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Abstract— First principles battery models, consisting of non-
linear coupled partial differential equations, are often difficult
to discretize and reduce in order so that they can be used
by systems engineers for design, estimation, prediction, and
management. In this paper, six methods are used to dis-
cretize a benchmark electrolyte diffusion problem and their
time and frequency response accuracy is determined as a
function of discretization order. The Analytical Method (AM),
Integral Method Approximation (IMA), Padé Approximation
Method (PAM), Finite Element Method (FEM), Finite Differ-
ence Method (FDM) and Ritz Method (RM) are formulated for
the benchmark problem and convergence speed and accuracy
calculated. The PAM is the most efficient, producing 99.5%
accurate results with only a 3rd order approximation. IMA,
Ritz, AM, FEM, and FDM required 4, 6, 9, 14, and 27th order
approximations, respectively, to achieve the same error.

Index Terms— Numerical methods, diffusion equations, con-
vergence.

I. INTRODUCTION

A variety of electrochemical power sources such as lead-
acid, lithium ion, nickel-cadmium (Ni-Cd) and nickel-metal
hydride (Ni-MH) batteries as well as fuel cells, are widely
used in industrial applications (e.g. UPS and power plants)
and hybrid electric vehicles/locomotives. These applications
demand sophisticated design and control to provide high
energy/power density and long cycle life. Accurate mathe-
matical models are crucial for optimal energy storage system
design and real-time estimation, prediction, and control.
First principles models have been developed for lead-acid
batteries [1], [2], [3], NiCd/NiMh batteries [4], [5], [6],
lithium-ion batteries [7], [8], [9] and fuel cells [10], [11].
These models can accurately predict the system performance
once the nonlinear and coupled partial differential differential
equations (PDEs) that comprise the model are solved numer-
ically using, for example, the control-volume method [5].
Other researchers propose equivalent circuit models [12],
[13] but the model parameters lack physical meaning and
connection to the underlying the electrochemical processes.
In this paper, several discretization techniques are investi-
gated to convert the PDEs of diffusion-type processes like
batteries and fuel cells into a set of ODEs. This approach
maintains the connection with the fundamental electrochem-
ical governing equations. System order is the critical factor
for fast computation and real-time implementation so the
convergence and accuracy of the different techniques as a
function of the number of integrators in the model is studied.
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To compare the various discretization techniques, the
benchmark problem shown in Fig. 1 is proposed and used
throughout the work. The electrolyte phase diffusion problem
for a battery cell with uniform reaction current distribution
and two coupled domains includes many of the key features
of battery cell models, including diffusion dynamics and
spatially varying inputs and parameters. The two domains
correspond to a porous negative electrode (0 < x < L/2) and
a porous positive electrode (L/2 < x < L). For simplicity, the
two electrodes are assumed to be the same length (L/2) and
that the diffusion coefficients and electrode phase volume
fractions are different for (but constant within) the two
electrodes. The current density j(t) = 2I(t)/(AL) for the
negative electrode and j(t) = −2I(t)/(AL) for the positive
electrode where A is the electrode plate area and I(t) is
the total current flowing through the cell. Thus, the coupled
domains model consists of the two field equations

εm
∂c
∂ t

= Dm
∂ 2c
∂x2 +b I for x ∈ (0,L/2),

εp
∂c
∂ t

= Dp
∂ 2c
∂x2 −b I for x ∈ (L/2,L),

(1)

where c(x, t) is the ion concentration and εm and εp and
Dm and Dp are the electrode phase volume fractions and
diffusion coefficients for the negative and positive electrode,
respectively. The diffusion coefficients depend on a reference
diffusion coefficient Dre f and the phase volume fractions as
follows:

Dm = Dre f ε1.5
m and Dp = Dre f ε1.5

p ,

The input constant

b =
2(1− t0)

F AL
, (2)

where t0 is the transference number and F is Faraday’s
constant. Ions do not flux through the boundaries so the
boundary conditions

∂c
∂x

∣∣∣∣
x=0

=
∂c
∂x

∣∣∣∣
x=L

= 0, (3)

Dm
∂c
∂x

∣∣∣∣
x=(L/2)−

= Dp
∂c
∂x

∣∣∣∣
x=(L/2)+

,

c
(

L
2−

, t
)
= c
(

L
2+

, t
)
,

(4)

At the interface between the two domains, the boundary
conditions Eq. (4) couple the two domains by ensuring
continuity of concentration and flux through the boundary
at x = L/2. In this problem, the output is taken to be
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Fig. 1. Schematic diagram of the benchmark electrolyte diffusion problem

y(t) = c(L, t)− c(0, t) because the output voltage for a cell
typically depends on the concentration difference between
the two electrodes.

II. DISCRETIZATION METHODS

A. Analytical Method (AM)
Most of the PDEs that are encountered in battery systems

are approximately linear with constant coefficients so we can
often find an exact or analytical solution. In this section,
we exactly solve the benchmark electrolyte diffusion prob-
lems. More information on analytical methods can be found
in [14], [15], [16], [17].

Two approaches are used to analytically/exactly solve the
benchmark problem. First, we use the separation of variables
to generate an eigenvalue problem that is then solved. The
spatially distributed response is calculated from a eigen-
function series expansion. If the eigenfunction expansion
is truncated then the resulting model can be put in state
variable form, allowing time and frequency response calcu-
lations. Second, we use the Laplace transform to eliminate
time derivatives and solve the resulting ordinary differential
equations for a transcendental transfer function. This allows
calculation of the exact frequency response without trunca-
tion of the eigenfunction series but the transcendental transfer
function cannot be directly used for time simulation.
Eigenfunction Expansion: The eigenvalue problem is de-
rived by substituting c(x, t) = C(x)eλ t into Eqs. (1) with
I(t) = 0 to produce

εmλCm−DmC′′m = 0 for x ∈ (0,L/2),
εpλCp−DpC′′p = 0 for x ∈ (L/2,L).

(5)

The solutions of Eqs. (5) are

Cm(x) =C1meβmx +C2me−βmx,

Cp(x) =C1peβpx +C2pe−βpx.
(6)

Substitution of Eqs. (6) into Eqs. (5) produces

λ =
Dmβ 2

m

εm
=

Dpβ 2
p

εp
(7)

or
βm = αβp, εm = ζ εp, and Dm =

ζ Dp

α2 (8)

where

α =

√
Dpεm

Dmεp
and ζ =

εm

εp
(9)

Substitution of Eq. (7) into the solutions Eqs. (6) and then
into the boundary conditions Eqs. (3) and (4) produces the
matrix equation

Mc = 0, (10)

where c = [C1m,C2m,C1p,C2p]
T and

M =


α βp −α βp 0 0

α ζ βp e
1
2 α βp L −α ζ βp e−

1
2 α βp L −α2βp e

1
2 βp L

α2βp e−
1
2 βp L

e
1
2 α βp L e−

1
2 α βp L −e

1
2 βp L −e−

1
2 βp L

0 0 βp eβp L −βp e−βp L

 .
(11)

Eq. (11) has nonzero solutions if the determination of M
satisfies

|M|=−α
2
β

3
p

[
(ζ −α)

(
e−βp γ1 − eβp γ1

)
+(ζ +α)

(
e−βp γ2 − eβp γ2

)]
= 0

(12)

where γ1 = L(α − 1)/2 and γ2 = L(α + 1)/2. Note that the
eigenvalue problem in Eq. (12) reduces to

eβL− e−βL = 0, (13)

if α = 1 and ζ = 1 because this is corresponds to the single
domain problem with Dp = Dm and εp = εm. Eq. (12) can
also be written using hyperbolic functions as

βp
3 [(ζ −α)sinh(βp γ1)+(ζ +α)sinh(βp γ2)] = 0 (14)

Eq. (12) has only imaginary roots βp =
√

εpλ/Dp corre-
sponding to real and negative eigenvalues λ < 0. These roots
are found numerically and substituted into Eq. (11), making
M singular. The eigenvector corresponding to the zero eigen-
value provides the eigenfunction coefficients C1m, . . . ,C2p.
These eigenfunctions are orthogonal. The elements of the
B vector are

bn =
∫ L/2

0
b Cn(x) dx−

∫ L

L/2
b Cn(x) dx. (15)

The output is expressed as an eigenfunction series evaluated
at x = L minus x = 0.
Transfer Function: Laplace transform of Eqs. (1) produces

sεmCm−DmC′′m−b I = 0 for x ∈ (0,L/2),
sεpCp−DpC′′p +b I = 0 for x ∈ (L/2,L).

(16)

The solutions of Eqs. (16) are

Cm(x) =C1meβmx +C2me−βmx +
b I
εms

,

Cp(x) =C1peβpx +C2pe−βpx− b I
εps

.
(17)
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Substitution of Eqs. (17) into Eqs. (16) produces

s =
Dmβ 2

m

εm
=

Dpβ 2
p

εp
(18)

and the same relationships in Eq. (8) and (9). Substitution of
Eq. (18) into the solutions (17) and then into the boundary
conditions Eqs. (3) and (4) produces four linear equations in
four unknowns C1m, . . . ,C2p. The transfer function

Dp Y (s)
bεp I(s)

=

4α sinh
( 1

2 βp L
)
−2 (ζ −α)sinh(βp γ1)

+ 4ζ sinh
( 1

2 α βp L
)
−2 (ζ +α)sinh(βp γ2)

βp
2 [(ζ −α)sinh(βp γ1)+(ζ +α)sinh(βp γ2)]

(19)
results from substituting these solutions into Y (s) =C(L,s)−
C(0,s). The characteristic equation corresponding to the
denominator of Eq. (19) matches that calculated from the
eigenvalue approach in Eq. (14).

B. Integral Method Approximation (IMA)

Another way to convert the governing PDEs of a battery
model to ODEs is to assume a distribution across the cell for
the distributed variable of interest and integrate the governing
equations to convert the PDE to a single ODE. In this section,
the Integral Method Approximation (IMA) is applied to the
benchmark problem. More information on the IMA can be
found in [16], [18], [19], [20].

For the electrolyte diffusion problem with coupled do-
mains described in Section I, the IMA assumes that the
concentration has parabolic distributions in each domain

c(x, t) =
{

c0m(t)+ c1m(t)x+ c2m(t)x2 for x≤ L/2,
c0p(t)+ c1p(t)x+ c2p(t)x2 for x≥ L/2.

(20)
The six coefficients in Eq. (20) can be solved from the two
field equations (x < L/2 and x > L/2) and the four boundary
conditions (3) and (4). Substitution ofb Eq. (20) into the
Laplace Transform of Eq. (1) and integration yields∫ L/2

0

(
sεm C−Dm C′′−bI

)
dx

=
εm L

2
sC0m +

εm L2

8
sC1m +

(
εm L3s

24
−LDm

)
C2m−

bL
2

I

= 0
(21)

∫ L

L/2

(
sεp C−DpC′′+bI

)
dx

=
εp L

2
sC0p +

3εp L2

8
sC1p +

(
7εp L3

24
s−LDp

)
C2p +

bL
2

I

= 0.
(22)

Eqs. (3) give

C1m = 0 and C1p +2LC2p = 0. (23)

Substitution of Eqs. (20) and (23) into the boundary condi-
tions (4) yield

DmC2m +DpC2p = 0,

C0m +
L2

4
C2m−C0p +

3L2

4
C2p = 0.

(24)

Solution of Eqs. (21) through (24) and substitution into the
output equation

Y (s) =C(L,s)−C(0,s) =C0p +C1pL+C2pL2−C0m (25)

gives the transfer function

Y (s)
I(s)

=
−3bL2 (εm + εp)(Dm +Dp)

2εm εp L2 (Dm +Dp)s+24Dm Dp (εm + εp)
. (26)

The IMA can be extended to higher order approximations
by evaluating the field equation at specific points in the
domain. For each additional term in the approximation, an
additional equation is added. In the coupled domain problem,
for example, we can add c3mx3 to the approximation in
Eq. (20) and solve the additional equation

εm
∂c
∂ t

∣∣∣∣
x∗
−Dm

∂ 2c
∂x2

∣∣∣∣
x∗
−bI

= εm
(
ċ0m + ċ2mx∗2 + ċ3mx∗3

)
−Dm (2c2m +3c3mx∗)−bI

= 0
(27)

where x∗ ∈ [0,L/2]. Eq (27) is a first order differential
equation, increasing the order of the approximation by one.
Additional terms can be added to the approximation in
Eq. (20) with additional equations from Eq. (27) evaluated
at different x∗.

C. Padé Approximation Method (PAM)

The analytical solutions for battery cell related models
can often be expressed in terms of transcendental transfer
functions like Eq. (19). These transfer functions often involve
hyperbolic functions that can also be written in terms of
exponentials. The Padé Approximation works well for these
infinitely differentiable functions that can be expanded in a
power series at the origin [21], [22], [23], [24]. The Nth

order Padé approximation of a transfer function G(s) is a
ratio of two polynomials in s where the denominator is of
order N. For a proper transfer function, the numerator is
of order N or less. The Padé Approximation Method can
produce transfer functions with numerators of order 1 to N.
The numerator order can be adjusted to obtain the best fit
or the numerator order that provides the desired phase at
high frequency can be used. The computational speed of
the model depends strongly on the number of integrators in
the model or the order of the denominator, and, to a lesser
extent, the multiplications and additions associated with the
numerator. In this paper, we focus only on model order as
the computational cost metric so a high order numerator will
probably provide the most accurate results.
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We assume that the transfer function can be expanded in
a power series at the origin as follows

G(s) =
2(N+1)

∑
k=0

ck sk (28)

where the coefficients ck are calculated by repeated differ-
entiation and evaluation of G(s) at s = 0,

ck =
dk G(s)

dsk

∣∣∣∣
s=0

. (29)

If G(s) has a pole at the origin then we apply the power
series expansion to G∗(s) = s G(s) and substitute G = P/s
where P is the Padé approximation of G∗. The Nth order
Padé approximation transfer function

P(s) =
∑

N
m=0 bm sm

1+∑
N
n=1 an sn

=
num(s)
den(s)

, (30)

where we assume that the denominator and numerator both
have order N. To determine P(s) we must calculate the
N + 1 bm and N am coefficients. The zeroth order term in
the denominator is assumed to have a unity coefficient to
normalize the solutions. The 2N + 1 linear equations that
can be solved for the coefficients are determined from the
polynomial equation

den(s)
2(N+1)

∑
k=0

cksk−num(s) = 0 (31)

where the coefficients ck are known from the power series
expansion. Equation (31) produces a polynomial of order
2N(N +1) in s. The right hand side equals zero for all s so
the coefficients of s must be zero. The first N+1 coefficients
of s depend on both the unknown an and bn coefficients.
The remaining coefficients depend only on an. Thus, we set
the coefficients of sN+2 to s2N+1 equal to zero to solve for
a1, . . . ,aN . Then we substitute these solutions a1, . . . ,aN into
the coefficients of s0 to sN and set them equal to zero to
solve for b0, . . . ,bN .

D. Ritz Method (RM)

The Ritz Method maintains the inherent symmetry of
the operators in the governing PDEs. In battery systems,
diffusion equations are symmetric, producing real eigenval-
ues and exponentially decaying response. The discretized A
matrices generated by the Ritz method are also symmetric,
ensuring real eigenvalues. The convergence properties of Ritz
expansions have also been thoroughly studied. The eigen-
values converge monotonically from below, starting with
negative eigenvalues that are smaller (larger in magnitude)
and increase as the number of terms in the series increases.
A Ritz approximation will never overpredict an eigenvalue.

The response is approximated by admissible functions that
are continuous across the domain 0≤ x≤ L. A Fourier series
solution is used with functions that satisfy the zero flux
boundary conditions at x = 0,L. Starting with a weak form
of the governing equation (1) that incorporates the natural
(flux) boundary conditions. The requirement for continuous

TABLE I
ELECTROLYTE DIFFUSION MODEL PARAMETERS

Parameter Value
L 100 µm
t0 0.363
A 10,452 cm2

Dre f 2.6×10−6 cm2/s
εm 0.332
εp 0.28

concentration at the interface of the two domains will be
automatically satisfied by the continuity of the sinusoidal
functions.

E. Finite Element Method (FEM)

The Finite Element Method (FEM) is based on a weak
form of the governing equation as was used in the Ritz
Method. Rather than choosing functions that exist over the
entire domain, however, FEM discretizes the domain x ∈
[0,L] into N−1 subdomains or elements

Ωm = [(m−1)h,mh], m = 1,2, . . . ,N (32)

In general, the length of each element can be varied to
improve the accuracy in high flux regions and reduce the
number of elements in regions with low gradients. For
simplicity, we assume that the grid is uniform with each
element having length h so L = h(N−1). The concentrations
at the endpoints of the domains are referred to as nodes
cm(t) = c((m−1)h, t) for m = 1, . . . ,N. The Nth order FEM
approximation has N nodes. FEM generates equations for
the nodal dynamics that can be realized in state variable or
transfer function forms. For more information and details on
the FEM method, readers are referred to [15], [25].

F. Finite Difference Method (FDM)

The Finite Difference Method (FDM) is the simplest and
most commonly used approach to the solution of the dif-
fusion equations found in battery models. As with the finite
element method, it easily handles spatially varying inputs and
parameters. FDM can also be used on nonlinear problems.
The method does not always maintain the symmetry of the
underlying problem, however, and lacks the convergence
guarantees of variational (FEM and Ritz) methods. Further
information on this method can be found in [15], [16], [26].

III. MODEL RESPONSE

The response of a battery cell to step changes in
charge/discharge current reveals how the concentration, po-
tential, current density, and terminal voltage change with
time under constant current loading. The parameters for the
benchmark problem are shown in Table. I.

A. Time Response

The eigenvalues or poles of the analytical transfer function
start at 0.14 rad/s, corresponding to a time constant of
7.1 seconds. The residues start at -1.05 and decrease with
increasing frequency. The 26th residue is almost zero and
the odd residues (1, 3, etc.) are generally several orders of
magnitude smaller than the even residues.
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Fig. 2. Discharge step response for analytical solution with 26 (solid -
black), 4 (dashed - blue) and 2 (dotted - red) term approximations: Output
concentration (c(L, t)− c(0, t))
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Fig. 3. Discharge step response for analytical solution with 26 term
approximation: Concentration distribution c(x, t)− c(0, t) (blue) at t = 1,
2, 4, 8, 16, 32 seconds and the steady state response (red).

The analytical discharge step response is shown in Fig. 2
for different truncation orders. The output is the difference
in concentration across the cell c(L, t)− c(0, t). The initial
concentration is zero and current fluxes into the anode and
fluxes out of the cathode, creating a negative change in
relative concentration. The time response settles out in ap-
proximately five time constants (approximately 35 seconds)
to the steady state value. As the model order increases from
2 to 4 to 26 modes, the response converges. Figure 3 shows
the evolution of the concentration distribution with time.
The concentration is initially zero across the cell. As time
moves on the concentration in then anode increases and the
cathode decreases. The results are plotted as differences in
concentration relative to c(0, t) so the distribution is always
negative. It is clear that the zero flux boundary conditions
are enforced at x = 0 and x = L. At the junction between
the two domains (x = L/2), the concentration and flux are
continuous. The slope of the concentration distribution has a
slight kink at x= L/2 associated with the change in diffusion
coefficient.
B. Frequency Response

Figure 4 shows the analytical frequency response of the
electrolyte diffusion model is calculated by substituting s =
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Fig. 4. Frequency response for exact solution (solid-black) and analytical
solution with 26 (dashed - blue), 4 (dash-dotted - green) and 2 (dotted - red)
term approximations: Output concentration (C(L, iω)−C(0, iω))/I(iω).

TABLE II
APPROXIMATION ORDER REQUIRED FOR ELECTROLYTE DIFFUSION

PROBLEM

Step Response Frequency Response
Method L2 L∞ L2 L∞

0.5% 1% 0.5% 1% 0.5% 1% 0.5% 1%
PAM 1 1 2 2 3 3 3 3
IMA 4 3 4 4 4 3 4 3
RM 6 4 6 4 6 4 6 4
AM 9 5 9 5 9 5 9 5
FEM 10 10 10 12 10 12 10 14
FDM 27 15 27 15 27 15 27 15

iω into the transcendental transfer function Eq. (19) and
calculating the associated gain and phase. The overall shape
of the concentration frequency response is that of a low
pass filter. The concentration has a steady state response at
low frequency and rolls off at high frequency. The corner
frequency is around 3× 10−2 Hz. The exact solution is
hidden behind the analytical solution truncated to 26 modes.
The analytical solution converges as the number of terms in
the truncated series increases from 2 to 4 to 26. Again, only
a few modes are required to accurately capture the frequency
response across the bandwidth of interest.

IV. MODELING COST, CONVERGENCE AND ACCURACY

To compare the convergence and accuracy of the various
modeling methods, we introduce two error measurements
that quantitatively compare the efficiency of the six methods
using the L2 norm and L∞ norm. When calculating the
accuracy, the 100th order analytical solution is adopted as
the baseline model and the error is measured in both time
domain and frequency domain.

Fig. 5 shows the errors versus truncation order, N, for
the analytical method. All four error metrics approaches
zero as the model order increases. The error metrics for the
other discretization methods are summarized in Table II. The
model order required to achieve 1% and 0.5% error are listed.

V. CONCLUSIONS

For all the methods, the error convergences as the model
order increases. The Padé approximation method converges
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(a) Time domain

(b) Frequency domain

Fig. 5. Error metrics for analytical method solution, L2 norm (solid - black)
and L∞ norm (dashed - blue)

the fastest. This method can only be applied to fairly
simple problems where the power series can be determined
analytically. The IMA and Ritz methods both use domain
integration and provide the second and third best conver-
gence. The Ritz method requires integration for all equations,
complicating the process. As a variational method, however,
the convergence is smooth and monotonic. The IMA equa-
tions are relatively easy to generate but the convergence
characteristics are less well behaved. The analytical and
FEM methods have similar convergence properties, coming
in at fourth and fifth on the list. Both of these methods
have guaranteed and smooth convergence properties. FDM
is the least efficient method and lacks proven convergence
properties but it is the easiest to formulate and solve. For the
all of the methods the time and frequency domain L2 and L∞

error metrics are very close.
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