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Abstract— This work focuses on the application of a mul-
tivariable model predictive controller that regulates thin film
surface roughness and mean slope to a two-dimensional kinetic
Monte-Carlo thin film growth model using both substrate
temperature and deposition rate as manipulated inputs. The
description of the thin film growth involving both adsorption
and surface migration is first given. Surface roughness and
surface slope are defined as the root-mean-squares of the
surface height profile and the surface slope profile, respectively.
The dynamics of the evolution of the thin film surface height
profile are assumed to be described by an Edwards–Wilkinson-
type equation (a second-order stochastic partial differential
equation) in two spatial dimensions. Analytical solutions of the
expected surface roughness and surface slope are obtained on
the basis of the Edwards–Wilkinson equation and are used in
the controller design. The model parameters of the Edwards–
Wilkinson equation depend on the substrate temperature and
deposition rate. This dependence is used in the formulation
of the predictive controller to predict the influence of the
control action on the surface roughness and slope at the end
of the growth process. The model predictive controller involves
constraints on the magnitude and rate of change of the control
action and optimizes a cost that involves penalty on both
surface roughness and mean slope from the set-point values.
The controller is applied to the two-dimensional kinetic Monte-
Carlo thin film growth model and is shown to successfully
regulate surface roughness and mean slope to set-point values
at the end of the deposition.

Key words: Surface mean slope, surface roughness, light

trapping optimization, model predictive control, distributed

parameter systems, thin film growth.

I. INTRODUCTION

Over the last decade, significant research efforts have

demonstrated (e.g., [19], [12], [10], [14], [13]) that the

surface morphology of thin films, in particular the thin film

surface roughness and the mean surface slope (root-mean-

square (rms) of the surface slope profile), strongly influence

the light trapping efficiency of thin-film solar cells. This

motivates designing model-based control systems with the

objective of tailoring thin film surface morphology to desired

characteristics to improve light trapping efficiency.

With respect to previous work on modeling and control

of thin film growth, microscopic/multiscale modeling ap-

proaches have been developed and used to design feedback

control systems for thin film surface roughness, porosity
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and thickness control (see, for example, [1], [15], [16], [7],

[8] for representative results and references). Specifically,

modeling approaches can be broadly classified into the

following categories: kinetic Monte Carlo (kMC) methods

and stochastic differential equation (SDE) models. Since

kMC models are not available in closed form, they cannot

be readily used for feedback control design and system-level

analysis. On the other hand, SDE models possess a closed

form that enables their use as the basis for the design of

feedback controllers which can regulate thin film surface

morphology and microstructure. Recently, we initiated an

effort towards modeling and control of surface mean slope

which strongly influences the light reflectance and transmit-

tance properties of thin films. In this direction, we have

studied dynamics and lattice size dependence of surface

mean slope [9] and designed predictive control algorithms for

both surface roughness and slope regulation using stochastic

partial differential equations (PDEs) in one spatial dimension

[22].

In a previous work [21], we focused on the development

of a model predictive controller to regulate both surface

roughness and slope and applied this controller to a two-

dimensional (2D) Edwards–Wilkinson-type equation. In the

present paper, we focus on the application of the mul-

tivariable model predictive controller of [21] to a two-

dimensional kinetic Monte-Carlo thin film growth model

to regulate thin film surface roughness and mean slope at

appropriate set-points, using both substrate temperature and

deposition rate as manipulated inputs. The dynamics of the

evolution of the thin film surface height profile are assumed

to be described by an Edwards–Wilkinson-type equation

in two spatial dimensions. The model parameters of the

Edwards–Wilkinson (EW) equation depend on the substrate

temperature and deposition rate and are computed on the

basis of open–loop data obtained from the two-dimensional

kinetic Monte–Carlo simulator. This dependence is used in

the formulation of an EW–based predictive controller that

involves constraints on the magnitude and rate of change of

the control action and optimizes a cost that involves penalty

on both surface roughness and mean slope from the set-point

values. The controller is successfully applied to the two-

dimensional kinetic Monte-Carlo thin film growth model.

II. PRELIMINARIES

A. Description of thin film deposition process

In this work, we focus on a thin film deposition process in-

volving deposition and surface migration in two-dimensions

(2D). We make the solid-on-solid (SOS) assumption during
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the growth, where particles land on top of the existing surface

particles. Periodic boundary conditions are applied in the

directions that are perpendicular to the growth direction.

Lattice size is defined as the number of sites in the lateral

direction. The lattice size in both lateral directions is the

same, i.e., the deposition takes place on a square lattice.

Fig. 1 shows the lattice model of the thin film deposi-

tion process. In Fig. 1, the incident particles are deposited

vertically onto the thin film. The surface particles, i.e., the

highest particles of the lattice sites, are subject to a migration

event. Specifically, the deposition and migration events are

separated into two independent microscopic events (e.g.,

[11]). The deposition event is a random deposition. With

respect to migration, the top particle of a lattice site is

subject to migration with a probability that depends on its

local environment (i.e., number of nearest neighbors) and

the substrate temperature. The migration rate (probability)

follows an Arrhenius-type law as follows:

rm,i = ν0 exp

(

−Es +niEn

kBT

)

, (1)

where rm,i denotes the migration rate of the i-th surface par-

ticle, ν0 = 2kBT/h is a pre-exponential factor, ni = 0,1,2,3,

is the number of the nearest neighbors in the same layer of

the surface particle on the ith lattice site, Es and En are

the contribution to the activation energy barrier from the

surface site and from each nearest neighbor, respectively, kB

is Boltzmann’s constant, h is Planck’s constant, and T is the

substrate temperature. The following values were used for

the process parameters

Es = 1.58 eV En = 0.28 eV (2)

When a surface particle is subject to migration, the particle

moves to a neighboring site with a lower surface height.

If two or more neighboring sites are lower than the surface

height, the migrating particle randomly moves to one of these

neighboring sites with equal probability. We note that when

ni equals the number of nearest neighboring sites, the particle

is fully surrounded by other particles and cannot move.

We use the continuous-time kinetic Monte Carlo (CTMC)

algorithm [17] to simulate the thin deposition process model.

B. Edwards–Wilkinson Equation for Surface Height Dynam-

ics

The Edwards–Wilkinson (EW) equation has been demon-

strated to adequately describe the dynamics of the evolu-

tion of the surface height profile in many thin-film growth

processes that involve a thermal balance between atom ad-

sorption and surface migration (e.g., [2], [3], [4], [9]). In this

work, we use an EW-type equation in two spatial dimensions

to describe the film surface evolution of the following form:

∂h

∂ t
= c+ c2(

∂ 2h

∂x2
+

∂ 2h

∂y2
)+ξ (x,y, t) (3)

where x ∈ [0,π], y ∈ [0,π] are the spatial coordinates, t is

the time, h(x,y, t) is the surface height, and ξ (x,y, t) is a

Fig. 1. Thin film deposition processes in the the two dimensional square
lattice.

Gaussian white noise with a zero mean and the following

covariance:

〈

ξ (x,y, t)ξ (x′,y′, t ′)
〉

= σ2δ (x− x′)δ (y− y′)δ (t − t ′) (4)

where δ (·) denotes the Dirac delta function. c, c2, and

σ2 are model parameters that have explicit dependence

on the macroscopic operating variables, i.e., the substrate

temperature, T , and the deposition rate, W . Specifically, c

is related to the growth rate of the average surface height

and c2 is related to the effect of surface migration. These

model parameters can be identified on the basis of kinetic

Monte Carlo simulation or experimental data [11], [6]; please

see subsection II-D below for a detailed discussion on the

computation of c, c2 and σ2. The stochastic PDE of eq (3) is

subject to periodic boundary conditions (PBCs) of the form:

h(0,y, t) = h(π,y, t) h(x,0, t) = h(x,π, t) (5)

∂h

∂x
(0,y, t) =

∂h

∂x
(π,y, t)

∂h

∂y
(x,0, t) =

∂h

∂y
(x,π, t) (6)

and the initial condition

h(x,y,0) = h0(x,y) (7)

To analyze the dynamics and obtain a finite-dimensional

approximation of the EW equation, we first consider the

eigenvalue problem of the linear operator of eq (3) subject

to the periodic boundary conditions of eqs (5) and (6):

A φm,n(x,y) = c2(
∂ 2

∂x2
+

∂ 2

∂y2
)φm,n(x,y) = λm,nφm,n(x,y),

(8)

∇ jφm,n(0,y) = ∇ jφm,n(π,y), j = 0,1 (9)

∇ jφm,n(x,0) = ∇ jφm,n(x,π), j = 0,1 (10)

where λm,n denotes an eigenvalue, φm,n denotes an eigen-

function, and ∇ j, j = 0, 1, denotes the gradient of a given

function. The solution of the eigenvalue problem is as
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follows:

λm,n = 4c2(m
2 +n2) (11)

φ1,m,n =
2

π
sin(2mx)sin(2ny) (12)

φ2,m,n =











1
π m = 0 and n = 0
2
π cos(2mx)cos(2ny) m 6= 0 and n 6= 0√

2
π cos(2mx)cos(2ny) otherwise

(13)

φ3,m,n =











0 m = 0
2
π sin(2mx)cos(2ny) m 6= 0, n 6= 0√

2
π sin(2mx) m 6= 0, n = 0

(14)

φ4,m,n =











0 n = 0
2
π cos(2mx)sin(2ny) n 6= 0, m 6= 0√

2
π sin(2ny) n 6= 0, m = 0

(15)

The solution of the EW equation of eq (3) can be expanded

in an infinite series in terms of the eigenfunctions of the

operator of eq (8) as follows:

h(x,y, t) =
+∞

∑
m=0

+∞

∑
n=0

4

∑
p=1

φp,m,nzp,m,n, (16)

where z1,m,n, z2,m,n, z3,m,n, and z4,m,n are time-varying coef-

ficients.

Substituting the above expansion for the solution, h(x,y, t)
into eq (3) and taking the inner product with the adjoint

eigenfunctions, the following system of infinite stochastic

linear ordinary differential equations (ODEs) for the tempo-

ral evolution of the time-varying coefficients is obtained:

dz2,0,0

dt
= πc+ξ2,0,0(t), (17)

dzp,m,n

dt
= λm,nzp,m,n +ξp,m,n(t) (18)

p = 1,2,3,4, m,n = 0,1, · · · ,∞, m2 +n2 6= 0

where ξp,m,n =
∫ π

0

∫ π
0 ξ (x,y, t)φp,m,ndxdy is the projection of

the noise ξ (x,y, t) on the ODE for zp,m,n. The noise term,

ξp,m,n, has zero mean and covariance

〈

ξp,m,n(t)ξp,m,n(t
′)
〉

= σ2δ (t − t ′). (19)

The temporal evolution of the variance of mode zp,m,n can

be obtained from the solution of the linear ODE of eqs (17)

and (18) as follows:

〈

z2
p,m,n(t)

〉

= e2λm,n(t−t0)
〈

z2
p,m,n(t0)

〉

+σ2 e2λm,n(t−t0)−1

2λm,n

(20)

m2 +n2 6= 0

For feedback control purposes (see Section III below), the

modes can be calculated from a surface height measurement

as follows:

zp,m,n(t) =
∫ π

0

∫ π

0
h(x,y, t)φp,m,n(x,y)dxdy. (21)

In many circumstances, only discrete height profile measure-

ments are available, thus eq (21) can be approximated by

zp,m,n(t) =
π2

L2

L−1

∑
i=0

L−1

∑
j=0

ĥ(i, j, t)φp,m,n(i, j) (22)

where L is the number of spatial height sampling (mea-

surement) points in [0,π] in both x and y coordinates and

ĥ(i, j, t) = h(xi,y j, t) = h( iπ
L
, jπ

L
, t). It is worth pointing out

that, when discrete height measurements are available, the

highest number of modes that can be accurately calculated

is limited by the spatial sampling points, m,n ≤ L/2.

C. Film Surface Roughness and rms Slope

Thin film surface morphology can be characterized by

roughness and rms slope. Roughness is defined as the root-

mean-square of the surface height profile:

r(t) =

√

1

π2

∫ π

0

∫ π

0

(

h(x,y, t)− h̄(t)
)2

dxdy

≈

√

√

√

√

1

L2

L−1

∑
i=0

L−1

∑
j=0

(

ĥ(i, j, t)− h̄
)2

(23)

where h̄ denotes the average surface height. Substituting

eq (16) into eq (23), the expected value of r2 can be rewritten

in terms of the state covariance as follows:

〈

r2
〉

=
1

π2

L/2

∑
m,n=0

m2+n2 6=0

4

∑
p=1

〈

z2
p,m,n

〉

(24)

The rms slope is defined as the root mean square of the

slope of the surface height:

m(t) =

√

1

π2

∫ π

0

∫ π

0

(

∂h

∂x
(x,y, t)

)2

dxdy

≈

√

√

√

√

1

π2

L−1

∑
i=0

L−1

∑
j=0

(

ĥ(i+1, j, t)− ĥ(i, j, t)

∆x

)2
π2

L2

(25)

The expected rms slope square can also be expressed in terms

of the state covariance as follows:

〈

m2
〉

=
L/2

∑
m,n=0

m2+n2 6=0

4

∑
p=1

(

Kp,m,n

〈

z2
p,m,n

〉)

(26)

where Kp,m,n can be computed by

Kp,m,n =
1

π2

L−1

∑
i=0

L−1

∑
j=0

(φp,m,n(i+1, j)−φp,m,n(i, j))2

=
4

π2
sin2

(πm

L

)

(27)
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Fig. 2. c2 as a function of T and W .
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Fig. 3. σ2 as a function of T and W .

D. Determination of c2 and σ2 as functions of T and W

The dependence of c2 and σ2 on substrate temperature

T and deposition rate W can be obtained from either ex-

periments or kinetic Monte Carlo simulations of the thin

film growth process. In this work, we first carry out 100

open–loop simulations at 10 different temperatures (T =
600,610, . . . ,690 K) and 10 different deposition rate con-

ditions (W = 0.1,0.2, . . . ,1.0 layer/s). Each simulation is

repeated 100 times. The simulation time is 200 seconds.

Then, we determine c2 and σ2 by fitting eq. (24) and (20) to

the evolution profile of
〈

r2(t)
〉

from the obtained open-loop

simulations using least–squares. Subsequently, c2 and σ2 are

expressed as cubic spline functions (continuous in function

value and first derivative) of T and W . Fig. 2 and Fig. 3 show

the dependence on T and W of c2(T,W ) and σ2(T,W ).
Because the value of c affects neither

〈

r2
〉

nor
〈

m2
〉

, it is

not included in the controller formulation (please see eq. (28)

below), thus no fitting was done to c.

III. MULTIVARIABLE PREDICTIVE CONTROLLER DESIGN

In this section, a model predictive controller is developed

based on the dynamic model of the expected roughness

square and rms slope square. Substrate temperature and

deposition rate are used as the manipulated variables. The

control objective is to minimize the deviation of the expected

roughness square and/or rms slope square from desired set-

point values. Because the thin film deposition process is

a batch process, the interval between current time and the

end of the batch run is used as the prediction horizon.

During each predictive controller evaluation, the manipulated

variable is assumed to stay fixed until the end of the batch.

To account for practical considerations, two types of input

constrains are imposed. First, both the temperature and the

deposition rate have lower and upper limits; second, the rates

of change of both inputs are constrained to be less than

certain upper limits due to actuator limitations. The resulting

MPC formulation is as follows:

min
T,W

J(t) = qr2

(〈

r2(t f )
〉

− r2
set

)2
+qm2

(〈

m2(t f )
〉

−m2
set

)2

where

〈

r2(t f )
〉

=
1

π2

L/2

∑
m,n=0

m2+n2 6=0

4

∑
p=1

〈

z2
p,m,n

〉

〈

m2(t f )
〉

=
L/2

∑
m,n=0

m2+n2 6=0

4

∑
p=1

Kp,m,n

〈

z2
p,m,n(t f )

〉

(28)

cov(zp,m,n(t f )) =e−8c2(m
2+n2)(t f −t)cov(zp,m,n(t))

+σ2 e−8c2(m
2+n2)(t f −t)−1

2λm,n

m2 +n2 6= 0

subject to:

Tmin ≤ T ≤ Tmax, |T (t)−T (t −dt)| ≤ ∆Tmax,

Wmin ≤W ≤Wmax, |W (t)−W (t −dt)| ≤ ∆Wmax

where t f is the final time of the batch run, r2
set and m2

set are the

respective set-points for the surface roughness square and the

mean slope square, qr2 and qm2 are the weighting factors for

the deviations of
〈

r2
〉

and
〈

m2
〉

from their set-points, r2
set and

m2
set respectively, at t f , dt is the time interval between two

successive sampling times and control actions, Tmin and Tmax

are the lower and upper bounds on the substrate temperature,

respectively, ∆Tmax is the limit on the rate of change of the

substrate temperature, Wmin and Wmax are the lower and upper

bounds on the deposition rate, respectively, and ∆Wmax is the

limit on the rate of change of the deposition rate.

The optimization problem is solved at each sampling

time once a new measurement of the surface height pro-

file becomes available. An interior point method optimizer,

IPOPT [18], is used to solve the optimization problem in the

MPC formulation.

Remark 1: Referring to the design and implementation of

estimation-based (output feedback) model predictive control,

we note that an output feedback controller, which utilizes

a Kalman–Bucy-type filter as the state estimator, was de-

veloped and used in the context of covariance control of a

stochastic partial differential equation in a previous work of

our group [5]. Furthermore, estimation-based control of a

kinetic Monte Carlo model of a one-dimensional thin-film

growth process was also studied in the context of roughness
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control [6] and porosity control [20]. The application of the

proposed controller in conjunction with an estimation scheme

will be addressed in a future work.

IV. SIMULATION RESULTS

In this section, the model predictive controller of eq. (28)

is applied to the two-dimensional KMC process model. The

variation of substrate temperature is from 600 to 750 K and

the variation of the deposition rate is from 0.1 to 1 layer/s.

The initial temperature is 610 K, and the initial deposition

rate is 1 layer/s. The maximum rate of change of the inputs

are ∆Tmax = 5 K/s for temperature and ∆Wmax = 0.05 layer/s

for deposition rate. The sampling time is 5 s. Each closed-

loop simulation lasts for 100 s (t f = 100 s). Expected values

are calculated from 100 independent runs.

A. Control of Film Surface Roughness

First, the problem of regulating film surface roughness is

considered. In this scenario, the cost function only contains

penalty on the deviation of the expected surface roughness

square from the set-point. The weighting factors are qr2 = 1

and qm2 = 0. The set-point is r2
set = 3.

Fig. 4 shows the profile of
〈

r2
〉

under the model predictive

controller of eq. (28). It can be seen that the controller drives

the expected film roughness at the end of the simulation close

to the desired value. Fig. 5 shows the expected profiles of

T and W for the closed-loop simulation. Fig. 6 shows the

histogram of r2 from closed-loop simulations. We can see

that
〈

r2
〉

is close to the set-point value.

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

time (s)

<
r2

>
 (

la
y
e
r2

)

Fig. 4. Profile of expected film surface roughness square from 100 closed-
loop simulations. qr2 = 1, qm2 = 0 and r2

set = 3.

B. Control of Film Surface rms Slope

Next, we consider the regulation of thin film surface

rms slope. The cost function includes only penalty on the

deviation of the expected value of rms slope square from the

set-point by choosing weighting factors qr2 = 0 and qm2 = 1.

The set-point is m2
set = 10.0.

Fig. 7 shows the profile of expected rms slope square

from 100 repeats of closed-loop simulations. The rms slope

reaches its set-point at t = 100 s. Fig. 8 shows the profile of

expected temperature and deposition rate. The histogram of
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Fig. 5. Profiles of expected manipulated inputs. qr2 = 1, qm2 = 0 and

r2
set = 3.
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Fig. 6. Histograms of r2 at the end of closed-loop simulation. qr2 = 1,

qm2 = 0 and r2
set = 3.

m2 at the end of the closed-loop simulation is presented in

Fig. 9. Again, we can see that the mean value of m2 is close

to the set-point value.
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12

time (s)

<
m

2
>

Fig. 7. Profile of expected film surface rms slope square from 100 closed-
loop simulations. qr2 = 0, qm2 = 1, and m2

set = 10.0.

C. Simultaneous Control of Roughness and rms Slope

Finally, simultaneous regulation of roughness and rms

slope is carried out. The set-points of the surface roughness

square and of the mean slope square are r2
set = 3.0 and
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Fig. 8. Profiles of expected manipulated inputs. qr2 = 0, qm2 = 1, and
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set = 10.0.
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Fig. 9. Histograms of m2 at the end of closed-loop simulation. qr2 = 0,

qm2 = 1, and m2
set = 10.0.

m2
set = 10.0. The weighting factor of mean slope square is

kept at 1, while the weighting factor of roughness square

increases from 10−3 to 105.

Fig. 10 shows the change of
〈

r2
〉

and
〈

m2
〉

as a function

of qr2/qm2 . It can be seen that as the weighting on roughness

square increases, the expected roughness square approaches

more closely its set-point value at the cost of larger deviation

of rms slope square from its set-point value.
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Fig. 10.
〈

r2
〉

and
〈

m2
〉

at the end of closed-loop simulations (t = 100 s)

for different penalty weighting factors: qm2 = 1 and 10−3 ≤ qr2 ≤ 105.
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