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Abstract—A postural control model for a quietly standing
human is proposed. The musculoskeletal dynamics of the human
is modeled as a triple inverted pendulum in the sagittal plan,
including ankle, knee and hip joints. A nonlinear optimal
control problem is defined to study the postural sway. It has
a performance measure with quadratic terms in the controls
and a quartic term in either the center of pressure (COP) or
the horizontal projection of the center of mass (COM). This
objective function provides a trade-off between the allowed
deviations from the nominal value and the neuromuscular
energy required to correct for these deviations. By using the
Model Predictive Control (MPC) technique, the discrete-time
approximation to each of these problems is converted into a
nonlinear programming problem and then solved. The solution
gives a control scheme that demonstrates qualitative agreement
to the main features of the joint kinematics and coordination
observed experimentally.

I. INTRODUCTION

CONTROL theory has been used for many years to
study human motor behavior and provide insight into

its neurophysiological mechanisms. A properly designed
biomechanics model and its control implementation can help
us better understand how humans control their muscles to
generate movements and how their joints interact during
motor activity.

The regulation of quiet standing posture is one of the
most fundamental human motor control tasks. Bipedal up-
right stance is inherently unstable without a balance control
scheme [1]. One of the simplest and most widely studied
posture regulation problems is to maintain a stable upright
posture despite random perturbations of the base of support
(BOS). There are two important observations from such
clinical experiments [7]. The first is that there is much more
sway (small amplitude movements in the anterior-posterior
direction) than would occur with a linear feedback control
without delay. A second notable feature of the human postural
control is that the response to perturbations varies with their
amplitude. Small disturbances produce motion only at the
ankles with the hip and knee angles largely fixed. Larger
perturbations evoke ankle and hip angular movement with
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no knee angular movement. Still larger perturbations result in
movement of all three joint angles. In all of these experiments
the feet are kept motionless. This biological behavior is likely
to be optimal with respect to some performance measure
that involves energy. Inspired by these features, we propose
a biomechanical optimal control model resembling human
balance control.

The proposed model consists of three main components:
body dynamics, sensory estimator, and an optimal control
scheme. In our earlier work [10][11][12], the human body
was modeled as either a single or double inverted pendulum
in the sagittal plane and controlled by ankle torque only or
ankle plus hip torques. A series of nonlinear optimal control
problems were devised as mathematical models of human
postural control during quiet standing. Several performance
criteria that are quartic in the body states or functions of those
states, such as the Center of Pressure (COP), and quadratic
in the controls were utilized. In this work, we address the
question of sway by improving the biomechanical dynamics
into a triple inverted pendulum and using this model to study
the coordinated control of ankle, knee and hip at different
perturbation levels.

The human body has the sensors necessary to provide
the central nervous system (CNS) with measurements of
both the COP and the center of mass (COM ). Both the
COP and the COM are good indicators of stability. We
hypothesize that the human is (unconsciously) trying to keep
COP or COM in the sagittal plane (x coordinate) close
to its nominal location at the center of the foot. Thus, we
propose a performance criterion that is quartic in the COP
or COM [12].

J =
1

2

ˆ ∞
0

[ql4x(t) +

3∑
j=1

rju
2
j (t)]dt (1)

where q and rj are cost coefficients, and lx is deviation
from the nominal equilibrium values of either the COP
or COM . The uj are the control torques at each joint.
Note that this performance measure reduces the actuator
energy used by penalizing small postural errors very lightly.
The crucial test for this hypothesis is whether it replicates
the experimentally observed change in the response to the
size of the perturbations. That is, does our optimal control
produce only ankle angle movement for small disturbances
and coordinated movement for larger perturbations?

The paper is organized as follows: after this brief in-
troduction, the mathematical model of the human and the
precise formulation of the performance measure are given.
The resulting optimal control problem is then solved nu-
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merically by the Model Predictive Control (MPC) technique.
That is followed by a series of simulations with different
amounts of noise perturbing the system. The simulation
results show more three-joint collaborative movement for
large perturbations and more solely ankle movement for small
perturbations. This is encouraging evidence in favor of our
conjecture.

II. NEUROMUSCULOSKELETAL MODEL

In this work, we present a computational model of a quietly
standing human body which uses four rigid and connected
segments to represent the foot, shank, thigh, and torso as
depicted in Fig 1.

Figure 1. The model is composed of four rigid links. The term ki for
i = 0, 1, 2, 3 is the distance from the bottom of link i to the center of mass
of link i. The term Li is the length of link i. Link 0, the foot, is stationary

We first derived the equations of motion using the Euler-
Lagrange method for this three joint, four segment model
controlled by torques on the ankle, knee and hip joints. The
complete expressions for the body dynamics with ankle, knee
and hip torque are:

 Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

 φ̈1

φ̈2

φ̈3

+

 R1

R2

R3

 =

 ua
uk
uh

 (2)

We can also write the expression for ut and for fv as

ut = d
dt (

∂L
∂φ̇0

)− ∂L
∂φ0

fv = d
dt (

∂L
∂ḣ

)− ∂L
∂h

where the φi are defined in Fig 1, ua is ankle torque, uk
is knee torque, uh is hip torque, ut is toe torque, and fv is
vertical component of the ground reaction force. The Qij and
Ri are defined in the following page.

Experimental data during quiet standing has consisted pri-
marily of force platform measurements of the COP, estimated
from the weighted average of pressure distributed over the
surface of the area in contact with the ground. The COP
is precisely defined by ut and fv . One can replace ut by

applying the force fv at the distance from the toe that creates
ut. That distance is the COP . Mathematically, denoting the
position of the COP by

lcop =
ut
fv

(3)

The foot does not move. Hence, φ0 is a fixed constant, φ̇0 =
φ̈0 = 0 and h = ḣ = ḧ = 0. These constraints are then
substitued into the equations for ut and fv . The resutls are
then used in Eqn (3) to compute lcop.

It is generally good practice to work with dimensionless
quantities in the mathematical models. We introduce the
quantities t = τ/β and the normalization factor β =

√
L/g,

which has dimension [β] = T (time). Given dτ
dt = β then

φi(τ) = φi(βt), for i = 0, 1, 2, 3, (for simplicity, we use φi
as the normalized variable in the rest of the paper). Define
M to be the total body mass and L to be the height of the
upright body. Then, each segment is proportional to these
two quantities. We have used typical numerical values for
simplicity as shown in Table I. In reality, the fractions would
have to be measured or estimated for a specific individual.

Table I
BODY SEGMENT LENGTH AND WEIGHT EXPRESSED AS A FRACTION OF

THE ENTIRE BODY

Foot Shank Thigh Torso
m0 = 2

35M m1 = 6
35M m2 = 9

35M m3 = 18
35M

k0 = 0.094L k1 = 0.464L k2 = 0.45L L3 = 0.42L
L0 = 0.117L L1 = 0.28L L2 = 0.3L

The next step is to linearize the problem about the nominal
vertical posture. This is reasonable because the perturbations
of the upright posture that are being considered are small.
Thus, we linearize the multi-segment inverted pendulum
model around the unstable equilibrium point p∗ and also de-
fine the small angular deviations from the vertical equilibrium
p = p∗ + ∆p :

p =



φ∗1
φ∗2
φ∗3
φ̇∗1
φ̇∗2
φ̇∗2
u∗a
u∗k
u∗h


+



∆φ1

∆φ2

∆φ3

∆φ̇1

∆φ̇2

∆φ̇3

∆ua
∆uk
∆uh


where φ∗1 = π

2 , φ∗2 = π , φ∗3 = π and all the other nominal
values are zero. We define the state space variables z and
convert the dynamic equations into:

ż = Az +Bu (4)
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Q11 = I1 +m1k
2
1 +m2L

2
1 +m2L

2
2 +m3L

2
1 +m3L

2
2 +m3L

2
3 + 2m2L1k2 + 2m3L1L2 + 2m3L1L3 + 2m3L2L3

Q12 = m2k
2
2 +m2L1k2 +m3L

2
2 +m3L

2
3 +m3L1L2 +m3L1L3 + 2m3L2L3

Q13 = m3L
2
3 +m3L1L3 +m3L2L3

Q21 = m2k
2
2 +m2L1k2 +m3L

2
2 +m3L

2
3 +m3L1L2 +m3L1L3 + 2m3L2L3

Q22 = I2 +m2k
2
2 +m3L

2
2 +m3L

2
3 + 2m3L2L3

Q23 = m3L
2
3 +m3L2L3

Q31 = m3L
2
3 +m3L1L3 +m3L2L3

Q32 = m3L
2
3 +m3L2L3

Q33 = I3 +m3L
2
3

R1 = (m1k1 +m2L1 +m3L1)(cosφ0cosφ1 +sinφ0sinφ1)g− (m2k2 +m3L2)[cosφ0cos(φ2 +φ1)+sinφ1sin(φ2 +φ1)]g+
m3L3[cosφ0cos(φ3 + φ2 + φ1) + sinφ1sin(φ3 + φ2 + φ1)]g
R2 = −(m2k2 +m3L2)cos(φ2 + φ1 − φ0)g +m3L3cos(φ3 + φ2 + φ1 − φ0)g
R3 = m3L3cos(φ3 + φ2 + φ1 − φ0)g
ut = [−(m1k

2
1 +m2L

2
1 +m2k

2
2 +m3L

2
1 +m3L

2
2 +m3L

2
3) + 2m2L1k2cosφ2 + (m1L0k1 +m2L0L1)cosφ0cos(φ1− φ0)−

m2L0k2cosφ0cos(φ2 +φ1−φ0)]φ̈1+[−(m2k
2
2 +m3L

2
2 +m3L

2
3) +m2L1k2cosφ2−m2L0k2cosφ0cos(φ2 +φ1−φ0)]φ̈2−

m3L
2
3φ̈3

fv = (m1k1 +m2L1 +m3L1)cos(φ1 − φ0)φ̈1 − (m2k2 +m2L2)cos(φ2 + φ1 − φ0)(φ̈2 + φ̈1) +m3L3cos(φ3 + φ2 + φ1 −
φ0)(φ̈3 + φ̈2 + φ̈1) +Mg

z =


z1

z2

z3

z4

z5

z6

 =



∆φ1

∆φ2

∆φ3
d∆φ1

dt
d∆φ2

dt
d∆φ3

dt

, u =

 u1

u2

u3

 =

 ∆ua
∆uk
∆uh



Eqn (4) has a completely dimensionless format:

A =

[
03×3 I3×3

β2(
Q

ML2
)−1 R

ML2
03×3

]

B =

 03×3

β2

ML2
(

Q

ML2
)−1


The center of pressure is a function of all states and controls,
lcop(p) = f(φ1, φ2, φ3, φ̇1, φ̇2, φ̇3, ua, uk, uh). For small
perturbations, such as those with which we are concerned,
we can linearize this about the nominal p∗. The linear
approximation 4lcop is then defined by:

4lcop(p) = ∇lcop(p∗)∆p

where

∇lcop(p∗) =

[
∂lcop
∂φ1

∣∣∣∣
p∗
,
∂lcop
∂φ2

∣∣∣∣
p∗
, ...,

∂lcop
∂uhip

∣∣∣∣
p∗

]

III. SOLVING THE OPTIMAL CONTROL PROBLEM

The cost function for the quiet standing postural regulation
problem is then defined as:

J =
1

2

ˆ ∞
0

d14l2mcop(t)dt

+
1

2

ˆ ∞
0

[d24u2
ankle(t) + d34u2

hip(t) + d44u2
hip(t)]dt

where d1, d2, d3, d4 are cost coefficients, m is an integer (m
is 2 in this paper), and 4lcop, 4ua, 4uk and 4uh are
deviations from the nominal equilibrium values of the COP
and controls respectively.

Inspired by the way in which Model Predictive Control
(MPC) problems are solved, we discretized the entire optimal
control problem with respect to time and replaced the infinite
time horizon of the original problem by the limited time
duration N , and wrote the resulting discrete time optimal
control problem as:

min
u

∑N

n=0
d1(4lcop)4[k] + d2u

2
1[k] + d3u

2
2[k] + d4u

2
3[k]

s.t. x[k + 1] = Ax[k] +Bu[k]

where A =
∑∞
n=0

An(δ)n

n! and B = A−1(A− I)−1B denote
the system matrices of the discrete time system. Define

s = [z(0), u(0), z(1), u(1), . . . , z(N), u(N)]T

The constraint then becomes As = b where,

As =


I 0 · · · · · · · · · O

−A −B I 0 · · ·
...

...
...

...
...

...
...

O · · · −A −B I 0

, b =


z(0)
O
...
O


This nonlinear programming problem can be solved by the
Newton-KKT algorithm[2], the key step of which is the
repeated solution of the following system of linear equations
involving the gradient and the Hessian of J(s).[

∇2J(s(i)) ATs
As O

] [
4s(i)

nt

w

]
=

[
−∇J(s(i))

O

]
Here 4s(i)

nt is the Newton step at the ith iteration. We
could solve the open-loop optimal control problem for every
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initial condition in a grid of initial conditions near the
vertical, storing only the first value of the two controls. This
would give us a nonlinear, approximately optimal, full-state
feedback regulator for posture. In fact, all of the elements
of the state of this system are measured by sensors in the
human body. Biologically, this nonlinear controller can be
learned over time and would not impose any computational
burden on the human nervous system.

In reality, the human postural control system includes
significant delays [4]. These would require inclusion of a
predictor in the feedback controller. This is discussed in some
detail in our earlier paper [11]. However, we ignore the delays
here because the overall control problem can be separated
into two parts by imposing certainty equivalence and the
full state feedback problem can be solved first. Inclusion of
the delays and the predictor will complicate the controller
and the exposition but add little to our understanding of the
coordination.

IV. THE RESULTS

We have successfully solved the constrained nonlinear
optimal control problem using the method described in the
preceding section. In this section, we demonstrate that the
proposed control could automatically adjust and coordinate
different balance strategies according to the disturbance level.

The parameters and coefficients in the simulations are
based on the simplified sway model defined in Eqn (4) using
body parameters from Peterka [8] as shown in Table II.

Table II
BODY CHARACTERISTICS, DIMENSIONLESS MODEL PARAMETERS AND

SIMULATION VARIABLES

M 76 kg I1 0.6 kg ·m2 δ 0.1 s
L 1.76m I2 0.45 kg ·m2 N 200
g 9.81m/s2 I3 0.35 kg ·m2 Nd 40

The approximately optimal control, with a look-ahead time
of 4 seconds and a sampling interval of 0.1 seconds, makes
the sampled horizon Nd = 40. The duration of the simulation
is 20 seconds, which gives total number of N = 200 sample
points The dimensionless results are then converted back to
the real units in order to have a fair comparison with the
experimental measurements.

A. Small Perturbation

Since the postural motion is normally a small amplitude
sway around the equilibrium position, it is reasonable to
simulate the optimally controlled system during steady state.
The system will start at an initial position in which its
COP is set to its equilibrium value as lcop[0] = 0 cm. In
order to investigate the coordinated control of ankle and
hip under different perturbations, we first tested the system’s
stability under small disturbance – white Gaussian noise with
a standard deviation of 0.01.

The parameters for the steady state response simulation
are listed in Table III. Here d1 is the weight on the COP
deviation. The parameters d2, d3, d4 are the weights on the
control torques at the ankle knee and hip joints. We choose
d2 = d3 = d4 =10 in our simulation.

Table III
SIMULATION PARAMETERS FOR STEADY STATE RESPONSE

d1 100 lcop[0] 0 cm
d2 10 u1[0] 0Nm
d3 10 u2[0] 0Nm
d4 10 u3[0] 0Nm
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p
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n
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c
m

)
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Figure 2. Trajectories of COM and COP under small perturbation
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Figure 3. Trajectories of ankle and hip angle under small perturbation
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Figure 4. Control torque of ankle and hip joint under small perturbation

In Figure 2, the COMx and COP are plotted. The
trajectories of the ankle and hip angles are depicted in Figure
3; The corresponding control torques are shown in Figure 4.
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Observe that the ankle response is larger than that of the
knee and hip. To better demonstrate this feature, we have
compared the 1, 2, and ∞ norms for sway movement at the
ankle, knee and hip as shown in the following Table IV:

Table IV
DIFFERENT NORMS OF THE BODY SWAY UNDER NOISE LEVEL ‖ε‖ = 0.01

‖φ∗‖1 ‖φ∗‖2 ‖φ∗‖∞
ankle 0.0250 0.007 0.0922
knee 0.0206 0.001 0.0781
hip 0.0205 0.001 0.0711

It is also interesting to compute the consumed
energy

∑N
0 ui[k]4φ̇i[k] at each joint during the steady

state response, where i = 1, 2, 3 for ankle, knee and hip
respectively. The results are listed in the following Table V.
One can see the ankle provides the most control effort while
the hip barely contributes.

Table V
TOTAL ENERGY CONSUMED AT EACH JOINT
NOISE LEVEL:‖ε‖ = 0.01 UNIT: kg

(
m
s

)2
Ankle Knee Hip
1.7601 0.5709 0.2904

B. Large Perturbation Case

In this simulation of the steady state response, all the
parameters are kept the same as before, except for a larger
perturbation – white Gaussian noise with a standard deviation
of 0.1. The resulting motion of the COP is plotted in
Figure 5 along with the trajectory of the COMx for the
larger noise levels. Not unexpectedly, the COP exhibits
greater displacements. This is because it includes the effects
of control while the COMx ignores the applied torques
completely.

Figure 6 shows the resulting angular motion of the three
joints. We have also compared the 1, 2, and ∞ norms for
the sway movement at ankle, knee and hip under the larger
perturbation as shown in following Table VI. In contrast to
the small perturbation case, when the larger noise level is
simulated, the hip angular displacement is larger than that of
the ankle angle, and the knee’s movement is also increased.
This is very promising in that this same difference is observed
experimentally, albeit more noticeably.

Table VI
DIFFERENT NORMS OF THE BODY SWAY UNDER NOISE LEVEL ‖ε‖ = 0.1

‖φ∗‖1 ‖φ∗‖2 ‖φ∗‖∞
ankle 0.1784 0.0513 0.5986
knee 0.2368 0.0954 0.8627
hip 0.2552 0.1112 0.9627

In Figure 7, we plot the control torque of the ankle, knee
and hip angles for the large noise levels. It is interesting that

the torque applied at the hip is substantially larger than that
applied at the ankle, and at the same time, the knee joint
starts to contribute substantially.
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Figure 5. Trajectories of COM and COP under large perturbation
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Figure 6. Trajectories of ankle and hip angle under large perturbation

0 2 4 6 8 10 12 14 16 18 20
    −50

    −40

    −30

    −20

    −10

0

    10

    20

    30

    40

    50
Control torque of ankle, knee and hip

Time (sec)

J
o

in
t 
to

rq
u

e
 (

N
.m

)

 

 

Ankle

Knee

Hip

Figure 7. Control torque of ankle and hip joint under large perturbation

The energy consumed at each joint is listed in the following
Table VII. The results indicate that the control energy at each
joint increased largely due to the increased noise level and the
quartic power on the control effort in the objective function.
It will be also interesting to compare this with the total
energy used by experiment subjects, if such a measurement
is feasible.

Table VII
TOTAL ENERGY CONSUMED AT EACH JOINT

NOISE LEVEL:‖ε‖ = 0.1 UNIT: kg
(
m
s

)2
Ankle Knee Hip
3.8079 2.0228 1.7897
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To better evaluate the postural sway, Collins and DeLuca
proposed an analysis technique called the Stabilogram Dif-
fusion Function (SDF) [3]. The SDF measures the similarity
of the average COP between different time intervals. The
SDF is one way to detect differences in postural sway, and
is very sensitive to sway amplitude and velocity. It describes
the relationship between the time interval of motion and the
average of corresponding changes in position.〈

4l2cop
〉

=
〈
[lcop(t+4t)− lcop(t)]2

〉
where 〈·〉 denotes the ensemble mean of the time series,
and 4t ranges from 0 to 10 seconds in the simulation. At
4t = 0,

〈
4l2cop

〉
value is zero. As4t increases,

〈
4l2cop

〉
will

also increase. lcop(t) and its time-shifted value, lcop(t+4t),
become less similar to each other with increasing ∆t.

In Figure 8, we compare a single trial of experimental
measurement of quiet standing data with the SDF from our
model under the noise level of 0.01. An adult male subject
with 76kg weight and 1.76 meter height was tested in a quiet
standing posture.
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Figure 8. SDF of sway trajectory driven by white Gaussian noise with
‖ε‖ = 0.01 starting from equilibrium point of COP

V. CONCLUSIONS

In this paper, we proposed an optimal control scheme for
regulation of upright posture in the sagittal plane. The triple
inverted pendulum system that approximates the human is
controlled by joint torques at the ankle, knee and hip. The
proposed optimization criterion is quadratic in the control
effort but quartic in the COP , which is a good measurement
for assessing the stability of quiet standing. This objective
function provides a trade-off between the allowed deviations
of the COP from its nominal value and the neuromuscular
energy required to correct for these deviations.

This optimal control problem was solved and the opti-
mally controlled system was simulated for both transient and
steady-state responses. The results are consistent with those
observed experimentally. For small perturbations, the ankle
angle motion is larger than that of the knee and hip angle.

For larger perturbations, we obtained larger movements at
the hip than at the other two joints. The experimental results
are more dramatic. That is, the difference between the small
and large perturbation cases is larger than in our model. One
way that we might achieve better agreement with experiment
would be to better match the size of the perturbations to those
in the experiments.

We have ignored the delays in the neuronal control system
in this work. They can be included easily using the procedure
we described in our earlier work. It will not change the basic
results of this paper, but it will affect the SDF. In fact, it will
be very likely to improve the match between the experimental
SDF and our theoretical one.

The control mechanism proposed here is a natural one
for the human. The large collection of neurons that provide
the input signal to the muscles are threshold devices. They
can implement any nonlinear gain by just changing their
thresholds. In fact, the size principle[6] suggests that the
gain of any feedback controller using muscle as the actuator
should increase faster with increasing perturbations than
linearly. Thus, our nonlinear feedback controller is as easy, if
not easier, for the human central nervous system to implement
than any linear one.
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