightforward LFT
manipulations such that:

u = K̃(s)
[

J(s)wδ

ȳ

]
= Fu (T (s),diag(ΩJ ,ΩK)) (9)

and is then augmented to incorporate a weighting signal
zaw penalizing unrealistic high-frequency behavior in J(s).
The LTI operator R(s) denotes the reference model to be
tracked. Based on a small gain argument, following [11]
or [12], a standard approach to preserve stability despite
saturations effects consists in minimizing the H∞-norm of the
transfer function from wδ to zδ. Including nominal and robust
performance leads to a multi-objective H∞ control design
problem: {

‖Fl(Pnom(s),ΩK)‖∞ ≤ c1
‖Fl(Prob(s),diag(ΩJ ,ΩK))‖∞ ≤ c2

(10)

where Pnom(s) denotes the augmented plant translating nom-
inal performance requirements and Prob(s) plays a similar
role for robustness against possibly active magnitude and
rate saturations. Note that only the second index depends on
both K(s) and J(s) since saturations are not active in the
nominal case. More precisely, with the notation of Figure
5, the nominal interconnection Pnom(s) denotes the weighted
transfer from (yc,wK) to (zr,zu,zK), while Prob(s) also in-
clude anti-windup related signals (wδ,wJ) and (zδ,zaw,zJ) at
the inputs and outputs, respectively.

Interestingly, thanks to the general LFT format we have
adopted for the description of J(s) and K(s), structural
and order constraints are easily incorporated. This will be
exploited in turn by the nonsmooth optimization technique
to compute a simple PID controller for K(s). This is easily
achieved by setting the upper-left part of ΩK to zero.

IV. RESOLUTION VIA NONSMOOTH OPTIMIZATION

Anti-windup problems discussed in this paper are solved
using tailored nonsmooth optimization techniques. Obviously
the full details of these techniques are outside the scope of
this paper, and we refer the reader to [1], [2] for compre-
hensive expositions on line-search-based methods on which
hinfstruct is based. Also, a variety of problem studies as
well as applications using hinfstruct as core tool can be
found at [13]. Note that related nonsmooth techniques and
software for control applications are also discussed in [14],
[15] and references therein. In the sequel we recall the salient
nonsmooth programming features of the Robust Control
Toolbox routine hinfstruct [3] as it will be used in the
application section V. The nonsmooth programming software
for structured H∞ synthesis is distributed by MathWorks as
part of the Robust Control Toolbox 3.5, Matlab Release
R2010b or higher [3].

In sharp contrast with standard approaches and general-
izing [6] to highly structured and fixed-order architecture,
the proposed anti-windup scheme computes both the feed-
back controller K(s) and the anti-windup compensator J(s)
simultaneously. This leads to the bi-objective problem as
stated above. Defining

H (ΩJ ,ΩK ,s) =[
1
c1

Fl(Pnom(s),ΩK) 0
0 1

c2
Fl(Prob(s),diag(ΩJ ,ΩK))

]
(11)

constraints in (10) are readily recast into the following
nonsmooth program:

minimize
ΩK ,ΩJ

max
ω∈[0,∞]

σ(H (ΩJ ,ΩK , jω))

subject to nominal stability . (12)

It is important to notice that constraints in (10) will be
met as soon as a value less than one is achieved for program
(12). In general, it is neither necessary nor advisable to run
the code to completion and a quick exit is triggered when the
unit target value is reached. Constants c1 and c2 are tuning
parameters which serve to weigh the relative importance of
nominal performance against robustness. Clearly, some trial-
and-error is needed here till both nominal performance and
behavior subject to saturations are both acceptable.

In the above expressions, internal nominal stability is eas-
ily captured using a constraint on the closed-loop spectral ab-
scissa. We therefore include a constraint α{A(G(s), ΩK)} ≤
−ε with ε small enough and where A(G(s), ΩK) stands
for the nominal closed-loop dynamics in the nominal case
and where α denotes the spectral abscissa, i.e., α(A) :=
maxi ℜλi(A).

Expression (12) highlights the composite nature of
the objective. The outer function max[0,∞] σ(.) is nons-
mooth but convex while the inner function (ΩK ,ΩJ) →
diag( 1

c1
Fl(Pnom,ΩK),

1
c2

Fl(Prob,diag(ΩJ ,ΩK))) is noncon-
vex but differentiable. Such functions are Clarke regular
according to the terminology [9], which means that a lossless
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description of the Clarke gradient is numerically accessible
using chain rules and thereby good resolution algorithms can
be built based on this information.

For simplicity of the discussion, program (12) is rewritten
as:

minimize
κ∈Rk

f∞(κ) := max
ω∈[0,∞]

f (κ,ω) , (13)

where f∞ aggregates both frequency domain constraints as
well as the spectral abscissa constraint through a progress
function discussed at length in [16]. Vector κ ∈ Rk gathers
all tunable parameters in the controllers K(s) and J(s). By
nature these programs represents challenging mathematical
programming problems but their special composite structure
allows us to distinguish between critical points including
local minima κ∗, that is, those with 0 ∈ ∂ f∞(κ

∗) from points
κ that must be discarded, i.e., 0 /∈ ∂ f∞(κ).

Solving (13) is carried out computationally by constructing
a tangent model around the current iterate κ which is
a quadratic first-order local approximation of the original
problem (13). We introduce

f̂∞(κ+h,κ) := max
(φ f ,Φ f )∈W f

φ f − f∞(κ)+Φ
T
f h+

1
2

hT Qh , (14)

where h is the displacement in the κ-space of controller
parameters. For a given κ, the set Wf collects function
values φ f := f (κ,ω) and subgradients Φ f ∈ ∂ f (κ,ω) over an
extended set of frequencies ω∈Ω f . This can be implemented
in different ways [1] but a minimal requirement is that Ω f
should at least contain active frequencies ωa, that is, those
achieving the maximum value in (13), we have that:

f∞(κ) = f (κ,ωa) .

The term extension set comes from the fact that Ω f may
include additional frequencies to improve our tangent model
in (14) and promote convergence. See figure 6.

A key ingredient here is that selecting active frequencies
(global peaks) is enough for the algorithm to converge. But
adding a few more frequencies can accelerate convergence
because the tangent program (14) will provide a better local
approximation of the nonsmooth function and better steps
will be performed at every iteration. Extensive numerical
testing indicates that including frequencies bracketing global
maxima and frequencies corresponding to secondary peaks
(local maxima) dramatically enhances convergence [1].

f (κ,ω  )
b

f 8 (κ)

*

method
 Hamiltonian

0

frequencies

 bracketing

(κ,ω)f

ω
b

log     (rad/s)ω

***

Fig. 6. Frequency selection to build tangent program

Program (14) is a standard convex quadratic program
(CQP), and can be efficiently solved using currently avail-
able codes. Note the terminology "quadratic first-order local
approximation" marks a subtle difference with the usual
"quadratic second-order local approximation". Tangent pro-
gram (14) indeed does extract first-order information from
(Clarke) subgradients whereas the quadratic term is not a
(second-order) Hessian in the usual sense. The latter is
out of reach because functions are typically nonsmooth.
Matrix Q is obtained through some sort of quasi-Newton
estimate of the function local curvature. The way matrix
Q evolves in the course of the algorithm is discussed in
various papers along with the convergence theory. See [17]
and references therein. The algorithm used in section V is
a line search algorithm which updates matrix Q using a
quasi-Newton BFGS technique where gradients of the BFGS
formula correspond to the most active frequency. The key
facts about (14) have been established in [1] and we re-state
them here without proof:
• The fact that extension sets Ω f contain active frequen-

cies ensures that the solution h to (14) is a descent
direction of f∞ at κ. If it happens that h = 0, then
0 ∈ ∂ f∞(κ), and we are done. Clearly, a stopping test
may be based on the solution to the tangent program.

• The direction h can be used in an Armijo or Wolfe line
search [18] which terminates after finitely many steps.

We then have all components to build a line search descent
algorithm where at each iteration, a descent direction is
computed, a line search is performed until a termination test
holds. This algorithm has a sound convergence certificate
which means that it converges to a critical point (a local
minimum in practice) for any even remote starting point. Our
point is that this strategy is generally preferable to biconvex
D−K-iteration schemes or alike since they are prone to stall
at points that are not local minima [19]. Finally, the proposed
technique runs in the κ-space of free controller parameters
without recourse to auxiliary variables such as Lyapunov
variables which result in significant size inflation in BMI-
or LMI-based methods.

V. ILLUSTRATION

The proposed method is now applied to an aircraft control
problem extracted from [20].

A. Description of the aircraft control problem

We then consider a longitudinal control design problem for
a fighter aircraft with reduced control efficiency. A critical
point in the flight domain is selected (medium altitude and
low speed) accordingly. The linearized short term dynamics
about this point read:(

α̇

q̇

)
=

(
−0.5 1
0.8 −0.4

)(
α

q

)
+

(
−0.2
−5

)
δer (15)

where α, q and δer denote the angle-of-attack, the pitch rate,
and the effective elevator deflection respectively. During nor-
mal operations, the transfer from the commanded deflection
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δec to δer verifies:

δer

δec

(s) =
ω2

a

s2 +2ηaωas+ω2
a

(16)

with ωa = 60rad/s and ηa = 0.6. With reference to Figure
1, we have a fourth-order unstable plant model G(s) for
this application, with yr = α, ym = [α, q]′ and v = δec . The
objective is to track yr = α without loss of stability on a
large operating domain up to 45deg despite saturations of
the control signals. These are fixed to LM = 20deg and LR =
80deg/s for the magnitude and rate constraints respectively.
Beyond stability requirements, the behavior of the closed-
loop plant should remain as close as possible to that of a
second-order reference model R(s):

R(s) =
1

(0.25s+1)2 (17)

for which a nominal (without saturations) PID solution is
known to exist [20].

B. Adaptation of the design model

With the above data, the design model is readily obtained
from Figure 5. The interconnection T (s) is calculated so as
to enforce the following structure inspired by historical PID
architectures with limited integrators:{

u = Ki
∫
(αc−α+ z)dt−Kaα−Kqq

z = J(s)wδ

(18)

from which we infer:

ΩK = diag(Ki,Ka,Kq) , ΩJ =

(
AJ BJ
CJ DJ

)
(19)

Next, with reference to Figure 4, the operator M(s) is built
with λ1 = 100/LR and λ2 = LR. For this choice, during
normal operation, M(s) behaves as a first-order linear model
with a short time constant τM = 0.01s which is consistent
with the actuators dynamics. The last – but also the most
involving – step to complete the design models Pnom(s) and
Prob(s) requires appropriate choice of weighting functions in
order to reflect the design constraints. This point is further
discussed in the next subsection.

C. Weighting selection and resolution aspects

Given the PID structure constraint imposed to K(s), we
essentially need two weighting functions here. The first one
– Wper f (s) – weighs the error zr between the plant output
α and the reference trajectory. The second one – WJ(s) –
weighs the signal zaw which we defined earlier in section
III, in order to penalize high-frequency dynamics in the anti-
windup controller. A few trials-and-error yield the following
weighting filters:{

Wper f (s) = 1
1+0.5s

WJ(s) = τ
( 1+s

1+τs

)2
with τ = 10−4

(20)

Remark 3: In any standard H∞ design scheme, weighting
functions WK(s) (typically high-pass filters) are also required
on the controller outputs (denoted zu in Figure 5). The reason

why such functions are not present here (WK = 0) is directly
related to the imposed PID structure, for which an acceptable
solution (with reasonable gains) is known to exist. For a
similar reason, WJ(s) = 0 can be used when the anti-windup
compensator is restricted to be static.

With the above filters, the constraints in (10) have been
solved in the following two cases:
• case I : static anti-windup gain (WJ = 0)
• case II : second-order anti-windup gain (WJ 6= 0)

where the tuning parameters c1 and c2 on the right-hand side
in (10) are chosen such that c1 ≤ 0.01c2 which emphasizes
satisfaction of nominal performance as a primary specifica-
tion. Note that the H∞ norm of the latter will necessarily
verify c2 ≥ 1. This property is readily deduced from the
diagram of Figure 4.a. In order to minimize the effects of
saturations, the objective is then to reduce c2 until it gets
close to 1.

The results are summarized in Table I. Note that the first
column corresponds to an initial tuning which was obtained
from the classical two-step approach.

init case I case II
c1 5.4510−4 9.9510−3 1.0510−2

c2 1.143 1.094 1.057

TABLE I
OPTIMIZATION RESULTS

As expected, simultaneous optimization of J(s) and K(s)
with hinfstruct outperforms separate design of the com-
pensators as far as robustness is concerned. Moreover, the
trade-off between nominal performance and robust perfor-
mance is better optimized when the order of J(s) increases.
The numerical values of the anti-windup and PID feedback
gains associated to each of the above cases are given in Table
II.

init case I case II
Ki 30 24 24
Ka 15 12.2 12.3
Kq 2.5 2.1 1.95

J(s) 23 13.5 10.8−2.510−2s+1.410−6s2

1+3.810−2s+610−4s2

TABLE II
FEEDBACK AND ANTI-WINDUP GAINS

D. Implementation and simulation results

The above solutions are now implemented in a
SIMULINKT M-based simulation diagram following the general
picture of Figure 1. Simulations are performed with a fixed-
step solver (τ = 0.02s), so as to reproduce the behavior of
embedded calculators.

A first simulation is performed without any anti-windup
device. As clearly illustrated by Figure 7, an unstable behav-
ior appears even for small values of the commanded angle-
of-attack (αc = 7deg).
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Fig. 7. Simulation results without anti-windup
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Fig. 8. Simulation results with static (dashed lines) and dynamic (thick &
solid lines) anti-windup

In a next phase, the solutions associated to case I and II are
tested. As expected, the unstable behavior has disappeared
even for very large commanded values (αc = 45deg) and
despite the saturations which are both actives during the
simulations (see Figure 8). It is also interesting to note that
the dynamic anti-windup (case II) performs slightly better
than its static counterpart. The overshoot has disappeared.

VI. CONCLUSION

Based on the standard anti-windup structure, mixed mag-
nitude and rate limited control design problems have been
reformulated as a two-block structured multi-objective H∞

synthesis. Exploiting recently available nonsmooth optimiza-
tion techniques, it has been shown that structured and fixed-
order feedback and anti-windup gains could be computed
simultaneously. The advantage of this study is twofold. First,
simple structure controllers are accessible using nonsmooth
optimization which facilitates implementation if realistic
applications is the aim. Secondly, simultaneous design of all
components improves over conventional schemes as demon-
strated for a longitudinal aircraft model.
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