
  

 
  

Abstract — A new method for finding all fractional-order 
(FO) proportional-integral-derivative (PID) controllers that 
stabilize a given system of integer or non-integer order is 
proposed. The stability boundaries of such FO PID controllers 
are calculated in the frequency domain and are given in terms of 
the proportional gain Kp, integral gain Ki, and derivative gain Kd. 
In this paper, they will be plotted on the (Kp, Ki), (Kp, Kd), and (Ki, 
Kd) planes. A key advantage of this approach is that it provides 
the stability boundaries even when the transfer function of a 
system is not available, as long as the frequency response of the 
system can be obtained. Moreover, the method does not require 
complicated mathematical calculations. An example is presented 
to illustrate the effectiveness of this method. The results are 
compared with those of conventional integer-order (IO) PID 
controllers for a sample example. 

I. INTRODUCTION 
ESPITE its comparatively long history of more than three 
hundred years [1], fractional calculus has largely 

remained a topic of pure mathematics. This is starting to 
change. In [2], for example, applications of fractional calculus 
to the fields of physics and engineering, including nonlinear 
control and fractional order controllers, are explored. 

Though PID controllers are clearly in the mainstream of the 
process control field, their non-integer order counterparts, so 
called PIλDμ controllers (where λ and μ are arbitrary real 
numbers) are starting to receive considerable attention. While 
integer-order (IO) mathematical models are easier to work 
with, real physical systems are often described more 
accurately through non-integer order models. In [3], a 
torsional system consisting of a rigid disk and a flexible shaft 
attached thereto was modeled using a fractional-order (FO) 
transfer function. The resulting frequency response shows that 
the mechanical resonance effect is represented more naturally 
with an FO model than an IO model. A simpler form of an FO 
PID controller, or so called FO PIDk controller (where k is any 
real number), was used in a control system to suppress a 
torsional system’s backlash vibration in [4]. The French 
control team CRONE (Controle Robuste d’Ordre Non-Entier) 
has also been deeply involved in the application of FO 
controllers to suspension control [5] and flexible transmission 
[6] of vehicles. 
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As in the case of IO PID controllers, the stability boundary 
of an FO PID controller is an important research topic and has 
received significant attention. In [7], the D-partition method 
proposed by Neimark in [8] and [9], which has been used for 
parameter space design of IO controllers, was used to find 
stability bounds of FO PI or PIλ controllers for four cases. 
These cases include all combinations of an IO/FO plant and an 
IO/FO controller. However, only a first order IO plant or an 
FO plant with order α (where 0<α<1) was considered. 

In [10], the D-decomposition method was used for PIλDμ 
controllers that stabilize a given FO system with time delay. 
For the closed-loop FO characteristic equation, the boundaries 
of the stability region described by real root boundaries 
(RRB), infinite root boundaries (IRB) and complex root 
boundaries (CRB) were determined using the 
D-decomposition method. In particular, RRB, IRB and CRB 
provide a general stability region in (Kp, Ki) plane for fixed 
values of Kd, λ and μ. Unfortunately, solutions in the (Kp, Kd) 
plane and the (Ki, Kd) plane were not considered. The (Kp, Kd) 
plane is important if you are considering a PD controller. The 
(Ki, Kd) plane is important because for certain forms of PID 
controllers it allows the user to easily determine the values of 
Kp that will produce stabilizing controllers. 

Thus, there exists a need for a more efficient and less 
complicated way of finding all IO or FO PID controllers that 
stabilize a given system with an IO or FO transfer function. In 
[11], the frequency response was used to find all stabilizing IO 
PID controllers for a given plant transfer function of an 
arbitrary order. The stabilizing controllers that lie within the 
stability regions were plotted in three different planes: (Kp, 
Ki), (Kp, Kd) and (Kd, Ki). However, [11] dealt with an IO PID 
controller only and the results obtained as such were not 
applicable to more complicated FO controllers with extra 
degrees of freedom. 

In this paper, a new method for finding all stabilizing PIλDμ 
controllers for a given plant transfer function of any order is 
presented. This method does not require the plant parameters 
or complicated or time-consuming processes to find all the 
stabilizing PIλDμ controllers. The stabilizing PIλDμ controllers 
are represented in all three planes of the Kp, Ki and Kd 
parameter spaces. A detailed mathematical derivation, results, 
and examples follow. 

II. DETERMINATION OF STABILIZING CONTROLLERS 

A. Problem Formulation 
Consider the unity feedback control system shown in Fig. 1. 
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Fig. 1. Control system with negative unity feedback 

 
The plant transfer function is Gp(s) and the transfer function of 
the PIλDμ controller Gc(s) is given by 
 

( ) i
c p d

KG s K K s
s

µ
λ= + +                             (1) 

 
where Kp, Ki and Kd denote the proportional, integral and 
derivative gains, respectively, and λ and μ are arbitrary 
positive real numbers. 

To determine all the stabilizing PIλDμ controllers for the 
given plant, the Kp, Ki and Kd values can be found such that the 
close-loop characteristic polynomial Δ(s) of the system shown 
in Fig. 1 is Hurwitz stable. By determining all the values of the 
parameters Kp, Ki and Kd that put the closed-loop system poles 
on the jω axis, which represents the marginal stability of the 
closed-loop system, all the stabilizing PIλDμ controllers can be 
found. For marginal stability, the characteristic equation is 
expressed in the frequency domain by replacing s with jω.  
 

( ) 1 ( ) ( ) 0p cj G j G jω ω ω∆ = + =                    (2) 
 
The plant transfer function Gp(jω) can be decomposed into 
real and imaginary parts as follows: 
 

 ( ) ( ) ( )p p pG j R jIω ω ω= +                      (3) 
 

Then, the characteristic equation (2) becomes 
 

( )( ) 1 ( ) ( ) ( ) 0
( )

i
p p p d

Kj R jI K K j
j

µ
λω ω ω ω

ω
 

∆ = + + + + = 
 

    
  

(4)
 
 

For (4), the following formula in fractional calculus is used: 
 

( )
2 cos( ) sin( )

2 2
j jj e

πλ λ π πλ λ= = +                   (5) 

 
Thus,  
 

( )
( )

  {cos( ) sin( )}
2 2

   {cos( ) sin( )}
2 2

i
p d

i
p

d

KK K j
j

KK j

K j

µ
λ

λ

µ

ω
ω

π πλ λ
ω

π πω µ µ

+ +

= + −

+ +

                   (6) 

 
Expanding the characteristic equation in (4) and writing it in 
terms of its real and imaginary parts yields 
 

( ) ( ) ( ) 0j R jIω ω ω∆ ∆∆ = + =                             (7)
 where 

 
( ) 1 ( )

1            {cos( ) ( ) sin( ) ( )}
2 2

             {cos( ) ( ) sin( ) ( )}
2 2

p p

p p i

p p d

R K R

R I K

R I K

λ

µ

ω ω

π πλ ω λ ω
ω

π πω µ ω µ ω

∆ = +

+ +

+ −

      
 (8) 

 
( ) ( )

1            {cos( ) ( ) sin( ) ( )}
2 2

             {cos( ) ( ) sin( ) ( )}
2 2

p p

p p i

p p d

I K I

I R K

I R K

λ

µ

ω ω

π πλ ω λ ω
ω

π πω µ ω µ ω

∆ =

+ −

+ +

      
 (9) 

 
Setting the real and imaginary parts equal to zero gives: 

 ( )p p Ri i Rd dR K X K X Kλ λω ω ω+ + = −

            
  (10) 

 
( ) 0p p Ii i Id dI K X K X Kλω ω + + =

                
(11)

  
where 

cos( ) ( ) +sin( ) ( )
2 2Ri p pX R Iπ πλ ω λ ω=  

=   cos( ) ( ) sin( ) ( )
2 2Rd p pX R Iλ µ π πω µ ω µ ω+  − 

 
 

sin( ) ( ) cos( ) ( )
2 2Ii p pX R Iπ πλ ω λ ω= − +  

sin( ) ( ) cos( ) ( )
2 2Id p pX R Iλ µ π πω µ ω µ ω+  = + 

   
 

B. Solution in (Kp, Ki) Plane 
This is a three dimensional system in terms of the controller 

parameters Kp, Ki and Kd. First, we will fix the value of Kd to 
find the stability region in the (Kp, Ki) plane. In order to deal 
with two unknowns Kp and Ki, (10) and (11) are rearranged as: 

 
( )
( )

pp Ri Rd d

ip Ii Id d

KR X X K
KI X X K

λ λ

λ

ω ω ω
ω ω

   − − 
=     −                        

(12)
 

 
Solving (12) for ω≠0 and λ≠2n (where n is an integer), Kp and 
Ki are given by 
 

2

sin ( ) ( ) cot( ) ( )2 2
( )sin( )

2

p p

p d

p

R I
K K

G j
µ

π πλ µ ω λ ω
ω π ωλ

 + − 
 = − −      (13)

 

 

2

sin( ) ( )2
sin( ) sin( ) ( )

2 2

p
i d

p

I
K K

G j

λ
λ µ

π µ ω ω
ω π πλ λ ω

+= −           
 
(14) 
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where  
2 2 2( ) ( ) ( )p p pG j R Iω ω ω= +                      (15) 

 
If ω=0, then Ki=0 is implied to define a legitimate PIλDμ 
controller as in (1), which in turn leads to a PDμ controller. 
Such a case will be addressed in the following subsection C 
with the (Kp, Kd) Plane. Thus, ω≠0 is assumed in the (Kp, Ki) 
plane. 
If λ=2n, then the solution exists for the following two cases: 
i) For μ≠2n and any frequency ωi that satisfies 

 

2

( )

sin( ) ( )
2

p i
d

i p i

I
K

G jµ

ω
πω µ ω

=
     

                  (16) 

 
the solution for Ki is given in terms of Kp as 
 

2

sin( ) ( ) cos( ) ( )
2 2  

cos( ) sin( ) ( )
2 2

p i p i
i

i p

p i

R I
K K

G j

λ
π πµ ω µ ωω

π πλ µ ω

 + 
= − + 

 
 

     (17) 

 
ii) For  μ=2n and any frequency ωk that satisfies 

 
( ) 0p kI ω =

                     
(18)

  
the solution for Ki is given in terms of Kp for a fixed Kd value 
as 
 

1cos( )  
2 ( )cos( )

2

k
i p k d

p k

K K K
R

λ
µω πω µπ ωλ

 
= − + +  

     
     (19) 

 
Thus, the stability boundary of all stabilizing PIλDμ 

controllers for a fixed Kd value can be found by plotting a 
two-dimensional graph using the above results, with Kp and Ki 
as two Cartesian axes. This procedure will be described in 
detail through an example given in Section III. In addition, for 
λ=μ=1, which is a conventional IO PID controller, the above 
results reduce to those presented in [11]. 

 

C. Solution in (Kp, Kd) Plane 
Next, in order to find the stability region in the (Kp, Kd) 

plane, we will fix the value of Ki. Then, (10) and (11) can be 
rewritten as: 

 
( )
( )

pp Rd Ri i

dp Id Ii i

KR X X K
KI X X K

λ λ

λ

ω ω ω
ω ω

   − − 
=     −                      

(20)
 

 
Solving (20) for ω≠0 and μ≠2n (where n is an integer), Kp and 
Kd are given by 
 

2

sin ( ) ( ) cot( ) ( )2 2
( )sin( )

2

p p

p i

p

R I
K K

G jλ

π πλ µ ω µ ω

π ωω µ

 + + 
 = − −

          (21)  

 

2

sin( ) ( )2
sin( ) sin( ) ( )

2 2

p
d i

p

I
K K

G jλ µ µ

π λ ω
π πω µ ω µ ω+

= +
⋅   

         (22)  

 
If ω=0, then Ki=0 as discussed above in subsection B, leading 
to the following two cases: 
i) If Ip(0)=0 (typical for real plants), 
 

1
(0)p

p

K
R

−
=

                      
(23)

 
 ii) No solution exists for Kp and Kd otherwise. 

If μ =2n and ω≠0, then the solution exists for the following 
two cases: 
i) For λ≠2n and any frequency ωi that satisfies 

 

2

( )

sin( ) ( )
2

p i
i

p i

I
K

G j

λω ω
π λ ω

= −
     

                        (24) 

the solution for Kd is given in terms of Kp as 

2

1

cos( )
2

sin( ) ( ) cos( ) ( )
2 2        

sin( ) ( )
2

d

p p

p

p

K

R I
K

G j

µ πω µ

π πλ ω λ ω

π λ ω

= −

 − 
× + 

 
 

          (25) 

 
ii) For λ=2n and any frequency ωk that satisfies 
 

( ) 0p kI ω =

                    
(26)

  
the solution for Kd is given in terms of Kp for a fixed Ki value 
as 
 

cos( )1 12  
( )cos( )

2

d p i
k p k

k

K K K
Rλ

µ

π λ

π ω ωω µ

 
 

= − + + 
 
 

   
     (27) 

 
Therefore, the stability boundary of all stabilizing PIλDμ 

controllers for a fixed Ki value can be found by plotting a 
two-dimensional graph using the above results, with Kp and Kd 
as two Cartesian axes. Again, this procedure will be described 
in detail through an example given in Section III. For λ=μ=1, 
which is a conventional IO PID controller, the above results 
reduce to those presented in [11]. 
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D. Solution in (Ki, Kd) Plane 
Lastly, we will fix the value of Kp in order to determine the 

stability region in the (Ki, Kd) plane. Then, (10) and (11) can 
be rewritten as: 

 
( )

( )
Ri Rd i p p

Ii Id d p p

X X K R K
X X K I K

λ λ

λ

ω ω ω
ω ω

 − −   
=      −                        

(28)
 

 
Solving (28) for ω≠0 and λ+μ≠2n (where n is an integer), Ki 
and Kd are given by 

2

sin( )
2

sin ( )
2

sin( ) ( ) cos( ) ( )
2 2         

sin ( ) ( )
2

i p

p p

p

K K

R I

G j

λ

λ

π µ
ω

π λ µ

π πω µ ω µ ω

π λ µ ω

= −
 + 
 

 + 
 −

 + 
 

              (29) 

 

2

sin( )
2

sin ( )
2

sin( ) ( ) cos( ) ( )
2 2          
sin ( ) ( )

2

p
d

p p

p

K
K

R I

G j

µ

µ

π λ

πω λ µ

π πλ ω λ ω

πω λ µ ω

 
= −     + 

 
 − 
 −

 + 
 

               (30) 

 
In the (Ki, Kd) plane, ω≠0 is assumed without loss of generality 
as discussed above. 
 
If λ+μ=2n (where n is an integer), the solution exists for the 
following two cases: 

i) For λ≠2n and any frequency ωi that satisfies  
 

2

cot( ) ( ) ( )
2

( )

p i p i

p

p i

I R
K

G j

π λ ω ω

ω

−
=      

            (31) 
  

 
the solution for Kd is given in terms of Ki as 
 

2

sin( ) ( ) cos( ) ( )
2 2

sin( ) ( ) cos( ) ( )
2 2

( )
             

sin( ) ( )
2

p i p i

d

i p i p i

p i
i

p i

R I
K

R I

I
K

G j

λ µ

λ

π πλ ω λ ω

π πω µ ω µ ω

ω ω
π λ ω

+

−
=

 + 
 

 
 

× + 
 
 

             (32) 

 
ii)  For λ=2n and any frequency ωk that satisfies 

 
( ) 0p kI ω =

                     
(33)

  

the solution for Kd is given in terms of Ki for a fixed Kp value 
as 

cos( )1 12  
( )cos( )

2

d i p
k p k

k

K K K
Rλ

µ

π λ

π ω ωω µ

 
 

= − + + 
 
 

   
     (34) 

 
Similarly, the stability boundary of all stabilizing PIλDμ 

controllers for a fixed Kp value can be found by plotting a 
two-dimensional graph using the above results, with Ki and Kd 
as two Cartesian axes. This procedure will be described in 
detail through an example given below. For λ=μ=1, which is a 
conventional IO PID controller, the above results reduce to 
those presented in [11]. 

It should be noted that all the results in this section are 
expressed in the frequency domain. As a consequence, the 
stability region in the controller parameter space can be 
determined directly from an experimental frequency response 
when either the system transfer function or system parameters 
are unknown. 

 

III. EXAMPLE 

A. Problem Formulation 
Consider the following non-minimum phase plant with a 

second order transfer function having a time delay of 0.8 
seconds 
 

0.8
2

4 1( )
0.4 6

s
p

sG s e
s s

−+
=

+ +
                               (35)  

 
The objective here is to find the stability boundaries of all the 
stabilizing FO PID controllers for the plant transfer function 
(35) and compare them with those of an IO PID controller. 
The results will be verified using step responses. In this 
example, an FO PID controller with λ=1.0 and μ=0.5 is used 
for the controller transfer function in (1). Thus, the PIλDμ 
controller used is given by 
 

0.5( ) i
c p d

KG s K K s
s

= + +                                (36) 

 

B. Comparative Results in (Kp, Ki) Plane 
In order to find the stability region in the (Kp, Ki) plane for 

the plant transfer function (35) and the PIλDμ controller 
transfer function (36) with a fixed value Kd=0.6, (13) and (14) 
were used. In Fig. 2, the stability regions of the IO and FO PID 
controllers are plotted in the (Kp, Ki) plane. In this figure, the 
area enclosed by the dashed line is the stability region for the 
FO PID controller, and the area enclosed by the solid line is 
the stability region for the IO PID controller. The same applies 
to Fig. 4 as well. As can be seen, the FO PID controller 
provides a fairly wide stability region, whereas the IO PID 
controller does not provide any stability region for Kd=0.6.  
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Fig. 2. Stability regions in (Kp, Ki) plane for Kd=0.6 

 
An arbitrary controller was chosen from the stability region 

of the FO PID controller in Fig. 2, which is Kp= -0.6089 and 
Ki=1.6608 as marked on the plot. Accordingly, the FO PID 
controller found is given by 

0.51.6608( ) 0.6089 0.6cFOG s s
s

= − + +                  (37) 

 
Fig. 3 shows the corresponding closed-loop step response 
with the above FO PID controller. In the example, the 
closed-loop system with the FO PID controller (37) has a 
percent overshoot of P.O=11% and a 2% settling time of 
ts=22.7 seconds. 

To determine the closed-loop step response of the FO PID 
controller (37), the FO PID controller transfer function is 
approximated using the fractional power pole (FPP) and 
fractional power zero (FPZ) methods given in [12] and [13], 
respectively. 
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Fig. 3. Closed-loop step response with the FO PID controller 

for Kd=0.6  
 

C. Comparative Results in (Kp, Kd) Plane 
In a similar way, to find the stability region in the (Kp, Kd) 

plane for the plant transfer function (35) and the PIλDμ 
controller transfer function (36) with a fixed value Ki=1.2, 
(21) and (22) were used. In Fig. 4, the stability regions of the 
IO and FO PID controllers are plotted in the (Kp, Kd) plane for 
Ki=1.2. As can be seen, the FO PID controller provides a 
wider stability region than the IO PID controller does. 
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Fig. 4. Stability regions in (Kp, Kd) plane for fixed Ki=1.2 
 
As marked on the plot, two arbitrary controllers were 

chosen from the stability regions in Fig. 4. For the IO PID, 
Kp=0.0595 and Kd=0.1955 were chosen and for the FO PID, 
Kp= -0.5575 and Kd=0.4948 were chosen. Accordingly, the IO 
PID controller found is given by  

1.2( ) 0.0595 0.1955cIOG s s
s

= + +                          (38) 

 
and the FO PID controller found is given by 

0.51.2( ) 0.5575 0.4948cFOG s s
s

= − + +                  (39) 
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Fig. 5. Closed-loop step responses with the IO and FO PID 

controllers for Ki =1.2 
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D. Comparative Results in (Ki, Kd) Plane 
Lastly, (29) and (30) were used to find the stability region in 

the (Ki, Kd) plane for the plant transfer function (35) and the 
PIλDμ controller transfer function (36) with a fixed value 
Kp=-0.8. In Fig. 6, the stability regions of the IO and FO PID 
controllers are plotted in the (Ki, Kd) plane. In the figure, the 
area enclosed by the dashed line and Ki=0 is the stability 
region for the FO PID controller, and the area enclosed by the 
solid line and Ki=0 is the stability region for the IO PID 
controller. As can be seen from the plot, the FO PID controller 
provides a stability region enclosed by two curves and a line 
Ki=0; however, the IO PID controller does not provide any 
stability region in this case. 
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Fig. 6. Stability regions in (Ki, Kd) plane for Kp =-0.8 

 
Next, an arbitrary controller is chosen from the stability 

region of the FO PID controller in Fig. 6, which is Ki=0.8503 
and Kd=0.5084 as marked on the plot. Accordingly, the FO 
PID controller found is given by 
 

0.50.8503( ) 0.8 0.5084cFOG s s
s

= − + +                  (40) 

 
Fig. 7 shows the corresponding closed-loop step response 
with the above FO PID controller (40). In this example, the 
closed-loop system with the FO PID controller (40) has a 2% 
settling time of ts=34.6 seconds and no percent overshoot. 

 

IV. CONCLUSION 
As described in Sections II and III, a new method for 

determining all stabilizing PIλDμ controllers for a given 
system is presented. Since the method is fundamentally based 
on the frequency response of a system, this method can be 
applied even when the system parameters are not known. In 
addition, the results shown in Section III are promising 
because for this example an FO PID controller provides 
stability regions even when an IO PID controller cannot 
provide any stability region and the FO PID controller 
provides a much larger stability region than the IO PID 

controller does when the IO PID controller provides a stability 
region, which in turn gives more flexibility when designing a 
controller. This is not surprising as an IO PID controller is a 
special case of an FO PID controller. 
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Fig. 7. Closed-loop step response with the FO PID controller 

for Kp=-0.8. 
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