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Abstract— Whenever the control task involves the tracking
of a reference signal the performance is typically improved
if one knows the future behavior of this reference. However,
in many applications, this is typically not the case, e.g., when
the reference signal is generated by a human operator, and a
remedy to this can be to try and model the reference signal over
a short time horizon. In this paper, we address the problem of
selecting this horizon in an adaptive fashion by minimizing a
cost that takes into account the performance of the underlying
control problem (that prefers longer time horizons) and the
effectiveness of the reference signal model (that prefers shorter
time horizons). The result is an adaptive time horizon controller
that operates in a manner reminiscent of Model Predictive
Control (MPC).

I. INTRODUCTION

The basic idea behind Model Predictive Control (MPC) is
to select the control signal at the current time in such a way
that it optimizes a cost function over some time horizon. This
process is repeated at each time step and, as it is based on
optimal control, it inevitably involves a forward simulation
of the system states based on a model of the system. This
has proved to be a highly useful control design methodology
in a number of applications (see for example [1], [2], [3],
[4], [5], [6], [7]). However, if the cost involves an unknown
reference signal, this signal must be estimated in order to be
able to evaluate the cost through forward simulation. But, if
the reference is for example generated by a human operator
it may not be so easy to obtain a reliable estimate over the
nominal time horizon over which the control design task is
defined. In fact, a standard cost function to be minimized for
such an optimal control (e.g., [8]) may take on the form

min
u

∫ t+∆

t
L(x(s),u(s),r(s))ds, (1)

subject to
dx(s)

ds
= f (x(s),u(s)),

where t is the current time, x(s) is the simulated state
trajectory at a future time s ≥ t, which is assumed to be
equal to the actual state x(t) at the current time, u(s) is
the corresponding control input, and r(s) is the reference
signal that has been observed for s ≤ t and is assumed to
be unknown for s > t. Moreover, ∆ is the time horizon over
which the problem is considered.

But, since we do not actually know r(s) for s > t, we
cannot actually solve (1) since this is not a casual problem.
However, we can use some method to predict for future
values of r(s) in order to make the problem well-posed. We
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denote this predicted signal by r̂(τ,s) where τ ≤ t is the
time at which the prediction of r(s) was made. Replacing
r(s) with r̂(t,s) in (1) we thus get the following well-posed
problem

min
u

∫ t+∆

t
L(x(s),u(s), r̂(t,s))ds. (2)

The relationship between the solutions to (2) and (1)
depends on the quality of the estimate of the reference signal.
If the estimate was perfect then one could in fact solve the
original problem by directly using an MPC method where, in
order to improve performance further, ∆ is chosen as large
as possible subject to factors such as computation speed,
convergence, stability, and satisfaction of terminal contraints
(see for example [7], [9], [10], [11], [12], [13]). However,
when the estimate is not perfect, a longer time horizon may
in fact be detrimental in that the effect of the poor estimate
is amplified over a longer time period. In this paper we make
this trade-off explicit by using an MPC approach to selecting
∆ itself in an adaptive manner.

As the MPC approach to optimal control uses the system
model as a generator of estimates of future state values, the
problem when the reference signal r is unknown for future
times can naturally be addressed using a similar approach. At
each time step, one could make a prediction for r and then
use the quality of that prediction as a way of determining how
far off into the future one can effectively define the original
MPC problem. As such, there are two main contribution of
this paper. The first contribution is the underlying idea of
choosing an optimal time horizon in an adaptive fashion and
the second contribution is the introduction of three different
candidate quality measures which are used to find the optimal
time horizon. The reason why we introduce three different
such quality measures is that the problem of determining the
quality of an estimate is also an inherently ill-posed problem.
The estimate is obtain at the current time and its performance
must be understood against future values of the entity that
it is trying to estimate. But these values are not available at
the current time, which calls for some novel causal quality
measures of a non-causal entity.

The remainder of this paper will proceed as follows: In
the next section we will formulate the general time hori-
zon optimization problem and introduce the three candidate
quality measures. In section III, we will find the gradients to
each of these quality measures. These gradients are then used
in a steepest descent setting to solve for the time horizon
optimization problem. In section IV we will illustrate the
proposed approach on a reference tracking example and show
that it outperforms any constant time horizon solution.
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II. PROBLEM SETUP

As explained in the introduction, we would like to choose
the best time horizon at each time step. Ideally, we would
like to have the time horizon as large as possible, but we want
to avoid the detrimental effects from poor predictions of the
reference signals. The method we propose is to change the
time horizon based on how well we are doing at predicting
the reference trajectory based on our past performance. This
makes the philosophic assumption that the immediate future
is not too different from the immediate past, i.e., that our
ability to predict r in the past will reflect on our future ability
to predict r. In other words, we choose to make the time
horizon as large as possible if r̂ has been a good prediction
of r and scale it back when r̂ has not done so well. Note that
this may not always be the case but it is an assumption that
allows us to formulate a relevant and well-posed problem.
In fact, in this section we will introduce three different cost
functions that act as quality measures for the performance of
the estimated reference signal, which will be used for finding
the optimal time horizon.

As there is an inherent trade-off between the quality
of the underlying MPC controller (that favors larger time
horizons) and the accuracy of the prediction (that favors
shorter horizons), this trade-off must be present in the quality
measures. We let G(∆) be a point cost on the time horizon
that penalizes smaller time horizons, and let F(r, r̂) be an
instantaneous cost that measures the quality of the estimated
reference signal. If r̂ does a poor job of predicting r, it will
cause F to have a large impact on the cost and cause the
resulting ∆ to shrink. On the other hand, if r̂ does well at
predicting r, F will have little influence and G will cause ∆

to grow. These two functions will work against each other
to incorporate the underlying trade-off.

A. Back to the Future: Parts 1, 2, and 3

Ideally, we would like to evaluate how well the current
estimate is doing at predicting the future, but since we do
not know the reference for future times, we are forced to
evaluate how our system identification has performed in the
past. The three three cost functions we propose differ in how
they evaluate the performance of our capability of predicting
the input. Neither is fundamentally correct in that they are
all causal approximations of a non-causal problem.

The first cost function evaluates how well the past estimate
of the reference signal managed to predict the actual refer-
ence. For this, we initialize the prediction at time τ = t−∆

using an estimate obtained at time τ , with r̂(τ,τ)= r(τ). This
prediction is integrated (e.g., based on system identification
techniques) forward in time from time τ to the current time,
t, in order to accumulate a cost for the difference in r and
r̂. In other words, we let the first cost function be given by

J1(t,∆) =
∫ t

t−∆

F(r(s), r̂(t−∆,s))ds+G(∆) (3)

and the basic idea behind this cost function is to look at
the past to see how well our prediction process has been

performing, and to use this as a guide for the performance
of future predictions.

Although J1 captures the actual performance of the esti-
mate with a time lag of ∆, it does not explicitly evaluate the
performance of the current prediction. As such, we let the
second cost function use the current estimate of the reference
signal and move that estimate back in time ∆ time units. This
construction forces us to make r̂ a function of three rather
than two time indices, namely r̂(τ1,τ2,s), where τ1 is the
time at which the estimate was constructed (typically current
time t), τ2 is the time at which the estimate was initialized
(typically t−∆), and s is the time at which the quality of
the prediction is evaluated. In fact, as we initialize r̂ at time
τ2 we have that r̂(τ1,τ2,τ2) = r(τ2) for any τ1. The second
proposed cost function is thus

J2(t,∆) =
∫ t

t−∆

F(r(s), r̂(t, t−∆,s))ds+G(∆). (4)

The idea is that we want to see how far back in time our
current system identification can be placed and still produce
a good prediction.

We can note that J2 deals with the current prediction of
the reference signal and, as such, it may be more relevant
than J1. However, it suffers from the drawback that it is
compared against an actual reference signal that it was not
designed to mimic, i.e., the actual signal ∆ time units ago.
One way around this is to use the current estimate of the
reference signal, but let the comparison run backwards in
time, from the current time t to time t −∆. We can again
use the initialization and notation for r̂ as we did in (3)
since there is no longer any need to distinguish between the
time at which we initialize the prediction and the time we
create the prediction. We place a negative sign in front of the
integral so that we can use the same function for F as we
did in the previous two cost functions and still get a positive
cost. The third cost function is given by

J3(t,∆) =−
∫ t−∆

t
F(r(s), r̂(t,s))ds+G(∆). (5)

Each one of these three cost functions is fundamentally
different, evaluating slightly different aspects of how well
our method of predicting the reference signal is performing.
The first one evaluates how well we have done in the past
when predicting the unknown signal, the second evaluates
how well our current prediction would have done in the past,
and the final cost function evaluates how far back in time our
current prediction will be able to capture the previous values
of the actual reference signal. It will be seen in Section IV
that each of these different cost functions give a slightly
different value for the optimal time horizon.

III. OPTIMIZING THE PREDICTION COSTS

In this section we will derive expressions for the gradients
for each of the three cost functions with respect to the time
horizon ∆. These gradients are important because they allow
us to employ descent methods for solving for the optimal
control time horizons. We will go through the derivation of
the gradient for J1(t,∆) in some detail, including a discussion
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of how the problem simplifies if the prediction is generated
by the output of a linear system, obtained using standard
system identification techniques.

A. Gradient of J1(t,∆)

Since ∆ appears in both the limits of integration in J1(t,∆)
as well as in the integrand, we need to use the generalized
Leibniz rule. If

H(∆) =
∫ b(∆)

a(∆)
h(∆,s)ds (6)

then
dH
d∆

(∆) = h(∆,b(∆))
db
d∆

(∆)− (7)

h(∆,a(∆))
da
d∆

(∆)+
∫ b(∆)

a(∆)

dh
d∆

(∆,s)ds

Comparing J1(t,∆) to (6) and (8) we have that

∂J1

∂∆
(t,∆) =

dG
d∆

(∆)+F(r(t−∆), r̂(t−∆, t−∆))− (8)

∫ t

t−∆

∂F
∂ r̂

(r(s), r̂(t−∆,s))
∂ r̂
∂τ

(τ,s)|τ=t−∆ds

Furthermore, if we assume that F is designed such that
F(x,x) = 0 (which is not a bad assumption since F should
be designed to penalize the difference between its two
arguments), we can further simplify (8) because we initialize
r̂(τ,τ) to be r(τ), and we obtain the following expresion for
the gradient of J1

∂J1

∂∆
(t,∆) =

dG
d∆

(∆)− (9)

∫ t

t−∆

∂F
∂ r̂

(r(s), r̂(t−∆,s))
∂ r̂
∂τ

(τ,s)|τ=t−∆ds

1) Assuming Linear System Identification: The most dif-
ficult part of using (9) is the calculation of ∂ r̂

∂τ
(τ,s) because

r̂(τ,s) is not necessarily an explicit function of τ , rather there
is a distinct r̂ for any given τ . However, assuming that we
used linear system identification to predict r we can derive
an analytical expression for ∂ r̂

∂τ
(τ,s).

We are going to first make the following assumptions
about the method used to obtain the linear system used to
generate the prediction:

1) ∂ R̂
∂τ
(τ,s) = Aτ R̂(τ,s) ; R̂(τ,τ) = R(τ)
• R(s) is some function of r(s) (and possibly its

derivatives)
• Aτ is the system matrix obtained at time τ

2) r̂(τ,s) =CR̂(τ,s) for some matrix C
With these assumptions we know that R̂(τ,s) can be

expressed directly in terms of the matrix exponential of Aτ

and R(τ) (e.g., [14]) as

R̂(τ,s) = eAτ (s−τ)R(τ) (10)

i.e.,
r̂(τ,s) =CeAτ (s−τ)R(τ) (11)

Let us also assume that R(τ) is sufficiently smooth (at least
twice continuously differentiable) such that, for small enough
ε , R(τ + ε) can be expressed using a Taylor expansion as

R(τ + ε) = R(τ)+ εQ(τ)+o(ε), (12)

where Q(τ) is some matrix representing how R is varying at
time τ and o(ε) represents higher order terms of ε . Similarly,
assuming Aτ is sufficiently smooth we let

Aτ+ε = Aτ + εB(τ)+o(ε) (13)

which in turn gives

eAτ+ε s = e(Aτ+εB(τ))s +o(ε) (14)

where B(τ) is some matrix representing how Aτ is varying
at time τ .

Using these two smoothness assumptions, (11) and (14),
we can express r̂(τ +ε,s) in terms of C, Aτ , R(τ), B(τ), and
Q(τ).

r̂(τ + ε,s) =Ce(Aτ+εB(τ))(s−τ−ε)(R(τ)+ εQ(τ))+o(ε).
(15)

Now, we can find ∂ r̂
∂τ
(τ,s) through

∂ r̂
∂τ

(τ,s) = lim
ε→0

r̂(τ + ε,s)− r̂(τ,s)
ε

= lim
ε→0

1
ε

C((e(Aτ+εB(τ))(s−τ−ε)− eAτ (s−τ))R(τ)+

εe(Aτ+εB(τ))(s−τ−ε)Q(τ)+o(ε)), (16)

which in turn gives

∂ r̂
∂τ

(τ,s) =CeAτ (s−τ)Q(τ). (17)

This tells us that if the prediction is given by the output
of a linear system the gradient to (3) can be written as

∂J1

∂∆
(t,∆) =

dG
d∆

(∆)− (18)

∫ t

t−∆

∂F
∂ r̂

(r(s), r̂(t−∆,s))CeA(t−∆)(s−(t−∆))Q(t−∆)ds.

B. Gradient of J2(t,∆)

The derivation of the gradient of J2(t,∆) in (4) is only
slightly different than that of J1(t,∆) in (3) because it uses
the current prediction placed into the past to see how well
it would have performed. Making the same assumptions we
used to obtain (9), we obtain an analogous expression in (19),
which only differs in the integral term where r̂ depends on
the current system identification instead of the past system
identification.

∂J2

∂∆
(t,∆) =

dG
d∆

(∆)− (19)

∫ t

t−∆

∂F
∂ r̂

(r(s), r̂(t, t−∆,s))
∂ r̂
∂τ

(t,τ,s)|(τ=t−∆)ds
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1) Assuming Linear System Identification: The derivation
of the simplifications one obtained when the output of a
linear system is used to generate the predition is also quite
similar. We use the same assumptions for the method of
forming the system identification and for smoothness of R(τ)
as in (12), but no longer have the requirment on smoothness
for Aτ because we always use the current system matrix. This
is a significant improvement over the previous cost function
because we can expect R(τ) to be smooth, but we have no
gaurentee in general that the method of system identification
will produce smooth changes in the matrix over time. Under
these assumptions, we again get a very similar result for the
gradient.

∂J2

∂∆
(t,∆) =

dG
d∆

(∆)− (20)∫ t

t−∆

∂F
∂ r̂

(r(s), r̂(t, t−∆,s))CeAt (s−(t−∆))Q(t−∆)ds

Note that the only difference between (18) and (20) is
that (20) uses the current system identification in the integral
term.

C. Gradient of J3(t,∆)

The gradient of J3(t,∆) in (5) differs from that of J1(t,∆)
and J2(t,∆) because there is no dependence on ∆ in the
integrand, only in the upper limit of integration. This allows
us to obtain a more simple gradient.

∂J3

∂∆
(t,∆) =

dG
d∆

(∆)+F(r(t−∆), r̂(t, t−∆)) (21)

1) Assuming Linear System Identification: Because (21)
does not have a term that deals with the derivative of r̂,
there is not much of a simplification of (21) for the linear
case except for writing r̂(τ,s) in terms of r. We can make
the same assumptions that we did before to get the desired
relationship. This allows us to immediately write the solution
to the linear case in (22) which is much more simple
than the previous two cases because there is no need for
a costate. This gradient is less restrictive than both of the
previous gradients because it makes no assumptions on the
smoothness of Aτ or R(τ).

∂J3

∂∆
(t,∆) =

dG
d∆

(∆)+F(r(t−∆),CeAt (−∆)R(t)) (22)

D. Kuhn Tucker Conditions

It may be the case that there needs to be upper and lower
bounds on the time horizon window. For example, if r was
first observed at time t0 then when solving for ∆ at the
current time, t, the furthest the integrals in (3), (4), and
(5) can go back is to time t0. This would put a natural
upper bound on ∆ ≤ t − t0. Likewise, when solving these
problems, it does not make sense to have nonpositive values
for ∆ (which would correspond to a non-causal predictor)
so a lower bound would be ∆≥ 0. To solve for the general
case we are going to give the bounds ∆min ≤ ∆∗ ≤ ∆max,
where ∆∗ denotes the (local) optimal solution for ∆. For ease
of notation, we will drop the subscript from Ji , i = 1,2,3,

because the Kuhn Tucker Conditions are the same for each
Ji. The problem of minimization becomes

min
∆

J(t,∆)

s.t. g1(∆) = ∆min−∆
∗ ≤ 0

g2(∆) = ∆
∗−∆max ≤ 0

(23)

To impose the inequality constraints, we now introduce
the Lagrangians µ1 and µ2 which satisfy the Kuhn-Tucker
conditions. We can write the cost function, J̄, in terms of the
original J and the constraints which we can minimize with
respect to ∆.

min
∆

J̄(t,∆) = J(t,∆)+µ1g1(∆)+µ2g2(∆)

s.t. µigi(∆) = 0; i = 1,2
µi ≥ 0; i = 1,2

(24)

Equations (23) and (24) give all of the necessary informa-
tion to solve for µ1 and µ2 using techniques found in many
optimal control texts (e.g. [8]). The solution is simple and
tells us that we can solve for ∆ as if neither constraint were
active and if the solution tells us that ∆ is less than ∆min we
know that ∆∗ = ∆min. Likewise, if the solution tells us that
∆ is greater than ∆max, we know that ∆∗ = ∆max.

IV. EXAMPLE: REFERENCE TRACKING

To illustrate the usefulness of the adaptive time horizon
method proposed in this paper, we chose to track the output
of a linear system. Doing this in simulation allows us to
compare the results of solving the problem with a variable
time horizon to an optimal solution. Using a Linear Quadratic
Regulator (LQR) we can compare the results of the solution
to the problem when the final time is fixed and given with
the solutions we get when using variable time horizons. This
will allow us to compare the results of the adaptive time
horizon solutions and the optimal fixed time solution with
the optimal solution obtained with the LQR.

A. Problem Setup

To setup the problem, we chose to minimize the cost
function given in (25) where r(s) is the reference signal we
would like to track with the output of the system, y(s), u(s)
is the system input, and q is a weight that gives the relative
importance of the tracking versus the control effort.

min
u

∫ T

0
(q(y(s)− r(s))2 +u(s)2)ds (25)

s.t. ẋ = Ax+bu;x(0) given

y = cx

where
A =

[
0 1
0 0

]
, b =

[
0
1

]
, c =

[
1 0

]
As stated in the introduction, we are not able to solve this

problem directly when r(s) is unknown for s greater than the
current time. We instead use the two step process outlined
and try to minimize the following cost function at each time
step while finding ∆ from minimizing (3) through (5).
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Fig. 1. The three reference signals used for comparison of variable time horizon (shown with the solid line) plotted against their respective optimal LQR
solutions (dashed line). The LQR solution was obtained assuming r(s) is known for all s. The left is a polynomial, the middle is a summation of sinusoids,
and the right is a mix of polynomials and sinusoids

min
u

∫ t+∆

t
(q(y(s)− r̂(t,s))2 +u(s)2)ds (26)

B. Least Squares System Identification

We used a 3rd degree continuous-time least-squares system
process to generate the prediction. Let the system matrix at
time τ , Aτ , be defined as a system of integrators as shown
below with the last row, θτ , being what we must calculate.
We will let R(s) be a vector of derivatives of r(s) and let the
relationship between r̂ and r be defined as in (11). The vector
Q(τ) required to minimize (3) and (4) simply becomes the
element-wise derivative of R(τ). In other words,

Aτ =

 0 1 0
0 0 1

θτ1 θτ2 θτ3

 (27)

R(τ) =

r(τ)
ṙ(τ)
r̈(τ)

 , C =
[
1 0 0

]
, Q(τ) = Ṙ(τ) =

 ṙ(τ)
r̈(τ)

r(3)(τ)


In order to get a least squares estimate for θτ , we can solve

for θτ from the equation R = Xθτ , where X is a matrix of
derivitives of r as shown below. To get the least squares
estimate we solve for θτ that minimizes the squared error
(ie minθτ

J = 1
2 (R−Xθτ)

T (R−Xθτ)). This gives the least
squares solution θτ = (XT X)−1XT R, where

X =

 ṙ(τ) r̈(τ) r(3)(τ)
r̈(τ) r(3)(τ) r(4)(τ)

r(3)(τ) r(4)(τ) r(5)(τ)

 (28)

C. Results

For the reference signal r(s), we chose three different
signals to test our proposed methodology, as shown in
Figure 1. The first signal was a polynomial, the second
was a summation of different sinusoids, and the third was a
mix between polynomials and sinusoids. For each of these
reference signals we did the following:

1) Solved the LQR problem with r(s) known in (25) to
get the optimal solution as a performance baseline.

2) Solved (2) using the optimal constant time horizon to
allow for a comparison between the adaptively varying
time horizon and the constant time horizon.

3) Ran the simulation three more times, assuming r(s)
was unknown for future times, and used (18), (20),
and (22) at each time step to find the optimal time
horizon.
• We found that the optimal varying time horizon

is disadvantaged at first because the largest it can
make the time horizon is t − t0, where t is the
current time and t0 is the initial time. To allow for
a fair comparison we used the best constant time
horizon for our horizon until t−t0 was greater than
the constant time horizon and we then switched to
the adaptive time horizon method.

• In solving for ∆ in (18), (20), and (22), we used
F(r(s), r̂(τ,s)) = 1

2 (r(s)− r̂(τ,s))2 and G(∆) = ρ

∆

• We iterated through different values of ρ to find
the value that created the lowest squared error in
comparison with the optimal solution found using
LQR.

Table I shows the total squared error associated with the
different methods. We can see that each method, except for
one case for J2, always outperformed the optimal constant
time horizon case. We can also see that the cost functions
for J3, which corresponds to running the current system
identification backward in time always outperformed every
other method.

Figures 2 and 3 correspond to the results shown in the
last column of Table I where the reference signal was a
mixture of sinusoids and polynomials. In this case, each of
the cost functions performed better than the optimal constant
time horizon and so it is apparent that an adaptable time
horizon can perform better than a fixed time horizon. It is
also apparent that both J1 and J2 gave jagged results while
J3 varied much more smoothly with time. This was typical
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Cost Function Squared Error
Polynomial Sinusoid Polynomial Sinusoid

J1 118.84 238.07 42.82
J2 123.82 243.69 40.21
J3 15.51 222.92 36.88

Constant ∆ 122.26 270.55 42.91

TABLE I
This table lists the total squared error for each cost function and for the

best constant time horizon with the reference trajectory being a
summation of sinusoids in time. The squared error is the error of the

output compared to the optimal output obtained from (25).

of the results from the other reference signals as well. The
observations about J3 both providing the lowest error as well
as providing a smoother result leaves us to believe that it
would be the best of the three cost functions for evaluating
the variable time horizon. However, a more rigorous analysis
would be needed to be able to make this claim conclusively
as well as to study the stability characteristics of such an
approach.

Fig. 2. The results for optimal time horizons for an input of both sinusoids
and polynomials using cost functions J1, J2, from (3) and (5) respectively,
as well as the optimal constant time horizon.
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