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Abstract— This paper provides new results for a tracking
control of the attitude dynamics of a rigid body. Both of the
attitude dynamics and the proposed control system are globally
expressed on the special orthogonal group, to avoid complexities
and ambiguities associated with other attitude representations
such as Euler angles or quaternions. By selecting an attitude
error function carefully, we show that the proposed control
system guarantees a desirable tracking performance uniformly
for nontrivial rotational maneuvers involving a large initial
attitude error. In a special case where the desired attitude
command is fixed, we also show that the attitude dynamics
can be stabilized without the knowledge of an inertia matrix.
These are illustrated by numerical examples.

I. INTRODUCTION

The attitude dynamics of a rigid body appears in vari-
ous engineering applications, such as aerial and underwater
vehicles, robotics, and spacecraft, and the attitude control
problem has been extensively studied under various assump-
tions. One of the distinct features of the attitude dynamics
is that its configuration manifold is not linear: it evolves
on a nonlinear manifold, referred as the special orthogonal
group, SO(3). This yields important and unique properties
that cannot be observed from dynamic systems evolving on a
linear space. For example, it has been shown that there exists
no continuous feedback control system that asymptotically
stabilizes an attitude globally on SO(3) [1].

However, most of the prior work on the attitude con-
trol is based on minimal representations of an attitude, or
quaternions. It is well known that any minimal attitude
representations are defined only locally, and they exhibit
kinematic singularities for large angle rotational maneuvers.
Quaternions do not have singularities, but they have ambigu-
ities in representing an attitude, as the three-sphere S3 double
covers SO(3). As a result, in a quaternion-based attitude
control system, convergence to a single attitude implies con-
vergence to either of the two disconnected, antipodal points
on S3 [2]. Therefore, a quaternion-based control system
becomes discontinuous when applied to an actual attitude
dynamics, and it may also exhibit unwinding behavior, where
the controller unnecessarily rotates a rigid body through large
angles [3].

Geometric control is concerned with the development of
control systems for dynamic systems evolving on nonlinear
manifolds that cannot be globally identified with Euclidean
spaces [4], [5], [6]. By characterizing geometric properties
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of nonlinear manifolds intrinsically, geometric control tech-
niques completely avoids singularities and ambiguities that
are associated with local coordinates or improper characteri-
zations of a configuration manifold. This approach has been
applied to fully actuated rigid body dynamics on Lie groups
to achieve almost global asymptotic stability [6], [7], [8], [9].

In this paper, we develop a geometric controller on SO(3)
to track an attitude and angular velocity command. The
geometric attitude controllers studied in [6], [8], [9] are not
desirable in the sense that the magnitude of their control
input converges to zero when the initial attitude error is
maximized, i.e. the Eigen-axis rotation angle between the
initial attitude and the initial command approaches 180◦.
This reduces the initial convergence rate significantly, and
it destroys the unique advantage of geometric control ap-
proaches, namely effectiveness for large angle maneuvers.

The geometric tracking controller developed in this paper
avoids this drawback by proposing a new configuration
error function on SO(3), and it exhibits a good tracking
performance uniformly in large initial attitude errors. We also
show that when the attitude tracking command is fixed, i.e.
a stabilization problem, we can achieve exponential stability
without the knowledge of an inertia matrix. For both cases,
the region of attraction almost covers SO(3), and the initial
angular velocity error can be arbitrarily large, provided that
a controller gain is sufficiently large.

II. ATTITUDE DYNAMICS OF A RIGID BODY

We consider the rotational attitude dynamics of a fully-
actuated rigid body. We define an inertial reference frame
and a body fixed frame whose origin is located at the mass
center of the rigid body. The configuration of the rigid body
is the orientation of the body fixed frame with respect to
the inertial frame, and it is represented by a rotation matrix
R ∈ SO(3), where the special orthogonal group SO(3) is
the group of 3× 3 orthogonal matrices with determinant of
one, i.e., SO(3) = {R ∈ R3×3 |RTR = I, detR = 1}.

The equations of motion are given by

JΩ̇ + Ω× JΩ = u, (1)

Ṙ = RΩ̂, (2)

where J ∈ R3×3 is the inertia matrix in the body fixed frame,
and Ω ∈ R3 and u ∈ R3 are the angular velocity of the rigid
body and the control moment, represented with respect to
the body fixed frame, respectively.

The hat map ∧ : R3 → so(3) transforms a vector in R3

to a 3× 3 skew-symmetric matrix such that x̂y = x× y for
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any x, y ∈ R3. The inverse of the hat map is denoted by the
vee map ∨ : so(3)→ R3. Several properties of the hat map
are summarized as follows.

x̂y = x× y = −y × x = −ŷx, (3)

tr[Ax̂] =
1

2
tr
[
x̂(A−AT )

]
= −xT (A−AT )∨, (4)

x̂A+AT x̂ = ({tr[A] I3×3 −A}x)∧, (5)

Rx̂RT = (Rx)∧, (6)

for any x, y ∈ R3, A ∈ R3×3, and R ∈ SO(3).

III. GEOMETRIC TRACKING CONTROL ON SO(3)

We develop a control system to follow a given smooth
desired attitude command Rd(t) ∈ SO(3). The kinematics
equation for the attitude command can be written as

Ṙd = RdΩ̂d, (7)

where Ωd ∈ R3 is the desired angular velocity.

A. Attitude Error Function

One of the important steps in constructing a control system
on a nonlinear manifold Q is choosing a proper configuration
error function, which is a smooth positive definite function
Ψ : Q × Q → R that measures the error between a
current configuration and a desired configuration. Once a
configuration error function is chosen, a configuration error
vector, and a velocity error vector can be defined in the
tangent TqQ by using the derivatives of Ψ [6]. Then, the
remaining procedure is similar to nonlinear control system
design in Euclidean spaces: control inputs are carefully
designed in terms of these error vectors through a Lyapunov
analysis on Q, where a Lyapunov candidate also is written
in terms of Ψ. Therefore, a configuration error function is
critical in the design of a control systems on a manifold,
and the corresponding performance and effectiveness directly
depend on the choice of a configuration error function.

But, the importance of a configuration error function has
not been extensively studied in geometric controls, and it is
sometimes chosen without a careful consideration. Almost
globally stabilizing controllers on SO(3) have been studied
in [6], [8], where essentially, the following configuration
error function is used to stabilize the attitude represented
by the identity matrix:

Ψ◦(I,R) =
1

2
tr[I −R] . (8)

This error function yields the following form of the config-
uration error vector e◦R = (R−RT )∨ ∈ R3 and the velocity
error vector e◦Ω = Ω ∈ R3. A simple PD-type controller, i.e.
u◦ = −kRe◦R−kΩe

◦
Ω for positive constants kR, kΩ, stabilizes

the identity matrix I . This can be slightly generalized to
achieve almost global stability.

However, this choice of a configuration error function is
not desirable, since the magnitude of the corresponding con-
figuration error vector e◦R is not proportional to the rotation
angle about the Euler axis between the current attitude and
the identity matrix: as the current attitude approaches to the

opposite of the identity, i.e. 180◦ rotation to I , the magnitude
of the attitude error vector ‖eR‖ approaches zero. Therefore,
the performance of this controller becomes worse as the
initial attitude error becomes larger. This is not particularly
desirable, since it destroys one of the distinct advantages of
geometric controls of a rigid body, namely effectiveness for
large angle rotational motions.

Here, we introduce a new form of the configuration error
function to avoid this drawback, and to improve tracking
performances particularly for larger initial attitude errors.

Proposition 1: For a given tracking command (Rd,Ωd),
and current attitude and angular velocity (R,Ω), we define an
attitude error function Ψ : SO(3)× SO(3)→ R, an attitude
error vector eR : SO(3) × SO(3) → R3, and an angular
velocity error vector eΩ : SO(3)× R3 × SO(3)× R3 → R3

as follows:

Ψ(R,Rd) = 2−
√

1 + tr[RTdR], (9)

eR(R,Rd) =
1

2
√

1 + tr
[
RTdR

] (RTdR−RTRd)∨, (10)

eΩ(R,Ω, Rd,Ωd) = Ω−RTRdΩd. (11)

For a fixed Rd, Ψ can be considered as a function of R only.
The attitude error vector eR is well defined in the sublevel
set L2 = {R ∈ SO(3) |Ψ(R,Rd) < 2}. Then, the following
statements hold:
(i) Ψ is positive definite about R = Rd.

(ii) in L2, the left-trivialized derivative of Ψ is given by

T∗ILR (DRΨ(R,Rd)) = eR. (12)

(iii) the critical points of Ψ are {Rd} ∪ {Rd exp(±πŝ)} for
any s ∈ S2, and there exists only one critical point {Rd}
in L2.

(iv) Ψ is locally quadratic in L2, since

‖eR‖2 ≤ Ψ(R,Rd) ≤ 2‖eR‖2. (13)
Proof: For any rotation matrix Q = RTdR ∈ SO(3), its

trace is bounded by −1 ≤ tr[Q] ≤ 3, and tr[Q] = 3 if and
only if Q = I [10]. Substituting this into (9), it follows that
Ψ ≥ 0, and Ψ = 0 if and only if R = Rd. This shows (i).

The infinitesimal variation of a rotation matrix can be
written as δR = d

dε

∣∣
ε=0

R exp εη̂ = Rη̂ for η ∈ R3. Using
this, the derivative of Ψ with respect to R is given by

DRΨ(R,Rd) · δR =
d

dε

∣∣∣∣
ε=0

Ψ(R exp εη̂, Rd)

= − 1

2
√

1 + tr[RTdR]
tr
[
RTdRη̂

]
.

This is well defined in L2, since tr[RTdR] > −1 in L2. Using
a property of the hat map (4), this can be written as

DRΨ(R,Rd) ·Rη̂ =
1

2
√

1 + tr[RTdR]
(RTdR−RTRd)∨ · η

= eR · η,
which shows (ii).
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Fig. 1. Attitude error function Ψ and the magnitude of the attitude error
vector ‖eR‖ when RT

d R = exp x̂, for x/‖x‖ = [1, 0, 0] and ‖x‖ ∈
[0, π]. For the attitude error function Ψ◦ used in other literatures (blue,
dashed), ‖e◦R‖ is maximized when ‖x‖ = π/2, and it approaches 0 as
‖x‖ → π. This reduces the convergence rate of the corresponding control
system significantly, when the initial attitude error approaches 180◦. But,
in the proposed attitude error function Ψ (red, solid), the magnitude of the
attitude error vector ‖eR‖ is proportional to the rotation angle ‖x‖ about
the Euler axis between R and Rd. This guarantees a good convergence rate
uniformly in initial attitude errors.

The critical points of Ψ are the solutions R ∈ SO(3) to
the equation RTdR−RTRd = 0 or tr[RTdR] = −1, which are
given by RTdR = I or RTdR = exp(±πŝ) for any s ∈ S2 [6].
This shows the first part of (iii). From Rodrigues’ formula,
for any Q = RTdR ∈ SO(3), there exists x ∈ R3 with
‖x‖ ≤ π such that

Q = exp x̂ = I +
sin ‖x‖
‖x‖ x̂+

1− cos ‖x‖
‖x‖2 x̂2. (14)

Substituting this into (9), we obtain

Ψ(Rd exp x̂, Rd) = 4 sin2 ‖x‖
4
.

At the critical points R = Rd exp(±πŝ) with s ∈ S2, the
value of Ψ becomes 2. This shows the second part of (iv).
Substituting (14) into (10), we obtain

‖eR‖2 = sin2 ‖x‖
2

= 4 sin2 ‖x‖
4

cos2 ‖x‖
4
.

This shows (iv).
The proposed attitude error function is more desirable than

(8) in the sense that the magnitude of the attitude error
vector eR is proportional to the rotation about the Euler axis
between R and Rd (see Fig. 1). This improves the tracking
performance, especially for large angle rotational maneuvers
with a large initial attitude error.

B. Attitude Error Dynamics

We find the attitude error dynamics for the proposed
attitude error function Ψ, the attitude error vector eR, and
the angular velocity error eΩ.

Proposition 2: The error dynamics for Ψ, eR, eΩ satisfies

d

dt
(Ψ(R,Rd)) = eR · eΩ, (15)

‖ėR‖ ≤
1

2
‖eΩ‖, (16)

ėΩ = J−1(−Ω× JΩ + u) + Ω̂RTRdΩd −RTRdΩ̇d. (17)

Proof: Using the attitude kinematics equations (2), (7),
the time derivative of the attitude error function is given by

d

dt
Ψ(R,Rd) = − 1

2
√

1 + tr[RTdR]
tr
[
RTdRΩ̂− Ω̂dR

T
dR
]

= − 1

2
√

1 + tr[RTdR]
tr
[
RTdR(Ω̂−RTRdΩ̂dRTdR)

]
,

where we use a property of the hat map (6). Substituting
(11) into this, and using (4), (10), we obtain

d

dt
Ψ(R,Rd) =

1

2
√

1 + tr[RTdR]
(RTdR−RTRd)∨ · eΩ,

which shows (15). Next, from (6), (11), the time derivative
of the attitude error vector is given by

ėR = − tr
[
RTdRêΩ

]
2(1 + tr

[
RTdR

]
)
eR +

1

2
√

1 + tr
[
RTdR

]
× (RTdRêΩ + êΩR

TRd)
∨.

Using the properties of the hat map, given by (4), (5), this
can be further reduced to

ėR =
1

2
√

1 + tr
[
RTdR

] (tr[RTRd]I −RTRd + 2eRe
T
R)eΩ

≡ E(R,Rd)eΩ, (18)

where E(R,Rd) ∈ R3×3. From Rodrigues’ formula, let
Q = RTdR = exp x̂ ∈ SO(3) for x ∈ R3. Us-
ing the Matlab Symbolic Computation Tool, the eigen-
values of E(R,Rd)

TE(R,Rd) are given by 1
4 ,

1
4 ,

1
8 (1 +

cos ‖x‖). It follows that the matrix 2-norm of E(R,Rd) is
‖E(R,Rd)‖ = 1

2 , which shows (16).
From (1), (2), (7), and using the fact that Ω̂dΩd = Ωd ×

Ωd = 0 for any Ωd ∈ R3, the time derivative of the angular
velocity error eΩ is given by

ėΩ = Ω̇ + Ω̂RTRdΩd −RTRdΩ̂dΩd −RTRdΩ̇d
= J−1(−Ω× JΩ + u) + Ω̂RTRdΩd −RTRdΩ̇d,

which shows (17).

C. Attitude Tracking

Here we define a control system to follow a given attitude
command, and we show exponential stability.

Proposition 3: For a given attitude command Rd(t), and
positive constants kR, kΩ ∈ R, we define a control input
u ∈ R3 as follows:

u = −kReR − kΩeΩ + Ω× JΩ− J(Ω̂RTRdΩd −RTRdΩ̇d).
(19)

This control system stabilizes the zero equilibrium of the
tracking error eR, eΩ exponentially, and an estimation of the
region of attraction is given by

Ψ(R(0), Rd(0)) < 2, (20)

‖eΩ(0)‖2 < 2

λmax(J)
kR{2−Ψ(R(0), Rd(0))}, (21)
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where λmax(J) denotes the maximum eigenvalue of the
inertia matrix J .

Proof: We first show that the sublevel set L2 = {R ∈
SO(3) |Ψ(R,Rd) < 2} is a positively invariant set. Consider
the following Lyapunov function

W =
1

2
eΩ · JeΩ + kRΨ(R,Rd).

According to (13), this is locally positive definite. Substitut-
ing (19) into (17), we obtain

JėΩ = −kReR − kΩeΩ. (22)

Using (15), (22), the time-derivative of W is given by

Ẇ = eΩ · (−kReR − kΩeΩ) + kReR · eΩ

= −kR‖eΩ‖2 ≤ 0.

This implies thatW(t) ≤ W(0) for all t > 0, and from (21),
we have

W(0) ≤ 1

2
λmax(J)‖eΩ(0)‖2 + kRΨ(R(0), Rd(0)) < 2kR.

Therefore, we obtain

kRΨ(R(t), Rd(t)) ≤ W(t) ≤ W(0) < 2kR

for all t > 0. This follows that Ψ(R(t), Rd(t)) < 2 always.
So, the sublevel set L2 = {R ∈ SO(3) |Ψ(R,Rd) < 2} is a
positively invariant set under the given assumptions. Then,
according to Proposition 1, the attitude error vector eR is
well defined, and there exists only one critical point of Ψ in
L2.

To show exponential stability, we consider the following
Lyapunov function:

V =
1

2
eΩ · JeΩ + kRΨ(R,Rd) + c2eΩ · eR

for a positive constant c2. From (13), we obtain

zTW11z ≤ V ≤ zTW12z, (23)

where z = [‖eR‖; ‖eΩ‖] ∈ R2, and the matrices W11,W12 ∈
R2×2 are given by

W11 =

[
kR

1
2c2

1
2c2

1
2λmin(J)

]
, W12 =

[
2kR

1
2c2

1
2c2

1
2λmax(J)

]
.

From (22), (15), (18), the time derivative of the Lyapunov
function V along the solution of the controlled system is
given by

V̇ = eΩ · JėΩ + kRΨ̇ + c2ėΩ · eR + c2eΩ · ėR
= eΩ · (−kΩeΩ − kReR) + kReR · eΩ

+ c2(J−1(−kΩeΩ − kReR)) · eR + c2eΩ · ER(R,Rd)eΩ.

Using (16), this is bounded by

V̇ ≤ −
(
kΩ −

c2
2

)
‖eΩ‖2 −

c2kR
λmax(J)

‖eR‖2

+
c2kΩ

λmin(J)
‖eR‖‖eΩ‖

= −zTW2z, (24)

where the matrix W2 ∈ R2×2 is given by

W2 =

[
c2kR

λmax(J) − c2kΩ

2λmin(J)

− c2kΩ

2λmin(J) kΩ − c2
2

]
. (25)

We choose the positive constant c2 such that

c2 < min

{√
2kRλmin(J), 2kΩ,

4kRkΩλ
2
min(J)

2kRλ2
min(J) + k2

Ωλmax(J)

}
.

Then, the matrices W11,W12,W2 become positive definite,
which implies that V is quadratic, and

V(t) ≤ V(0) exp

(
− λmin(W2)

λmax(W12)
t

)
. (26)

Therefore, the zero equilibrium of the attitude and the angu-
lar velocity tracking error (eR, eΩ) is exponentially stable.

In this paper, we claim that this control system stabilizes
the zero equilibrium of the attitude and angular velocity
tracking errors almost semi-globally in the sense that the
region of attraction given by (20), (21) satisfies the following
properties: the initial attitude region given by (20) almost
cover SO(3), since it only excludes the two-dimensional sub-
set {Rd(0) exp(±πŝ), s ∈ S2} from the three-dimensional
SO(3); the initial angular velocity could be arbitrarily large
by choosing a sufficiently larger gain kR in (21).

D. Attitude Stabilization Without Inertia Matrix

The proposed attitude tracking controller requires the exact
value of the inertia matrix. Here, we show that in a special
case, where the desired attitude is fixed, i.e. Ωd(t) ≡ 0, we
can stabilize the attitude error without the knowledge of the
inertia matrix.

Proposition 4: Suppose that the desired attitude Rd is
fixed so that Ωd(t) ≡ 0 for any t > 0. For positive constant
kR, kΩ ∈ R, we define a control input u′ ∈ R3 as follows:

u′ = −kReR − kΩeΩ. (27)

This control system stabilizes the zero equilibrium of the
errors eR, eΩ exponentially, and an estimation of the region
of attraction is given by

Ψ(R(0), Rd(0)) < 2, (28)

‖eΩ(0)‖2 < 2

λmax(J)
kR{2−Ψ(R(0), Rd(0))}, (29)

where λmax(J) denotes the maximum eigenvalue of the
inertia matrix J .

Proof: Similar to the proof of Proposition 2, we first
show that the sublevel set L2 = {R ∈ SO(3) |Ψ(R,Rd) <
2} is a positively invariant set. Consider the following
Lyapunov function

W ′ =
1

2
eΩ · JeΩ + kRΨ(R,Rd).

According to (13), this is locally positive definite. Substitut-
ing (27) into (17), we obtain

JėΩ = −kReR − kΩeΩ − Ω× JΩ. (30)
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Using (15), (30), the time-derivative of W ′ is given by

Ẇ = eΩ · (−kReR − kΩeΩ − Ω× JΩ) + kReR · eΩ.

According to (11), we have eΩ = Ω when Ωd = 0. Thus,
eΩ · (Ω× JΩ) = eΩ · (eΩ × JeΩ) = 0. Then, this reduces to

Ẇ = −kR‖eΩ‖2 ≤ 0.

Similar to the proof of Proposition 1, this implies that the
sublevel set L2 = {R ∈ SO(3) |Ψ(R,Rd) < 2} is a
positively invariant set under the given assumptions.

To show exponential stability, we consider the following
Lyapunov function:

V ′ =
1

2
eΩ · JeΩ + kRΨ(R,Rd) + c2eΩ · eR

for a positive constant c2. This satisfies (23).
From (30), (15), (18), the time derivative of the Lyapunov

function V] along the solution of the controlled system is
given by

V̇ ′ = eΩ · (−kΩeΩ − kReR − Ω× JΩ) + kReR · eΩ

+ c2(J−1(−kΩeΩ − kReR − Ω× JΩ)) · eR
+ c2eΩ · ER(R,Rd)eΩ.

Since Ψ(R(t), Rd) < 2, we have ‖eR‖ <
√

2 from (13).
We also have eΩ = Ω since Ωd = 0. Then, the following
inequality is satisfied:

‖c2(J−1(Ω× JΩ)) · eR‖ ≤
√

2c2
λmax(J)

λmin(J)
‖eΩ‖2.

Then, similar to (24), we obtain

V̇ ′ ≤ −zTW ′2z,

where the matrix W ′2 ∈ R2×2 is given by

W ′2 =

[
c2kR

λmax(J) − c2kΩ

2λmin(J)

− c2kΩ

2λmin(J) kΩ − αc2

]
, (31)

where α = 1
2 +
√

2λmax(J)
λmin(J) .

We choose the positive constant c2 such that

c2 < min

{√
2kRλmin(J),

kΩ

α
,

4kRkΩλ
2
min(J)

4αkRλ2
min(J) + k2

Ωλmax(J)

}
.

Then, the matrices W11,W12,W
′
2 become positive definite,

which implies the zero equilibrium of the attitude and the
angular velocity error (eR, eΩ) is exponentially stable.

This control system allows us to stabilize a fixed attitude
without the knowledge of the inertia matrix, since the con-
trol input (27) is independent of J . But, this reduces the
convergence rate. As discussed in (26), the convergence rate
of the controlled system depends on the eigenvalue of the
matrix W2. Comparing (31) with (25), we expect that the
eigenvalues of W ′2 are less than the eigenvalues of W2 since
α > 1

2 .

E. Properties

One of the unique properties of the presented controller
is that it is directly developed on SO(3) using rotation ma-
trices. Therefore, it avoids the complexities and singularities
associated with local coordinates of SO(3), such as Euler
angles. It also avoids the ambiguities that arise when using
quaternions to represent the attitude dynamics. As the three-
sphere S3 double covers SO(3), any attitude feedback con-
troller designed in terms of quaternions could yield different
control inputs depending on the choice of quaternion vectors.
The corresponding stability analysis would need to carefully
consider the fact that convergence to a single attitude implies
convergence to either of the two disconnected, antipodal
points on S3 [2]. This requires a continuous selection of the
sign of quaternions or a discontinuous control system, which
are shown to be sensitive to small measurement noise [11].
Without these considerations, a quaternion-based controller
can exhibit an unwinding phenomenon, where the controller
unnecessarily rotates the attitude through large angles [3]. In
this paper, the use of rotation matrices in the controller design
and stability analysis completely eliminates these difficulties.

Another novelty of the presented controller is the choice
of the attitude error function in (9). It is carefully designed
to guarantee a good tracking performance for large attitude
error. In contrast to other attitude control systems on SO(3)
constructed by (8) [6], [8], the magnitude of the attitude
error vector is proportional to the value of the attitude
error function such that the corresponding control system
is uniformly effective for larger attitude errors. These are
illustrated by numerical examples in the next section.

IV. NUMERICAL EXAMPLES

We choose the inertia matrix of a rigid body and initial
conditions as follows:

J = diag[3, 2, 1] kgm2

R(0) = I, Ω(0) = [0, 0, 0] rad/sec

We consider two cases:

(i) Attitude tracking with the full knowledge of J . The
desired attitude command is described by using 3-2-1
Euler angles [10], i.e. Rd(t) = Rd(φ(t), θ(t), ψ(t)),
and these angles are chosen as

φ(t) = 0.999π + 0.5t, θ(t) = 0.1t2, ψ(t) = −0.2t+ 0.5t2,

where the unit of these angles is radian, when the
simulation time t is in seconds. The corresponding
angular velocity command Ω(t), and its time-derivative
Ω̇(t) are obtained from (7).

(ii) Attitude stabilization without the knowledge of J . The
desired attitude is chosen as

Rd = exp(0.999πŝ), where s =
1√
3

[1,−1, 1].

Since Rd is fixed, we have Ωd(t) = Ω̇d(t) = 0.
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Fig. 2. Attitude tracking (proposed controller: red,solid, control system
constructed by (20): blue,dashed, command:black,dotted)

We use the control system (19) for the first case, and we
use the control system (27) for the second case. For both
cases, the controller gains are chosen as

kR = 12, kΩ = 8.4.

Note that the desired attitude command of the first case
represents a nontrivial rotational maneuver, and the initial
attitude error of both cases is 0.999π = 179.82◦ in terms
of the rotation angle about the Euler axis between R(0) and
Rd(0).

It has been shown that general-purpose numerical integra-
tors fail to preserve the structure of the special orthogonal
group SO(3), and they may yields unreliable computational
results for complex maneuvers of rigid bodies [12], [13].
In this paper, we use a geometric numerical integrators,
referred to as a Lie group variational integrator, to preserve
the underlying geometric structures of the attitude dynamics
accurately [14].

Simulation results are represented in the following figures,
where the responses of the proposed control system (red,
solid lines) are compared with a control system based on
(20) in [6], [8] (blue, dashed lines). At Fig. 1, we showed
that the control system based on (20) yields a small control
input when the initial attitude error is close to 180◦. These
are observed again in the subfigure (d) for both cases. As
a result, the initial convergence rates of the attitude error
and the angular velocity error are relatively poor in the
subfigures (a) and (b): it takes a longer time to converge in
blue, dashed lines. But, the proposed control system exhibits
more desirable convergence properties for a given complex
rotational maneuvers involving large initial attitude errors.
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Fig. 3. Attitude stabilizing without the knowledge of the inertia ma-
trix. (proposed controller: red,solid, control system constructed by (20):
blue,dashed, command:black,dotted)

REFERENCES

[1] P. Crouch, “Spacecraft attitude control and stabilizations: applications
of geometric control theory to rigid body models,” IEEE Transactions
on Automatic Control, vol. 29, no. 4, pp. 321–331, 1984.

[2] C. Mayhew, R. Sanfelice, and A. Teel, “Robust global asymptotic
attitude stabilization of a rigid body by quaternion-based hybrid feed-
back,” in Proceedings of IEEE Conference on Decision and Control,
2009, pp. 2522–2527.

[3] S. Bhat and D. Bernstein, “A topological obstruction to continuous
global stabilization of rotational motion and the unwinding phe-
nomenon,” Systems and Control Letters, vol. 39, no. 1, pp. 66–73,
2000.

[4] V. Jurdjevic, Geometric Control Theory. Cambridge University, 1997.
[5] A. Bloch, Nonholonomic Mechanics and Control, ser. Interdisciplinary

Applied Mathematics. Springer-Verlag, 2003, vol. 24.
[6] F. Bullo and A. Lewis, Geometric control of mechanical systems. New

York: Springer-Verlag, 2005, vol. 49.
[7] D. Maithripala, J. Berg, and W. Dayawansa, “Almost global tracking

of simple mechanical systems on a general class of Lie groups,” IEEE
Transactions on Automatic Control, vol. 51, no. 1, pp. 216–225, 2006.

[8] N. Chaturvedi, N. H. McClamroch, and D. Bernstein, “Asymptotic
smooth stabilization of the inverted 3-D pendulum,” IEEE Transac-
tions on Automatic Control, vol. 54, no. 6, pp. 1204–1215, 2009.

[9] T. Lee, M. Leok, and N. McClamroch, “Geometric tracking control of
a quadrotor UAV on SE(3),” in Proceedings of the IEEE Conference
on Decision and Control, 2010, accepted.

[10] M. Shuster, “Survey of attitude representations,” Journal of the Astro-
nautical Sciences, vol. 41, pp. 439–517, 1993.

[11] R. Sanfelice, M. Messian, S. Tuna, and A. Teel, “Robust hybrid
controller for continous-time systems with applications to obstacle
avoidance and regulation to disconnected set of points,” in Proceeding
of the American Control Conference, 2006, pp. 3352–3357.

[12] A. Iserles, H. Munthe-Kaas, S. Nørsett, and A. Zanna, “Lie-group
methods,” in Acta Numerica. Cambridge University Press, 2000,
vol. 9, pp. 215–365.

[13] E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration,
ser. Springer Series in Computational Mechanics 31. Springer, 2000.

[14] T. Lee, M. Leok, and N. H. McClamroch, “Lie group variational
integrators for the full body problem in orbital mechanics,” Celestial
Mechanics and Dynamical Astronomy, vol. 98, no. 2, pp. 121–144,
June 2007.

1205


