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Abstract— In the civilian aeronautical industry, flexible air-
craft models are often built and validated at frozen flight and
mass configurations. Unfortunately, these medium(large)-scale
models derived from high fidelity numerical tools are generally
not well adapted for simulation, control and analysis. In this pa-
per, a methodology to derive a reduced-order Linear Parameter
Varying (LPV) model from a set of medium(large)-scale Linear
Time Invariant (LTI) models describing a given system at
frozen configurations is described. The proposed methodology
is in three steps: (i) first, local model approximation is applied
using recent advances in SVD-Krylov methods, (ii) then, an
appropriate base change is applied to allow interpolation, (iii)
and finally, an LPV model is derived and converted into a
Linear Fractional Representation (LFR) of suitable size for
analysis and control purposes. Results are thoroughly assessed
on a set of industrial aeroelastic aircraft models.

I. INTRODUCTION

A. Motivations

The increasing use of computer based modeling soft-

wares often leads to an increasing number of variables and

resources to manage, resulting in an expensive numerical

cost. Moreover, from a control side, modern analysis and

synthesis tools are drastically inefficient for such high di-

mensional dynamical systems. This is especially true in the

flight dynamics domain, where several models are built for

different flight and mass configurations (such as the Mach

number, the airspeed and the various tanks filling levels. . . ).

Indeed, the entire models set describing the system over the

complete parametric domain often becomes very big and

leads to hard problems when stability, performance analyses

and control design are performed (e.g. µ-analysis, H∞,2

control. . . ). These observations, supported by the recurrent

industrial partners demand, are the underlying justification

for this work.

Starting from a set of medium(large)-scale Linear Time

Invariant (LTI) models describing a complex system at frozen

configurations, the main contribution of this paper is to

propose a methodology to obtain a reduced-order Linear

Parameter Varying (LPV) model of suitable form, from

which a Linear Fractional Representation (LFR) can be built

to be used in place of the original LTI models. Another

contribution is to apply the proposed approach to a set of

real-world aeroelastical aircraft models.

B. Problem definition, structure & notations

Let us consider ns stable SIMO LTI dynamical models

(Σi)i∈{1,ns} (i ∈ N) of order n corresponding to given
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parametric configurations (δ(i))i∈{1,ns}:

Σi :

{

ẋi(t) = Aixi(t) + biu(t)
y(t) = Cixi(t) + diu(t)

, i = 1, . . . , ns (1)

where Ai ∈ Rn×n, bi ∈ Rn, Ci ∈ Rm×n and di ∈ Rm.

The aim of this paper is to find a reduced-order parametrized

model Σ̂(δ) of order r ≪ n, which approximates Σi when

δ = δ(i):

Σ̂(δ) :

{

˙̂x(t) = Â(δ)x̂(t) + b̂(δ)u(t)

ŷ(t) = Ĉ(δ)x̂(t) + d̂(δ)u(t)
(2)

where Â(δ) ∈ Rr×r, b̂(δ) ∈ Rr, Ĉ(δ) ∈ Rm×r and

d̂(δ) ∈ Rm. Another requirement is that the eigenvalues

and the frozen frequency responses of Σ̂(δ) evolve smoothly

whatever the variation of δ inside the whole considered

parametric domain.

The paper is organized as follows. In Section II,

projection-based model approximation methods for SIMO

LTI systems are briefly recalled. In Section III, an extension

is proposed to properly interpolate the reduced-order models

and construct a reduced-order parametrized model. In Sec-

tion IV, the proposed methodology is validated on a set of

industrial aircraft models, thus illustrating the consistency of

the approach in a complex real-world application. Finally,

Section V concludes and discusses the paper results.

In this paper, the state vectors of the original and the

reduced-order systems are denoted x ∈ Rn and x̂ ∈ Rr

respectively. W and V denote left and right projectors

respectively. Vr denotes the first r columns of V . State-space

(resp. transfer) form is denoted Σ (resp. H(s)) and δ ∈ Rl

gathers the varying parameters.

II. APPROXIMATION BY PROJECTION METHODS FOR

SIMO LTI SYSTEMS

Model reduction is an active research field covering both

numerical and control communities and where many ap-

proaches have been developed (see e.g. [1]). Without loss

of generality, the projection framework, which consists of

projecting the original system, lying on an initial space,

onto a reduced one, is clearly the most appropriate for

(very) large-scale systems reduction [2], [1]. For SIMO LTI

systems, this problem can be formulated as follows.

Definition 1 (Projections-based approximation problem):

Given the following SIMO LTI system (with x ∈ Rn):

Σ :

{

ẋ(t) = Ax(t) + bu(t)
y(t) = Cx(t) + du(t)

(3)

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 745



the projection-based reduction problem consists of finding

V,W ∈ Rn×r (WTV = Ir, r ≪ n) such that the reduced-

order system Σ̂ (with x̂ ∈ Rr), defined as:

Σ̂ :

{

˙̂x(t) = Âx̂(t) + b̂u(t)

ŷ(t) = Ĉx̂(t) + d̂u(t)
(4)

accurately approximates Σ. In this case, we have Â =
WTAV , b̂ = WT b, Ĉ = CV and d̂ = d.

Projection-based model reduction techniques can be classi-

fied in two broad categories: (i) SVD (and Sylvester like) (ii)

Krylov. The former, widely used in the control community,

derives from the fact that the related reduction is based on

SVD (Singular Value Decomposition), while the second one,

well known from the numerical community, is based on the

construction of Krylov subspaces. As each approach presents

specific and complementary advantages and bottlenecks,

deep attention has recently been given to a third category, the

SVD-Krylov one, proposed by Gugercin [3]. In the following,

these three approaches are briefly recalled, together with their

main properties.

A. SVD-based approaches

SVD-based methods are grounded on two main points: the

solution of two Lyapunov equations and the SVD computa-

tion. Practically, the balanced realization is the key point.

1) Balanced realization: A SIMO LTI system of the form

(3), it is said to be balanced iff P = Q = diag(σ1, . . . , σn),
where σ1, . . . , σn denote the Hankel singular values (sorted

in decreasing order), and where P and Q denote the con-

trollability and the observability Gramians, solutions of the

Lyapunov equations:

AP + PAT + bbT = 0

ATQ+QA+ CTC = 0
(5)

If so, the balanced realization Σb is given as:

Σb :

{

ẋb(t) = WTAV xb(t) +WT bu(t)
y(t) = CV xb(t) + du(t)

(6)

where xb ∈ Rn, V = UZΣ−1/2 and W = LY Σ−1/2 (with

P = UUT , Q = LLT and UTL = ZΣY T ).

2) Balanced Truncation (BT): Assume that Σb is given in

a balanced form, and let Vr and Wr denote the first r columns

of V and W . As described in Definition 1, the reduced-order

system Σ̂, obtained by balanced truncation, is achieved by

applying Vr and Wr projectors on the initial model Σ.

3) Properties and remarks: This reduction method con-

sists of removing the states which are simultaneously dif-

ficult to control and to observe. When applied to a stable

system, such approximation approach preserves stability and

guarantees an upper bound on the approximation error (in

the H∞ norm sense). Despite these very nice properties,

the bottleneck of SVD-based approaches is that they are

numerically costly [4]. Moreover, as illustrated in Section IV,

they are not optimal in term of H2 error.

B. Krylov-based approaches

While the previous approaches consist of projecting the

initial system onto the dominant subspace spanned by the

eigenvectors of the controllability and observability Grami-

ans product, the Krylov-based approaches lead to a projection

onto the reachability and/or detectability subspaces. The

underlying idea of Krylov-based methods is the moment

matching problem [2], together with the Arnoldi algorithm.

The moment matching is guaranteed by the choice of the

projection matrices. Krylov subspaces is a numerical tool to

allow moment matching without computing them explicitly.
1) Moment matching problem: Given an initial SIMO LTI

system (3), its associated transfer matrix H(s) = C(sI −
A)−1b+d ∈ Cm can be decomposed through a Taylor series

around a given shift point σ ∈ C, as follows:

H(s)|σ = d+

∞
∑

i=0

ηi(s− σ)i , i ∈ N (7)

where ηi = −C(A−σI)−(i+1)b ∈ Cm is the ith moment at

σ. The approximation problem consists of seeking:

Ĥ(s)|σ = d+
∞
∑

i=0

η̂i(s− σ)i , i ∈ N (8)

such that ηi = η̂i at σ for i = 0, . . . , q(r), where q(r) ∈ N

denotes the number of moments matched by the reduced-

order model. Since moments are ill-conditioned, [2] proposes

a numerically efficient way to guarantee moment matching

without computing them explicitly, through the use of pro-

jection matrices constructed to span the Krylov subspaces.

Definition 2 (Krylov subspaces): Given A ∈ Rn×n, b ∈
Rn and C ∈ Rm×n, the r order Krylov Kr subspace is the

linear subspace spanned by the images of b (resp. CT ) under

the first r powers of A (resp. AT ), that is:

Kr(A, b) := span{b, Ab, . . . , Ar−1b}
Kr(A

T , CT ) := span{CT , ATCT , . . . , AT (r−1)CT }
(9)

Based on Definition 2, Theorem 1 holds.

Theorem 1 (Krylov spaces and moment matching [2]):

Given A ∈ Rn×n, b ∈ Rn, C ∈ Rm×n, rb ∈ N∗, rc ∈ N∗

and σ ∈ C, if:

Krb

(

(A− σI)−1, b
)

⊆ V = span(V )

Krc

(

(AT − σI)−1, CT
)

⊆ W = span(W )
(10)

where WTV = Ir, and σ is chosen such that A − σI is

invertible, then, the moments of Σ and Σ̂ satisfy:

ηi|σ = η̂i|σ , for i = 0, 1, . . . , q(r) (11)

where q(r) = rb + ⌊rc/m⌋ − 1.

Practically, due to the increasing power of the A − σI
matrix, these subspaces tend to rapidly converge toward their

eigenvectors, leading to poorly ranked matrices. To avoid

this, a numerically efficient solution consists of generating

an orthogonal basis of this subspace, using the Arnoldi algo-

rithm (see [5]). Applied to our reduction problem, through

Theorem 1, the reduced-order model Σ̂ can be obtained using

the projection given in Definition 1. This kind of approach

well approximates the original system around σ.
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2) (Iterative) Rational Krylov Algorithm: The Rational

Krylov Algorithm is an extension of the previous single

moment matching problem, allowing for multiple point in-

terpolation [2], [6]. It is formalized in Theorem 2.

Theorem 2 (Rational Krylov subspace [2]): Given A ∈
Rn×n, b ∈ Rn, C ∈ Rm×n, rbk ∈ NK∗, rck ∈ NK∗ and

σk ∈ CK such that A− σkI are invertible, if:

K
⋃

k=1

Krbk

(

(A− σkI)
−1, (A− σkI)

−1b
)

= span(V )

K
⋃

k=1

Krck

(

(AT − σkI)
−1, (AT − σkI)

−TCT
)

= span(W )

(12)

(denoted Krbk
(A, b, σk) and Krck

(AT , CT , σk) respectively,

with WTV = Ir), then the moments of Σ and Σ̂ satisfy

η̂
(jk)
σk

= η
(jk)
σk

for jk = 0, . . . , q(r), where k = 1, . . . ,K and

q(r) = rbk + ⌊rck/m⌋ − 1.

By assuming rbk = rck = rk, Gugercin et al. [6] show

how to select the σk interpolation points in order to reach

the first order H2 optimality conditions (see Algorithm 1).

Algorithm 1 Iterative Rational Krylov (IRKA) [6]

Require: A, b, C, σ
(0)
k , rk

1: Construct span(V ) = Krk(A, b, σ
(0)
k )

2: Construct span(W ) = Krk(A
T , CT , σ

(0)
k )

3: Set W = W (WTV )−T

4: while |σ(i)
k − σ

(i−1)
k | > ǫ do

5: i← i+ 1
6: Â = WTAV , σ

(i)
k = −λk(Â)

7: Construct span(V ) = Krk(A, b, σ
(i)
k )

8: Construct span(W ) = Krk(A
T , CT , σ

(i)
k )

9: Set W = W (WTV )−T

10: end while

Ensure: V,W ∈ Rn×r and WTV = Ir

From an initial shift selection σ
(0)
k , Algorithm 1 constructs

V,W (step 1-2) and step 3 ensures that WTV = Ir. Note

that stopping at step 3 leads to the classical Rational Krylov

Algorithm. The iterative version is developed from step 4-10

and consists of adjusting the shift selection by reusing the

reduced model poles images as new shifts (see e.g. [6]).

3) Properties and remarks: The Krylov-based methods

achieve moments matching of varying order at multiple

points through a numerically efficient procedure. As a conse-

quence, it well approximates the frozen frequency responses

of the initial system over different points. On the other hand,

the main drawback of these approaches is that stability is

not a priori guaranteed, global error bound does not exist

and convergence is not guaranteed. However, our experience

shows that this algorithm often provides stable reduced

models but requires a deflation mechanism in the SIMO case.

C. SVD-Krylov based approaches

Based on the SVD and Krylov advantages and bottlenecks

recalled in II-A and II-B, a third methodology has emerged:

the SDV-Krylov-based approach which gathers the advan-

tages of each approach.
1) (Iterative) SVD-Rational Krylov Algorithm: The SVD-

Rational Krylov approach computes a single Gramian (here,

the detectability one), and then computes the Krylov sub-

space associated with the input matrix. The Iterative SVD-

Krylov Algorithm, is given in Algorithm 2 (see [3]).

Algorithm 2 Iterative SVD-Rational Krylov (ISRKA) [3]

Require: A, b, C, σ
(0)
k , rk

1: Construct span(V ) = Krk(A, b, σ
(0)
k )

2: Compute the observability Gramian Q
3: Compute W = QV (V TQV )−1

4: while |σ(i)
k − σ

(i−1)
k | > ǫ do

5: i← i+ 1
6: Â = WTAV , σ

(i)
k = −λk(Â)

7: Construct span(V ) = Krk(A, b, σ
(i)
k )

8: Compute W = QV (V TQV )−1

9: end while

Ensure: V,W ∈ Rn×r and WTV = Ir

Algorithm 2 constructs V using the Rational Krylov

approach, and W using the Gramian approach (step 1-3).

The iteration is performed as in Algorithm 1. As illustrated

on our flexible aircraft application (see Section IV, Fig. 2),

such an adaptation mechanism allows to rapidly converge

toward the H2 Wilson first-order condition [7].
2) Properties and remarks: Thanks to the Gramian com-

putation, asymptotic stability is preserved, while moment

matching is guaranteed by the Krylov subspace construction.

Therefore, this approach provides both good modal and

frequential matching, while keeping the reduced system

eigenvalues in the left half plane, and ensures minimal H2

error (see [3]).

III. EXTENSION TO PARAMETRIZED MODELS, TOWARD

LPV AND LFR FORMULATIONS

In the above section, projection-based approximation

methods were briefly recalled in the LTI framework. Here

instead, we consider a set of LTI systems (possibly with

inconsistent state vectors) as described in (1), with the

objective to obtain a parametrized reduced-order model of

the form (2). The idea is to (i) apply local reduction to each

model Σi, (ii) find a transformation that allows interpolation,

i.e. that forces the states to belong to the same basis [8],

[9], [10], and finally (iii) find appropriate polynomials which

interpolate the reduced models. The procedure is described

in the following subsections.

A. Reduction by local projectors

The first step consists of applying ns local projectors

(Vi)i={1,ns}, (Wi)i={1,ns} ∈ Rn×r to each LTI model

through the use of Algorithm 2, guaranteeing then that

moments are matched and stability is preserved. Then, ns

local reduced-order models are obtained:

Σ̂i :

{

˙̂xi = Âix̂i + b̂iu

ŷ = Ĉix̂i + d̂iu
, i = 1, . . . , ns (13)
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where Âi = WT
i AiV

T
i , b̂i = WT

i bi, Ĉi = CiV
T
i and

d̂i = di. At this point, since the reduced-order models have

been obtained with different changes of state coordinates,

they cannot be rigorously interpolated. A solution to this

point has been proposed in [8], which consists of applying

an additional state transformation.

B. Projection on the same basis

Since xi = Vix̂i, by following [8], let a linear transfor-

mation R ∈ Rn×r be defined such that x̂∗
i = RTxi. In an

interpolation perspective, the objective is to force all state

vectors x̂∗
i to be equal. In order to have this, note that it is

always possible to find a linear transformation R such that:

RTV1x̂1 = RTV2x̂2 = · · · = RTVns
x̂ns

= x̂∗ (14)

By noting x̂i = T−1
i x̂∗ (where Ti = RTVi), each new

reduced-order system Σ̂∗
i will thus be given as:

Σ̂∗
i : (A∗

i , b
∗
i , C

∗
i , d

∗
i ) (15)

where A∗
i = TiW

T
i AiViT

−1
i , b∗i = TiW

T
i bi, C

∗
i = CiViT

−1
i

and d∗i = di. All local models have now the same state

vector, making interpolation possible (see Section III-C).

The problem is to define the linear transformation R. It

should span all the dynamics of the local models. Hence,

an intuitive choice can be to select the most significant

transformations as follows:

USZT = SVD([V1, . . . , Vns
]) (16)

where Vi denotes the local projectors obtained for each local

model. Hence, to keep the most significant singular values,

one can choose R = Ur, i.e. the r first columns of the unitary

matrix U . Notice that other approaches to generate R exist

[10], but still this one provides nice results (see Section IV).

C. Reduced-order models interpolation

The element-wise interpolation of the state-space matrices

of (Σ̂∗
i )i∈{1, ns} can now be achieved. Let (zi)i∈{1, ns} be

the values taken by any of these matrix elements for all the

parametric configurations (δ(i))i∈{1,ns}. In the perspective

of building an LFR, either a polynomial or a rational

interpolation must be performed. The former prevents the

appearance of discontinuities and is preferred here. The

following expression is thus assumed (see also [11]):

z(δ) =

np
∑

k=1

γkpk(δ) (17)

where (pk)k∈{1,np} is a set of multivariate polynomials and

(γk)k∈{1,np} are parameters to be determined. Let:

P =









p1(δ(1)) . . . pnp (δ
(1))

.

.

.
. . .

.

.

.

p1(δ(ns)) . . . pnp (δ
(ns))









=
(

P1 . . . Pnp

)

(18)

ΓT =
(

γ1 . . . γnp

)

, ZT =
(

z1 . . . zns

)

(19)

where δ(i) is the value of δ for the ith parametric configura-

tion. The objective is to minimize the quadratic error between

z(δ) and (zi)i∈{1,ns}, i.e. to compute:

Γopt = arg min
Γ∈R

np

(

(Z − PΓ)T (Z − PΓ)
)

(20)

An intuitive choice for (pk)k∈{1,np} is:

{

Rl → R

(δ1, ..., δl) → δ i1
1 ... δ il

l

, i1 ≤ d1, ..., il ≤ dl

}

(21)

where δj is the jth element of δ, l is the length of δ
and d1, . . . , dl are user-defined integers. In this context, the

solution of (20) is:

Γopt = (PTP )−1PTZ (22)

Once polynomial approximations Â(δ), b̂(δ), Ĉ(δ), d̂(δ) of

(Â∗
i , b̂

∗
i , Ĉ

∗
i , d̂

∗
i )i∈{1, ns} are available, the structured tree

decomposition algorithm of [12] is applied to get an LFR.

This algorithm is implemented in the function symtreed

of the LFR Toolbox for Matlab [13].

IV. APPLICATION TO AN INDUSTRIAL AIRCRAFT SYSTEM

The methodology proposed in Sections II and III is now

applied to a set of aeroelastic aircraft models.

A. Modeling objectives and challenging issues

Three open-loop longitudinal models (Σi)i∈{1,3} are con-

sidered here, which describe both the rigid and the flexi-

ble dynamics of a civilian passenger aircraft for different

configurations of the center tank (empty, half-filled and

filled). The first objective is to obtain reduced-order models

with consistent state space matrices and accurate frequency

responses. With reference to Fig. 1, the issue is then to

convert these reduced-order models successively into an LPV

model and an LFR, where yr denotes the vertical wind

velocity wz , while y consists of the vertical load factor at

the rear of the aircraft fuselage Nzr and the pitch rate q.

�

-

- -

w z

yyr

∆

M(s)

Fig. 1. Structure of the open-loop LFR.

The LFR should be highly representative of the initial

full-order models, in the sense that its frozen frequency

responses should almost exactly match those of the initial

models for the three considered parametric configurations.

A special attention should also be paid to its eigenvalues

and frequency responses to ensure that their variations are

as smooth as possible on the whole parametric domain.

Moreover, its complexity should remain compatible with the

use of robustness analysis tools. It is worth being emphasized

that generating such an LFR is a challenging task:
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• The reference models (Σi)i∈{1,3} have about 300 states

due to several flexible modes and aerodynamic delays.

• The grid is very coarse. Achieving a good fit over the

whole parametric domain is thus a demanding task.

• The parametric structure of the models is unknown.

It thus prevents the direct use of standard reduction methods

to obtain a suitable low-order LFR. Some methodologies

have already been proposed in [14], [15], but a tedious

preprocessing step is usually required to reduce the reference

models and ensure modal consistency for the whole set of

reduced-order models.

B. Local models order reduction

As described in Sections III-A and III-B, the strategy

consists of reducing each LTI model and applying a state

transformation in order to obtain reduced-order models with

the same state vector. First, to emphasize the interest of the

SVD-Krylov approach (ISRKA, Algorithm 2) with respect

to the Balanced Truncation (BT) one (obtained with the

balred Matlab function), local model reduction is applied

to the three systems. Then, the following error criteria:

ǫH2
=

100

ns

ns
∑

i=1

||Σi − Σ̂i||2

||Σi||2
, ǫH∞

=
100

ns

ns
∑

i=1

||Σi − Σ̂i||∞

||Σi||∞
(23)

are evaluated and compared for various reduction orders.

Fig. 2 gathers the results obtained for r = 14, . . . , 34 (for

all simulations, Algorithm 2 is empirically initialized with

σk = [z z]T ∈ Cr, z = [1 . . . 1000]T j ∈ Cr/2 (j =
√
−1),

rk = [1 . . . 1]T ∈ Rr and ǫ = 10−2).
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Fig. 2. Approximation error comparison between the BT and ISRKA
methods for local model reduction. Left frame, ǫH2

; Right frame, ǫH∞
.

From Fig. 2, the following comments can be done:

• By increasing the reduced order r, both errors decrease.

• Compared to the BT, the IRSKA approach provides

significantly better results in terms of H2 relative error

while keeping the H∞ one almost similar.

• The state vectors obtained with the ISRKA procedure

are in the same basis, unlike the BT ones.

• For r = 20, we observe quite nice results for both

relative errors; indeed, the BT approach achieves ǫH2
=

19.40% and ǫH∞
= 2.73% while the ISRKA achieves

ǫH2
= 9.85% and ǫH∞

= 4.80%.

From now on, we will consider r = 20 and focus on

the SVD-Krylov approach. Fig. 3 compares the frequency

responses of the reduced-order and the initial high-order

models corresponding to a half-filled tank - i.e. Σ̂∗
2 vs. Σ2.
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Fig. 3. Comparison between the frequency responses (top: from wz to
Nzr - bottom: from wz to q) of the initial Σ2 (solid lines) and the reduced-

order Σ̂∗
2 (r = 20, dashed lines) models.

The frequency responses of Σ̂∗
2 are very satisfactory and

reproduce accurately the main frequency peaks. Analogous

results are obtained for the two other configurations, but they

are not presented in details due to space limitations. Now that

the models have the same state vector, the interpolation can

be achieved as described in Section III-C.

C. LPV model and LFR generation

In order to have as few occurrences of δ as possible

in the LPV formulation (2), and therefore to obtain an

LFR whose ∆ block in as small as possible, an additional

change of state coordinates is performed and the reduced-

order models (Σ̂∗
i )i={1,3} are all written in the companion

form. Indeed, our experience shows that this form, as well

as the modal form, usually produce good results in terms of

both eigenvalues and frequency responses [14], [15].

Since three center tank configurations are considered,

choosing np = 3 and applying the interpolation method

proposed in Section III-C allows to perform an exact in-

terpolation. Once the LPV model Σ̂(δ) is obtained, where δ
denotes the amount of fuel in the center tank, it can easily be

transformed into an LFR as described in Section III-C. With

reference to Fig. 1, M(s) is an LTI system of order r = 20,

while ∆ = δI is a 6×6 real diagonal matrix, which is, to our

knowledge, a very nice result. Although no comparison can

be made outside the grid points, a strong requirement is that

the LFR behavior remains realistic, i.e. that its eigenvalues

and frequency responses vary as smoothly as possible. This

is actually the case, as illustrated in Figs. 4 and 5.

The resulting LFR can then be used both for analysis

and design purposes. This is out of the scope of the paper,

but a few results are presented here to show that its size is

compatible with existing tools. The µ-analysis based method

of [16] is first applied and allows to validate a posteriori

the stability of the LFR on the whole parametric domain.

The highest H∞ norm of the transfer function from wz to

Nzr is then evaluated when ∆ takes all possible values in

the considered domain. More precisely, the methods of [16]

and [17] are successively applied to compute upper and

lower bounds. A guaranteed upper bound on the whole
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Fig. 4. Modal trajectories of Σ̂(δ) with respect to the center tank filling

level (crosses: reduced-order LTI models (Σ̂∗
i
)i={1,3}).

parametric domain is γUB = 29.62, while a worst-case

configuration γLB = 29.33 is detected for a filled tank at

the frequency ω = 1.57 rad/s. The bounds are very tight and

the computational time is only 6s. Moreover, this result is

consistent with what can be observed on Fig. 5 (top).

V. CONCLUSIONS

In this paper, the problem of generating a reduced-order

parametrized model from a set of large-scale LTI systems,

describing a complex plant modeled at frozen configurations,

is treated. The contribution gathers different results from

control and numerical communities to derive a methodology

that solves this problem in an almost direct manner. The

proposed approach is successfully assessed on a set of aeroe-

lastic aircraft models, leading to a low-order LFR whose size

makes it compatible with several analysis and synthesis tools.
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