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Abstract— This paper deals with the control of a fleet of
non-linear systems representing AUVs (autonomous underwater
vehicles). The purpose is here to design a control law to
stabilize the fleet to time-varying formations which are not
only circular. A novel framework is proposed to express a
general control law for a large class of formations. This is
produced by applying a sequence of affine transformations such
as translations, rotations and scalings. The paper also includes a
cooperative control to distribute the agents along the formation
which takes into account the communication constraints. The
system was implemented in computer simulation, accessible
through Web1.

I. INTRODUCTION

Cooperative control problems and multi-agent systems
have received much attention in recent years. The field
includes consensus algorithms for multi-agent systems [1],
[2], flocking [3], distributed sensor networks [4], [5], [6], tra-
jectory tracking and path following [7], [8] and autonomous
systems as underwater and unmanned air vehicles (AUVs and
UAVs) [9], [10]. Formation control and motion coordination
have been extensively studied, see [11], [12], among many
others. Control laws have been provided to make a fleet
of agents (vehicles) obtain circular and parallel formations
[4], [13]. Many extensions based on these works have been
developed: three-dimensional formation control [14], planar
circular formation control in a flow-field [15], translation [16]
and scaling [17] of circular formations, and stabilization of
a fleet to other closed forms [18], [19].

The objective of this paper is to design a general control
law for a class of non-linear multi-agent systems to reach
many class of formations including non-circular and time-
varying formations. Based on [4], new results have been
already proposed in [16] and [17] to deal with time-varying
formations resulting from translating and contracting a cir-
cular formation. Nevertheless, generalization of these ideas
to the called here elastic formation is pertinent to some
applications where the agents should perform collaborative
tasks requiring the formation to move towards an a priori
unknown direction and to adapt to some particular form. For
instance, in source seeking applications, the formation should
displace in the source gradient direction and contract its size
to adapt to the level curves of the source plume, [20].
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Translation, scaling and rotation are the three fundamental
transformations of a formation [21]. These three main affine
transformations, usually used in the fields of geometric and
robotic control, are pertinent to express many class of closed
curves in a matrix representation. A closed curve can be
expressed as a sequence of transformations applied to the unit
circle. In [18], a general framework based on affine transfor-
mations is presented. This idea allows to control the agents
to different trajectories which results from the application of
these three affine transformations. The contribution of this
paper is to stabilize the agents to the same elastic formation,
not only to the same velocity reference, independently of
initial conditions. A time-varying closed curve defined by a
sequence of affine transformations is considered as an elastic
formation. Our approach considers that this closed curve is
know for all the agents (i.e. the sequence of transformations
is a given reference).

In the context of the source seeking for underwater vehi-
cles, it is relevant to constrain the agents in an appropriate
shape to avoid unnecessary energy waste. Moreover, ensuring
that the agents are uniformly distributed along the formation
might be more adequate to produce efficient search motions,
[20]. Therefore, an additional component of the control
law is also added to distribute of the agents along the
elastic formation. This is achieved by taking into account the
communication graph between the agents. The collaborative
control law stands for the case of range-dependent graph.

The following section presents the problem formulation
introducing the affine transformation and the model of the
agents. Section III exposes the main contribution of the
article which deals with the control law to stabilize the agents
to an elastic formation and a cooperative control law to
distribute the agents along the formation. Section V presents
some particular closed formations and the simulation results.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Model of agents and Problem Formulation

Consider the standard agent model commonly used in the
literature to model AUVs restricted kinematics [4], [13], [19].
It corresponds to a kinematic unicycle fitting with model
properties subject to a simple non-holonomic constraint,
adequate for the underwater vehicles. Consider a set of N
agents, in which each agent k = 1, ..., N has the following
constrained dynamics:

ẋk =vk cos θk (1a)
ẏk =vk sin θk (1b)

θ̇k =uk (1c)
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where (xk, yk)T is the position vector of agent k, θk is the
heading angle and vk, uk are the control inputs. Whit appro-
priate limits on the control inputs, this model can provide
a reasonable approximation for many air and underwater
vehicles.

The objective is to stabilize the fleet of agents into a richer
class of formations, i.e. non-circular and time-varying forma-
tions. In [4], a complex notation was introduced to formulate
in an simple manner the circular formation control law using
the previous kinematic model with unit velocity vk = 1 ∀k.
Here, the vectorial notation (1) is now employed and a simple
formulation of the control law is obtained.

Moreover, an additional objective is to distribute the agents
along the formation in a cooperative way, taking into account
the communication constraints.

B. Preliminaries on Affine Transformations
A circular formation in the plane can be defined by three

basic parameters, the center of the circle, its radius and the
angular velocity of the agents along the circle. In order
to modify these parameters, the affine transformations are
introduced.

The three main transformations are the translation, the
rotation and the scaling. To express these affine transfor-
mations the homogeneous coordinates are defined, [22]. The
homogeneous coordinates of a vector z ∈ R2 can simply be
defined as the new vector zh = (zx, zy, 1)T . Let the vectors
e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , e3 = (0, 0, 1)T be a canonic
base of the space R2 expressed in homogeneous coordinates.
In the sequel, the basic affine transformations and some of
their properties are presented.

a) Translation: The translation of a point z by a vector
c corresponds to the following matrix operation z′ = Tczh
where

Tc =

 1 0 cx
0 1 cy
0 0 1


and z′ is expressed in homogeneous coordinates. Its inverse
exists and satisfies T−1c = T−c. Note that c can be time-
varying. This translation is pertinent to move the center of
the formation, see Fig. 1.

b) Scaling: A non-uniform scaling expressed in homo-
geneous coordinates is a transformation such that z′ = Szh
where

S =

 sx 0 0
0 sy 0
0 0 1


and sx > 0, sy > 0. Its inverse matrix contains the inverse
of its elements. The parameters of the scaling can be time-
varying. Some examples of scalings can even lead to ellipses
or other closed curves as shown in Fig. 1.

c) Rotation: A rotation through an angle α counter-
clockwise around the origin can be written in a matrix form
as previously z′ = Rαzh where

Rα =

 cosα − sinα 0
sinα cosα 0

0 0 1



ω0
ω0

ω0 ω0

ω0 ω0

ω0

cd(t) cd(t, ω0)

Rd(t)
Rd(rk)

α̇

Rα(t)

α

Rα SRd(rk)

TRANSLATION

SCALING

ROTATION

Tcd(t) Tcd(t,ω0)

SRd(t) SRd(rk)

Fig. 1. Affine transformations applied to the circular formation

Its inverse exists and satisfies R−1α = RTα . The angle α can be
time-varying. A rotation applied to a formation can change
its orientation with respect to the frame origin or, in the case
of a circular formation, it affects the angular velocity of the
agents around the circle as shown in Fig. 1.

The objective is to find a general framework to stabilize
the fleet of agents to an elastic formation using these affine
transformations. An elastic formation is defined as a closed
curve which results of applying a sequence of affine transfor-
mations to the unit circle (i.e. a circle centered at the origin
with unit radius). This elastic formation can be time-varying
if at least one element of the transformation matrices is time-
varying. In the sequel, a sequence of affine transformations,
which are generated by a combination of the previous ones,
is defined as follows:

G =

I∏
i

J∏
j

K∏
k

SiRαjTck (2)

where the subscripts denote the different transformations of
the same type which are applied. For instance, the matrix
G = S1S2RαTc is a combination of one translation, one
rotation and two different scalings. Note that the matrix
multiplication is not commutative. However, the general
transformation G considered here, is a sequence of the three
affine transformations and the order defined in (2) can be
changed, for instance, to G = RαS1TcS2, which defines an
other elastic formation.

As it is shown in the previous paragraph, the affine
transformations are invertible, therefore the inverse matrix of
the general transformation G−1 exists. Thanks to previous
definitions, G and G−1 are differentiable, if their param-
eters are differentiable. Note that the operators derivative
and invertible are not commutative, therefore ( ddtG)−1 6=
d
dt (G−1) = Ġ

−1
.

In this paper a general transformation is applied to the
unit circle to provide different non-circular and time-varying
formations. The final formation depends on the sequence
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used to define G. In other words, starting from a circle, a
large class of formations can be obtained.

III. CONTROL DESIGN

In previous section, the basic affine transformations have
been defined. The objective is now to design a control law
such that the fleet of agents reach an elastic formation defined
by any sequence of affine transformations applied to the unit
circle.

A. Control Design: Change of Coordinates

Following the previous section, the problem becomes a
formation control design based on the circular control law
from [4]. The desired elastic formation is defined by applying
the matrix G to unit circle C0. The stabilization of system (1)
to an elastic formation can be expressed as the stabilization
of an adequate transformed system to the unit circle.

The position vector of the agent k in homogeneous coordi-
nates is defined as rk = (xk, yk, 1)T . The main contribution
of this paper is to introduce the coordinates transformation:

r̂k = G−1rk (3)

where r̂k = (x̂k, ŷk, 1)T is the transformed position vector
expressed in homogeneous coordinates. The main idea is
first, to stabilize this new transformed system to a circle
with unit radius R0 = 1, centered at (0, 0) and with angular
velocity ω0 6= 0. Then, to apply the circular control law from
[4]. Finally, to apply the inverse transformation to express the
control law in the original framework.

In order to apply the circular formation control law, the
new transformed system must have constant linear velocity
equal to R0ω0. Therefore the dynamics of the transformed
position vector are defined as:

˙̂xk =ω0 cosψk (4a)
˙̂yk =ω0 sinψk (4b)

where ψk represents the angular orientation of the trans-
formed velocity vector ˙̂rk such that:

ψk = arctan
eT2

˙̂rk
eT1

˙̂rk
+ επ = arctan

eT2
d
dt (G−1rk)

eT1
d
dt (G−1rk)

+ επ

where ε = 0 if eT1
d
dt (G−1rk) > 0 and ε = 1 otherwise. The

vector of the new control inputs for this transformed system
is ψ̇ = (ψ̇1, . . . , ψ̇N )T .

Applying the circular control law from [4] expressed in
the transformed framework, the system (4) converges to C0.
Now we want to come back to the original framework to
express the control inputs of the original system vk, uk with
respect to the transformed control input ψ̇k. Considering (1),
it is easy to see that vk and θk are given by:

vk = ‖ṙk‖ and tan θk =
ẏk
ẋk

An expression of θ̇k is obtained by computing the derivative
of tan θk as follows:

θ̇k(1 + tan2 θk) =
d

dt

(
ẏk
ẋk

)
=
ÿkẋk − ẏkẍk

ẋ2k

Using the homogeneous coordinates defined previously, the
following equation holds:

θ̇k =
r̈Tk Rπ

2
ṙk

‖ṙk‖2

The original system is related to the transformed system
through the matrix G. The following equations are obtained
from the change of coordinates (3):

rk = Gr̂k
ṙk = Ġr̂k + G ˙̂rk = GG−1rk + ω0G(cosψk, sinψk, 0)T

r̈k = G̈r̂k + 2Ġ ˙̂rk + G¨̂rk = G̈G−1rk + 2ĠĠ
−1

rk
+2ĠG−1ṙk + GRπ

2
(Ġ
−1

rk + G−1ṙk)ψ̇k

Thanks to these relations, the original framework is ex-
pressed with respect to the transformed system and the
circular control law for ψ̇k.

B. Formation Control Law

Using the previous definitions of elastic formation and the
general transformation matrix, a new control law is proposed
in the following theorem:

Theorem 1 Let G be a twice differentiable matrix with
bounded derivatives resulting of a sequence of affine trans-
formations as (2) and F = G ◦ C0 be the desired elastic
formation. Let ω0 6= 0, κ > 0 be two control parameters
such that the following condition is satisfied:

|ω0| 6=
∥∥∥G−1ĠG−1rk

∥∥∥ (5)

Then the control law:

vk =
∥∥∥ĠG−1rk + ω0G(cosψk, sinψk, 0)T

∥∥∥ (6a)

uk =
1

v2k

(
G̈G−1rk + 2ĠĠ

−1
rk + 2ĠG−1ṙk

)T
Rπ

2
ṙk

+
ψ̇k
v2k

(
Ġ
−1

rk + G−1ṙk
)T

RTπ
2

GTRπ
2

ṙk (6b)

with

ψ̇k =ω0

(
1 + κω0(cosψk, sinψk, 0)G−1rk

)
(7a)

ψk(0) = arctan
eT2

d
dt (G−1rk)(0)

eT1
d
dt (G−1rk)(0)

+ επ (7b)

makes all the agents defined by (1) converge to the elastic
formation F . The direction of rotation is determined by the
sign of ω0.

Proof: Using the relations between the original sys-
tem and the transformed system detailed in the previous
subsection, starting from (7), the control inputs vk, uk are
straightforwardly given by (6). The convergence of the
transformed system to the circular formation is analyzed
using the following Lyapunov function, based on the analysis
of the circular control law proposed in [4]:

S(r̂, ψ) =
1

2

N∑
k=1

∥∥∥ ˙̂rk − ω0Rπ
2

r̂k
∥∥∥2 ≥ 0
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where the matrix Rπ
2

represents a rotation by π
2 but erasing

the homogeneous coordinate such that Rπ
2

(3, 3) = 0. Note
that when S(r̂, ψ) = 0 the dynamics of the transformed
system (4) satisfy ˙̂rTk r̂k = 0 which is the kinematic relation
for the rotation of the rigid body. Evaluating the derivative
of S(r̂, ψ) along the solutions of the resulting closed-loop
system (4) with the control law (7a) leads to:

Ṡ(r̂, ψ) =

N∑
k=1

(
˙̂rk − ω0R∗r̂k

)T (
Rπ

2

˙̂rkψ̇k − ω0Rπ
2

˙̂rk
)

=

N∑
k=1

ω0r̂Tk ˙̂rk(ω0 − ψ̇k) = κ

N∑
k=1

(
ω0r̂Tk ˙̂rk

)2
≤ 0

Therefore S(r̂, ψ) is a suitable Lyapunov function for this
transformed system. Thus, the solutions converge to the
largest invariant set Λ, for which Ṡ = 0. Then, the
transformed system (4) asymptotically reaches the circular
formation centered at (0, 0)T and of unit radius with fixed
angular velocity ω0. Thanks to the change of coordinates
(3), the dynamic closed-loop equation corresponding to
the transformed formation is time-invariant, hence LaSalle
Principle can be applied. As stated above, this result is an
adaptation of the circular control law in [4] expressed in the
new formulation.

Note that this control law has singular points when vk = 0,
such that:

vk =
∥∥∥ĠG−1rk + ω0G(cosψk, sinψk, 0)T

∥∥∥ = 0

This singular point occurs if there exists a time tc such that:{ ∥∥∥G−1(tc)Ġ(tc)G−1(tc)rk(tc)
∥∥∥ = |ω0|

∠G−1(tc)Ġ(tc)G−1(tc)rk(tc) = ψk(tc)

where ∠ represents the argument of a vector. The equation
(5) is a sufficient condition to avoid the singular points.

Remark 1 Note that the equation (5) is a condition imposed
to the transformation matrix G to restrict the variation of its
time-varying parameters with respect to the angular velocity
ω0. In each particular case, it can be expressed in a simple
manner and corresponds to an initialization protocol or a
physical limitation. For instance, to avoid vk = 0 in the
case of a time-varying translation Tc(t), the velocity of the
moving center cannot be equal to the linear velocity of the
agents in the circle. The condition (5) becomes R|ω0| > ‖ċ‖
where R is the radius of the circle and ċ the velocity of its
center, see [16].

Theorem 1 presents a general control law expressed in
the new framework, to stabilize a group of agents to an
elastic formation. The term elastic denote the capability of
the formation to move and change its shape in order, for
instance, to avoid an obstacle (see Fig. 2), to achieve the
source seeking problem, to delimit a polluted region, or to
avoid unnecessary energy waste. This elastic formation is
defined by a sequence of affine transformations G applied
to the unit circle. The matrix G is a given reference for all

the agents. Note that each agent converges to the formation
independently of the rest of the fleet. Following section
presents a collaborative control to distribute the agents along
the formation defined by G.

C. Cooperative Control: Symmetric Balanced Patterns

This section is dedicated to the problem of homogenizing
the distribution of the agents along the formation. In the
unit circle C0, the agents are uniformly distributed when
the angular difference between adjacent vehicles is 2π/N .
The distribution of the agents along an elastic formation F
depends on the transformation matrix G applied to C0.

All-to-all communication topology and some cases of
limited communication have been studied in [4], [13] for the
circular formation problem. The translation or contraction
control laws including this consideration are straightforward
obtained, as shown in [16], [17]. The solution proposed in
these previous works deals with the addition of a potential
function depending on the heading angles of which the min-
imum corresponds to a symmetric pattern. For instance, the
symmetric pattern in which all of the particles are uniformly
spaced around the circle is called a splay formation. This
potential function contains information of the communication
links between the agents. The communication topology for
the group of agents is represented by means of a commu-
nication graph G. L denotes the Laplacian matrix of G, see
[23].

This paragraph presents the notation included in the
corollary. The new Laplacian matrix considered is L̄ =
L ⊗ I2 where ⊗ is the classical Kronecker product and
IN ∈ RN×N is the identity matrix and the matrix
Bm = (cosmψ1, sinmψ1, ..., cosmψN , sinmψN )T con-
tains all the orientation angles of the transformed system.
Considering this notation and applying the previous men-
tioned works to our new formulation, the following corollary
holds:

Corollary 1 Let G be a twice differentiable matrix with
bounded derivatives resulting of a sequence of affine trans-
formations as (2) and F = G ◦ C0 be the desired elastic
formation. Let ω0 6= 0, κ > 0 and K > 0 be three control
parameters and the condition (5) be satisfied. Let G be the
communication graph and L be the corresponding Laplacian
matrix. Then the previous control law (6) with:{

ψ̇k = ω0

(
1 + κω0(cosψk, sinψk, 0)G−1rk

)
− ∂U

∂ψk

U(ψ) = −KN
∑bN/2c
m=1

1
2m2 BTmL̄Bm

(8)
where bN/2c is the largest integer less than or equal to
N/2 and the initial conditions ψ(0) satisfy (7b), makes
all the agents defined by (1) converge to the formation F .
The direction of rotation is determined by the sign of ω0.
Moreover, the splay pattern is an extremum point of the
potential U(ψ). If the communication graph is complete (all-
to-all communication) the splay pattern is asymptotically
stable and the uniform distribution of the angles ψk along
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C0 is achieved. Therefore the agents are distributed in the
formation F , taking into account the transformation G.

Proof: The stability is analyzed by the composed
Lyapunov function V (r̂, ψ) = κS(r̂, ψ) + U(ψ) of which
the derivative is expressed as V̇ (r̂, ψ) = κṠ(r̂, ψ) +∇U(ψ).
Based on the previous works [4], [13], the potential function
U(ψ) is invariant to rigid rotations. Therefore, using (8),
the derivative of the Lyapunov function satisfies V̇ (r̂, ψ) =

−
∑N
k=1

(
κω0r̂Tk ˙̂rk − ∂U

∂ψk

)2
≤ 0. Thanks to LaSalle Prin-

ciple, the system converges asymptotically to the elastic
formation and the agents are distributed along F taking into
account the transformation matrix G.

Remark 2 An extension of this result can be proposed
for the case of limited communication preserving the same
formulation and considering the connectivity properties for
the Laplacian matrix which correspond to several communi-
cation graphs. See [2], [13], [17], [23].

The cooperative control law (8) is an extension of the
previous formation control law to stabilize elastic formations.
The splay pattern is an extremum of the potential function
U(ψ) which is added to the transformed control variable
ψ̇k. In the case of limited communication range, a commu-
nication area ρ is introduced. This means each agent can
only receive information from its close neighbors, i.e if the
distance between two agents k and j is smaller than ρ, these
agents are able to communicate, see [17]. In this case, the
function U(ψ) can be also considered as a repulsion potential
which is able to avoid the collisions between the agents.

IV. SIMULATION RESULTS AND PARTICULAR CASES

The previous section shows the general control law to
stabilize the agents modeled by (1) to a formation defined
by the transformation G. The objective of this generalization
is to express the previous formation control laws presented
in the literature with the new formulation and to propose
a solution to control new class of formations. In order to
validate this result, some particular cases are presented in
this section. First of all, we show that the works on circular
formation [4], [13], [16], [17] can be expressed through this
formulation. Next, some new formations are proposed.

A. Circular Formation

The more simple case when G = I3 is analyzed. The
control law becomes:

vk =|ω0|

uk =ψ̇k = ω0

(
1 + κṙTk rk

)
This control law makes all the agents defined by (1) converge
to the circular formation C0. This result is equivalent to the
circular control law from [4].

In order to stabilize a circular formation with a desired
radius R > 0 and centered at c = (cx, cy) the general
transformation G is a sequence of a translation and a uniform

−10 −5 0 5 10 15 20 25 30 35 40
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t=350s

Fig. 2. Simulation of five agents governed by the control law (6) where
G(t) = SR(t)Tc(t). The circular formation with time-varying radius tracks
the time-varying center reference in order to avoid the obstacles (black
blocks).

scaling (sx = sy = R), such that G = TcSR. In this case
the control law is expressed as:

vk =R|ω0|

uk =ψ̇k = ω0

(
1 + κṙTk (rk − ch)

)
where ch is the position vector of the center in homogeneous
coordinates.

B. Combined Motion of a circle

The new formulation shown in this article makes possible
the combination of several transformations. This is the case
of the combined motion problem in which the circular
formation with time-varying radius tracks a time-varying
center. Consider the transformation G(t) = Tc(t)SR(t) which
represents a combined motion (translation and scaling) of the
circular formation where the center of the desired formation
c(t) : R → R2 and its radius R(t) : R → R+ are twice
differentiable functions with bounded first and second time-
derivatives. Applying Theorem 1, the agents converge to
a circular formation with time-varying radius and moving
center. This result is the combination of the two previous
works [16], [17] expressed in the new framework.

Figure 2 shows the simulation of five agents governed by
the control law (6) with (8) where G(t) = Tc(t)SR(t). The
control law parameters are ω0 = 1, κ = 1 and K = 1/10.
The time-varying radius reference is R(t) = 5 + 2 cos 2π

500 t
and c(t) = ( 1

10 t, 3 sin 2π
300 t)

T is the tracked time-varying
center. The agents converge to the moving formation for any
random initial conditions (position and heading of the agent)
represented in the figure by the blue void agents. This is an
example of one possible application of the combined motion
control law and a first step to achieve the final objective: to
develop a collaborative control to generate both references
in a distributed way.

Moreover, the communication radius considered here is
ρ = 10 which satisfies the geometrical condition ρ >
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t=400s

t=0

Fig. 3. Simulation of five agents stabilized in an elliptic formation. The red
line represents the trajectory of one agent (elliptic formation). The figure
shows two snapshots. The blue agents represent the initial conditions. The
reds ones represent the final state t = 400s.

2Rmax sin π
N where Rmax is the up-bound of the radius

reference. Therefore the agents are distributed along the time-
varying circular formation, see [17].

C. Elliptic formation

The general formulation presented in this article is perti-
nent also to stabilize the fleet to non-circular formations as
an ellipse. In this case the transformation is a time-invariant
non-uniform scaling G = S where sx 6= sy .

Figure 3 shows a simulation of five agents with the
controller designed in Theorem 1 and all-to-all communi-
cation. The control law parameters are ω0 = 1, κ = 1
and K = 1/10. The agents are stabilized to the elliptic
formation defined by the non-uniform scaling sx = 5, sy =
1. Moreover the agents are distributed along the formation
considering the transformation of the splay pattern which is
stable in the original unit circle.

V. CONCLUSIONS

We have developed a general control law to stabilize a fleet
of agents to an elastic formation, for instance time-varying
or non-circular formation, which is defined by a sequence
of affine transformations (translation, rotation and scaling)
applied to the unit circle. Some particular cases and simu-
lations have been presented to show the convergence of this
control law and some possible applications. Moreover, this
paper proposes a cooperative control algorithm to distribute
the agents along the elastic formation. This potential function
is designed by taking into account the communication graph
between agents.

At this time, it is assumed that all agents have perfect
knowledge of the transformation matrix G and its first and
second derivatives. Further developments would consider a
cooperative algorithm which will relax this assumption, and
the elastic formation will be defined in a collaborative way.
Moreover, an other future research goal is to include the
effect of different disturbances as currents on the formation
control algorithm.
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