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Abstract— This paper focuses on quantized feedback systems
which consist of the linear system and the dynamic quantizer.
From the perspective of the invariant set analysis, we discuss
the effectiveness and the limitation of our quantizer synthesis
condition considering several performances. If the all transmis-
sion zeros of the given system are stable, the proposed quantizer
gives an optimal output approximation property. Otherwise, our
method can design a stable suboptimal quantizer guaranteed
with infinite time control performance. The numerical examples
show that our quantizer can achieve the coarsely-quantized
signal, while avoiding the excess performance deterioration.

I. INTRODUCTION

Recently, one of the most active control studies is the

discrete-valued control theory in which networked systems,

hybrid systems, embedded devices with D/A·A/D converters

and ON/OFF actuators are addressed as systems containing

discrete-valued signals. Since the theory leads to various

practical applications, this topic has been studied from vari-

ous perspectives [1]–[5] so far.

(a) Quantized feedback system.

(b) Usual feedback system.

(c) Quantized feedback system with I/O quantizers.

Fig. 1. Three control systems.

As a study focusing on optimality of systems controlled

by the discrete-valued signals, it is well known that the

optimal dynamic quantizer framework in [6]–[9] is useful.
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When a plant P (z) and a controller C(z) are given in the

usual feedback system in Fig. 1 (b), the framework can

provide a “dynamic” quantizer Qd such that the quantized

feedback system in Fig. 1 (a) “optimally” approximates the

system in Fig. 1 (b) in the sense of the input-output relation.

However, when the given systems have unstable zeros, the

optimal dynamic quantizer in [6], [7] becomes unstable [8].

Although the numerical design method in [9] can provide

a stable optimal dynamic quantizer, its infinite time control

performance is not always guaranteed and the order of the

obtained quantizer is basically (in some cases much) higher

than that of the given system.

Motivated by the above, the authors have reconsidered the

dynamic quantizer design. Our approach is based on the in-

variant set analysis [10]–[12] and the linear matrix inequality

(LMI) technique [13]. The framework can synthesize the

dynamic quantizers for SISO quantized feedback systems

[14] in Fig. 1 (a) or the quantization intervals of the dynamic

quantizers for feedforward-type networked systems with the

communication rate constraints [15], while guaranteeing in-

finite quantization time and stability. However, in networked

control, the quantized sensor information is often transmitted

over communication channels as shown in Fig 1 (c). Also, it

is often necessary to consider several performances (such as

approximation performance, stability and signal coarseness)

simultaneously due to the low capacity of the communication

channels. Then it is important to consider more general

dynamic quantizer design problems.

Therefore this paper deals with the generalized quantized

feedback system in Fig. 2 (b) that includes the various

systems such as Fig. 1 (a) and (c). We discuss the effective-

ness and the limitation of our quantizer synthesis condition

considering approximation performance, stability and signal

coarseness. If the all transmission zeros of the given systems

are stable, the proposed quantizer gives an optimal output

approximation property. Otherwise, our method can design

a stable suboptimal quantizer such that the order of the

quantizer is exactly the same as that of the given system and

the infinite time control performance is always guaranteed. In

addition, this paper clarifies a performance relation between

the static quantizer and the dynamic quantizer under some

circumstances. Finally, the numerical examples show that our

quantizer can achieve the coarsely-quantized signal, while

attenuating the excess performance deterioration.

Notation: The set of n × m (positive) real matrices is

denoted by IRn×m (IRn×m
+ ). The set of n × m (positive)

integer matrices is denoted by INn×m (INn×m
+ ). 0n×m and

Im (or for simplicity of notation, 0 and I) denote the n×m
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zero matrix and the m×m identity matrix, respectively. ⌊a⌋
denotes the floor of a ∈ IR+. For a matrix M , MT, ρ(M),
σmax(M) and abs(M) denote its transpose, its spectrum

radius, its maximum singular value and the matrix composed

of the absolute values of its elements, respectively. For a

vector x, xi is the i-th entry of x. For a symmetric matrix

X , X > 0 (X ≥ 0) means that X is positive (semi) definite.

For a full row rank matrix M , M† denotes its pseudo inverse

matrix which is given by M† =MT(MMT)−1. For a matrix

X , ‖X‖2 denotes its 2-norm. For a vector x and a sequence

of vectors X := {x1, x2, ...}, ‖x‖ and ‖X‖ denote their ∞-

norms, respectively. Finally, we use the “packed” notation

for transfer functions:

(

A B
C D

)

:= C(zI −A)−1B +D.

II. PRELIMINARIES

Consider the linear time invariant (LTI) discrete-time

system given by

ξ(k + 1) = Aξ(k) + Bw(k) (1)

where ξ ∈ IRn and w ∈ IRm denote the state vector and

disturbance input, respectively. We define the invariant set.

Definition 1: Define the invariant set of the system (1) to

be a set X which satisfies

ξ ∈ X , w ∈ W ⇒ Aξ + Bw ∈ X (2)

where W := {w ∈ IRm : wTw ≤ 1}.

The analysis condition can be expressed in terms of matrix

inequalities as summarized in the following proposition [11].

Proposition 1: Consider the system (1). For a matrix 0 <
P ∈ IRn×n, the ellipsoid E(P) :=

{

ξ ∈ IRn : ξTPξ ≤ 1
}

is an invariant set if and only if there exists a scalar α ∈
[0, 1− ρ(A)2] satisfying

[

ATPA− (1− α)P ATPB
BTPA BTPB − αIm

]

≤ 0. (3)

The necessity of (3) has been proved in [11]. The all

ellipsoidal invariant sets are parameterized by Proposition 1.

Also, the ellipsoidal invariant set allows us to approximate

the reachable set from outside since the former covers the

latter. We consider a criterion for the approximation of E(P)
to the reachable set. Since the matrix P determines the

ellipsoid, we denote all the criterion for the above approxi-

mation by f(P) similar to [11]. f(P) has the monotonical

decreasingness in the sense that its value for the set of inside

is less than that of outside. When α is fixed in (3), reference

[11] clarifies that the infimum of f(P) does not change even

if P is restricted to P(α) given by

P(α)−1 =
∞
∑

k=0

1

α(1− α)k
AkBBT(AT)k (4)

where α ∈ (0, 1 − ρ(A)2). Therefore, the invariant sets in

(3) can be parameterized by α ∈ (0, 1−ρ(A)2). Also, f(P)
can be replaced by f(P(α)). Denote by ξ(k, ξ(0), w) the

state trajectory of the system (1) at the k-th time. For the set

E(P) characterized by Proposition 1, the property

lim
k→∞

inf
ξ∈E(P)

‖ξ(k, ξ(0), w)− ξ‖ = 0 (5)

also holds (the proof is given by [12]).

III. PROBLEM FORMULATION

(a) Usual feedback system.
(b) Quantized feedback system.

Fig. 2. Generalized quantized and unquantized systems.

Consider the quantized feedback system depicted in Fig. 2

(b), which consists of the LTI discrete-time generalized plant

G(z) and the dynamic quantizer Qd. The system G(z) is

represented by




x(k + 1)
zp(k)
y(k)



=





A B1 B2

C1 D11 0
C2 D21 D22









x(k)
r(k)
v(k)



 (6)

where x ∈ IRng , zp ∈ IRq , r ∈ IRp, v ∈ IRm and

y ∈ IRm denote the state vector, the controlled output, the

exogenous input, the measured input and output, respectively.

Considering the relation y = v, we assume that the matrix

A+B2(I −D22)
−1C2 is stable in the discrete domain, that

is, the usual feedback system in Fig. 2 (a) is stable.

The formulation in (6) covers the various systems. Con-

sider the LTI plant P (z) with the state xp ∈ IRnp and the

LTI controller C(z) with the state xc ∈ IRnc given by

[

zp
y2

]

=





Ap Bp

Cp1 0
Cp2 0



 v1, y1 =

(

Ac Bc1 Bc2

Cc Dc1 Dc2

)[

v2
r

]

where y1 ∈ IRm1 , y2 ∈ IRm2 , v1 ∈ IRm1 , and v2 ∈ IRm2

denote the controller output, the plant measured output,

the plant input, and the controller input, respectively. For

example, by defining vectors: x := [ xT
p xT

c ]T ∈ IRng (ng :=
np + nc), y := [ yT

1 yT
2 ]T, v := [ vT

1 vT
2 ]T, and matrices:

A :=

[

Ap 0
0 Ac

]

, B1 :=

[

0
Bc2

]

, B2 :=

[

Bp 0
0 Bc1

]

,

C1 :=
[

Cp1 0
]

, D11 := 0, C2 :=

[

0 Cc

Cp2 0

]

,

D21 :=

[

Dc2

0

]

, D22 :=

[

0 Dc1

0 0

]

,

one gets the control system with I/O quantizers in Fig. 1 (c).

For the system, we consider the dynamic quantizer v =
Qd(y) with the state vector xq ∈ IRnq . The system Qd

consists of the static quantizer Qst : IR
m → dINm, i.e.,

v = Qst(u), u := uq + y (7)

and the dynamic compensator Q(z)
[

xq(k + 1)
uq(k)

]

=

[

Aq Bq

Cq 0

] [

xq(k)
eq(k)

]

(8)

where eq := v − y. Note that Qst is of the nearest-neighbor

type toward −∞ with the quantization interval d ∈ IR+ and

the initial state is given by xq(0) = 0 for the drift-free of
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Qd [6]–[9]. One such static quantizer is the midtread type

quantizer in Fig. 3. Also, the quantizer Qd is said to be stable

if its matrix Aq +BqCq is stable in the discrete domain [8].

Fig. 3. Midtread type quantization.

We define the following matrices:

D := (I −D22)
−1, C2 := DC2, D21 := DD21,

D22 := DD22, A :=A+B2C2, B1 := B1 +B2D21,

B2 := B2D, A :=

[

A B2Cq

0 Aq +BqCq

]

, B1 :=

[

B2

Bq

]

,

B2 :=

[

B1

0

]

, C1 :=
[

C2 DCq

]

, D11 := D22,

D12 := D21, C2 :=
[

C1 0
]

, D22 := D11. (9)

For the system in Fig. 2 (b), the system G(z) with the

static quantizer Qst seen by the linear compensator Q(z)
can be recast as the linear fractional transformation (LFT)

of a generalized plant G(z):








x(k + 1)
u(k)
zp(k)
eq(k)









=









A B1 B2 B2

C2 D21 D22 D

C1 D11 0 0
0 0 I I

















x(k)
r(k)
e(k)
uq(k)









(10)

and the quantization error Qe:

e = Qe(u), Qe(u) := Qst(u)− u (11)

where the signal e ∈ [−d/2, d/2]m. In this case, the control

system in Fig. 2 (b) can be described as a LFT (Fig. 4) of the

quantization error Qe and a LTI system H(z) represented by

e = Qe(u),





ξ(k + 1)
u(k)
zp(k)



=





A B1 B2

C1 D11 D12

C2 0 D22









ξ(k)
e(k)
r(k)



 (12)

where ξ := [ xT xT
q ]T ∈ IRn(n := ng +nq) and the system

H(z) is the feedback connection of G(z) and Q(z).
For the system in Fig. 2 (b) without the exogenous signal

(r(k) = 0 ∀k), zp(k, x0) and v(k, x0) denote the outputs of

zp and v at the k-th time for the initial state x0 := x(0). In

this case, this paper considers the following cost function:

L(Qd) := sup
x0∈IRng

lim sup
k→∞

‖zp(k, x0)‖

and the constraint:

V (Qd) := sup
x0∈IRng

lim sup
k→∞

‖v(k, x0)‖ ≤ ψ

Fig. 4. Feedback system with quantization error.

where the constraint parameter ψ ∈ IR+ is given.

For the sufficiently small L(Qd) case, it is expected that

the quantizer minimizes the effect of the quantization error

on the controlled output zp in a neighborhood of the origin

[14]. On the other hand, it is also important to attenuate the

excess output gain of Qd that the small L(Qd) leads to. Since

V (Qd) specifies the output amplitude of Qd around the ori-

gin, it is expected that the smaller value ψ leads to the coarser

output of Qd around the origin. Then our first objective is to

solve the following dynamic quantizer synthesis problem (L):

For the system (12) without the exogenous signal, suppose

that the quantization interval d ∈ IR+, the performance

level γ ∈ IR+ and the constraint parameter ψ ∈ IR+ are

given. Characterize a stable dynamic quantizer Qd (i.e.,

find parameters (nq, Aq, Bq, Cq)) achieving L(Qd) ≤ γ and

V (Qd) ≤ ψ based on Proposition 1.

Next, let T ∈ IN+ ∪ {∞} be the period over which

we consider the quantizer performance. For the system in

Fig. 2 (b) with the exogenous signal sequence RT :=
{r(0), r(1), ..., r(T − 1)} ∈ lp∞, zp(k, x0, RT ) denotes the

output of zp at the k-th time for the initial state x0. Also, for

the system in Fig. 2 (a) without the quantizer, z∗p(k, x0, RT )
denotes its output at the k-th time for the initial state x0.

Zp(x0, RT ) and Z∗
p (x0, RT ) denote the vector sequence of

zp(k, x0, RT ) and z∗p(k, x0, RT ) for k = 1, ..., T , respec-

tively. This paper considers the following cost function:

ET (Qd) := sup
(x0,RT )∈IRng×l

p
∞

‖Z∗
p (x0, RT )− Zp(x0, RT )‖

which is discussed in [6]–[9]. For the case T = ∞, note that

we consider R = (r(0), r(1), ...) ∈ lp∞ instead of RT ∈ lp∞.

Along with this, Zp(x0, RT ) and Z∗
p (x0, RT ) are replaced

by Zp(x0, R) and Z∗
p (x0, R), respectively.

Our second objective is to solve the following dynamic

quantizer synthesis problem (E): For the system (12) with

the exogenous signal sequence RT := {r(0), r(1), ..., r(T −
1)} ∈ lp∞, suppose that the quantization period T ∈ IN+ ∪
{∞}, the quantization interval d ∈ IR+ and the performance

level γ ∈ IR+ are given. Characterize a stable dynamic

quantizer Qd (i.e., find parameters (nq, Aq, Bq, Cq)) achiev-

ing ET (Qd) ≤ γ based on Proposition 1.

If the minimum value of γ is sufficiently small, the system

in Fig. 2 (b) “optimally” approximates the usual system in

Fig. 2 (a) in the sense of the input-output relation.
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IV. MAIN RESULT

A. Quantizer analysis

Suppose that the stable quantizer Qd is given. For the

set E := {e ∈ IRm : e satisfies (11)}, the relation E ⊆
md2

4 W clearly holds (namely, md2

4 W is the set E ignores

the relation (11)). That is, the reachable set of (2, 1) block

of H(z) in (12) is no larger than that of (2, 1) block of

H(z) with an independent bounded disturbance e ∈ md2

4 W .

Considering the reachable set to estimate the influences of the

quantization error, this paper utilizes the ellipsoidal invariant

set which covers the reachable set from outside. Define

A := A, B := B1
d
√
m

2
, D̂11 := D11 + Im. (13)

In this case, the ellipsoidal invariant set E(P) for the system

(12) can be estimated by Proposition 1. If there exists the

set E(P), there exists a scalar γ ∈ IR+ satisfying

max
i

sup
ξ∈E(P)

|cT
2iξ| = γ ⇐

[

P CT
2

C2 γ2Iq

]

≥ 0 (14)

where cT
2i is the i-th entry of C2 [10]. Furthermore, the

following relation holds:

max
i

sup
ξ∈E(P), e∈md2

4
W

|cT
1iξ + d̂T

i e| ≤ ψ

⇐
[

P C1
T

C1 (ψ − σ(D̂11)d
√
m

2 )2

]

≥ 0 (15)

where cT
1i and d̂T

i are the i-th entries of C1 and D̂11,

respectively. From the property (5) of the invariant set and the

definition (11), for any initial state ξ(0) ∈ IRn (equivalently,

x0 ∈ IRng ), the performance level γ in (14) satisfies

L(Qd) ≤ γ (16)

and the scalar ψ in (15) satisfies

V (Qd) ≤ ψ. (17)

For Proposition 1 with (13) and the given ψ, we have the

optimization problem (Aop):

min
P>0,1−ρ(A)2>α>0,γ>0

γ s.t. (3), (14) and (15).

Focusing on the left side of (14), we see that γ is

corresponding to the value of f(P(α)) in terms of the

approximation of E(P(α)) to the reachable set. From the

parameterization P(α) in (4), the infimum of γ can be

expressed by the following lemma.

Lemma 1: For the feedback system (12), suppose that

the quantization interval d ∈ IR+ is given. Consider the

relaxed problem (Aop’) in the sense that the constraint (15)

is removed from the original problem (Aop) with (13). The

infimum of γ is given by

inf γ = inf
α

d
√
m

2
√
α
σα, 0 < α < 1− ρ(A)2, (18)

σα := σmax

(

∑∞
k=0

1
(1−α)k

C2A
kB1B

T
1(A

T)kCT
2

)

.

Lemma 1 points out that Proposition 1 characterizes the

infimum of the upper bound of the cost function L(Qd).

B. Quantizer synthesis

The problem (Aop) with (13) suggests that the quantizer

synthesis problem (L) reduces to the search for the quantizer

parameters satisfying condition (3) in Proposition 1, (14) and

(15) as summarized in the following theorem.

Theorem 1: For the feedback system (12), suppose that

the quantization interval d ∈ IR+, the performance level γ ∈
IR+ and the constraint parameter ψ ∈ IR+ are given. For

a scalar α ∈ (0, 1), there exists a stable dynamic quantizer

Qd achieving (16) and (17) if one of the following equivalent

statements holds.

(i) There exist a matrix 0 < P ∈ IRn×n and a dynamic

quantizer Qd satisfying (3), (14) and (15).

(ii) There exist matrices 0 < X ∈ IRng×ng , 0 < Y ∈
IRng×ng , F ∈ IRm×ng , W ∈ IRng×ng , and U ∈ IRng×m

satisfying




(1− α)ΞP 0 ΞT
A

0 4α
md2 Im ΞT

B

ΞA ΞB ΞP



≥0,

[

ΞP ΞT
C1

ΞC1
γ2Iq

]

≥0, (19)

[

ΞP ΞT
C2

ΞC2
(ψ − φ)2

]

≥0 (20)

where

ΞP :=

[

X I
I Y

]

, ΞA :=

[

XA W
A AY + B2F

]

,

ΞB :=
[

UT BT
2

]T
, ΞC1

:=
[

C1 C1Y
]

,

ΞC2
:=

[

C2 C2Y + DF
]

, φ :=
σ(D22 + I)d

√
m

2
.

In this case, one such quantizer is given by

Bq = Z−1(U −XB2), Cq = −FY −1, nq = ng,

Aq = Z−1(XAY + UF −W )Y −1 (21)

where Z = X − Y −1.

For the case where the quantizer is clearly inactive (C2 =
0, D21 = 0 and D22 = 0 in (6)), the statement of Theorem 1

still holds since L(Qd) and V (Qd) of such a system become

zero and then the both of (16) and (17) hold. As a synthesis

problem minimizing γ of (16) and achieving the constraint

(17), we have the optimization problem (Sop):

min
X>0,Y >0,F,W,U,1>α>0,γ>0

γ s.t. (19) and (20).

In synthesis, the parameters (Aq, Bq, Cq) to be designed lead

to α ∈ (0, 1). When scalar α is fixed, the conditions in

Theorem 1 are linear matrix inequalities (LMIs) in terms

of the other variables. Using standard LMI software in

combination with the line search of α for (Sop), we can

obtain a stable dynamic quantizer, numerically.

Denote by the synthesis problem (L’) the relaxed problem

in the sense that the constraint (17) is removed from the

original synthesis problem (L). Under some circumstances,

Proposition 1 gives a closed-form solution to (L’).

Theorem 2: Consider the following non-convex optimiza-

tion problem (OP) with (13):

min
P>0,Aq,Bq,Cq,0>α>1−ρ(A)2,γ>0

γ s.t. (3) and (14).

Suppose that the matrix C1A
τB2 is full row rank for the

smallest integer τ ∈ {0} ∪ IN+ satisfying C1A
τB2 6= 0 for

the system (6). An optimal solution of (Aq, Bq, Cq) and its
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infimum of γ ∈ IR+ to the problem (OP) are given by

Aq = A, Bq = B2, Cq = −(C1A
τB2)

†C1A
τ+1 (22)

and

inf γ = (d
√
m‖C1A

τB2‖2)/(2ρ(A)τ
√

1− ρ(A)2) (23)

if the matrix Aq +BqCq defined in (22) is stable.

In the case of m = p, (C1A
τB2)

† becomes (C1A
τB2)

−1.

In this case, the stable Aq+BqCq in (22) implies that the all

transmission zeros of the system G(z) are stable [8]. If G(z)
is minimum phase and the matrix P(α) defined by (4), (9),

(13) and (22) satisfies (15) for the given ψ, that is, Theorem

2 gives a closed-form solution to (L).

Also, the following corollary provides an analytical rela-

tion between the quantizers Qd and Qst.

Corollary 1: Consider the relaxed problem (L’) and de-

note by γst and γd upper bounds of L(Qst) and L(Qd),
respectively. In the case of ng = 1,

inf
γst
γd

=
1√

1− A2
(24)

holds.

Since the matrix A is stable, A2 ∈ [0, 1) holds in (24).

Corollary 1 guarantees that the quantizer Qd improves L(Qd)
compared with the quantizer Qst in terms of the infimum of

the upper bound ratio of the cost functions.

C. Relation to the optimal dynamic quantizer

The usual feedback system in Fig. 2 (a) is given by




x∗(k + 1)
y∗(k)
z∗p(k)



 =





A B1

C2 D21

C1 D11





[

x∗(k)
r(k)

]

where x∗ ∈ IRng , y∗ ∈ IRm, z∗p ∈ IRq denote its state

vector, measured output, and controlled output respectively,

and x∗(0) = x(0). Define the signals as follows:

ξ := [ xT − x∗T xT
q ]T, ν := v − y∗, z := zp − z∗p .

The difference between z∗p(k, x0, RT ) and zp(k, x0, RT ) is

generated by the following error system H(z):




ξ(k + 1)
ν(k)
z(k)



 =





A B1

C1 D̂11

C2 0





[

ξ(k)
e(k)

]

, ξ(0) = 0

where e ∈ IRm is given by (11) and the matrices A, B1,

C1, C2, D̂11 are defined by (9) and (13). Therefore, by using

the same procedure of the subsection IV-A, Proposition 1

characterizes the cost function E∞(Qd) as follows:

E∞(Qd) ≤ γ, γ := min
P,α,Aq,Bq,Cq

max
i

sup
ξ∈E(P)

|cT
2iξ| s.t. (3).

The quantization period T is ∞ within the invariant set

analysis framework. From Theorems 1 and 2, solutions to

the synthesis problem (E) is given by the following theorem.

Theorem 3: For the feedback system (12), suppose that

the quantization interval d ∈ IR+ is given and m = p.

If the all transmission zeros of G(z) in (6) are stable, a

stable dynamic quantizer achieving E∞(Qd) ≤ γ and its

performance are given by (22) and (23). If G(z) has unstable

zeros, a stable dynamic quantizer achieving E∞(Qd) ≤ γ
and its performance are characterized by (19) and (21).

When the matrix C2 is full row rank, reference [6] has

present an optimal dynamic quantizer Qop
d given by (22) with

E∞(Qop
d ) = ‖abs(C1A

τB2)‖
d

2

where τ ∈ {0} ∪ IN+ is the minimum integer satisfying

C1A
τB2 6= 0. It is striking that the structure of their quantizer

is equivalent to our proposed one based on Proposition 1 even

if the former performance evaluation is less conservative than

the latter one. That is, Theorem 3 points out that the proposed

quantizer is also optimal in the sense that the quantizer gives

an optimal output approximation property.

When the quantization period T ∈ IN+ is given, reference

[9] has provided the numerical design method in which the

stable and optimal quantizer synthesis problem is recast as

the following optimization problem:

min
Aq,Bq,Cq,P

∥

∥

∥

∥

∥

T−1
∑

k=0

abs(C2A
k
B1)

∥

∥

∥

∥

∥

d

2
(= ET (Qd))

s.t. (Aq +BqCq)
TP(Aq +BqCq) < P, P > 0.

The order of the quantizer in [9] is given by ⌊T/2⌋ + 1 or

(⌊T/2⌋+ 1)T . When T is set to be large, then we need the

reduction technique. On the other hand, our method has the

following properties: When the generalized plant G(z) has

unstable zeros, (i) the order is nq = ng , (ii) the infinite

time control performance is always guaranteed, and (iii)
the method provides a suboptimal dynamic quantizer in the

sense that the upper bound of E∞(Qd) is minimized.

The quantizer satisfying properties (i)∽(iii) is obtained

from the optimization problem (Sop’):

min
X>0,Y >0,F,W,U,1>α>0,γ>0

γ s.t. (19).

On the other hand, the quantizer Qd considering its approx-

imation performance E∞(Qd) and its signal coarseness can

be obtained from (Sop). By denoting by ν(k, x0, R) the

output of ν at the k-th time for x0 and R, (20) leads to

sup
(k,x0,R)∈IN+×IRn×l

p
∞

‖ν(k, x0, R)‖ ≤ ψ.

That is, it is expected that the constraint (20) can adjust the

output signal coarseness of the dynamic quantizer Qd for

E∞(Qd). Next section examines the above.

V. NUMERICAL EXAMPLE

Consider the system in Fig. 1 (c). The plant P (z) is

the discretized system of the unstable non-minimum phase

continuous-time LTI system

[

ẋp(t)
y2(t)

]

=





0 1 0
1 −1 1
−2 1 0





[

xp(t)
v1(t)

]

, zp(t) = y2(t)

with the sampling time h = 0.1 and zero-order hold.

Its eigenvalues are {1.064, 0.857} and its unstable zero is

{1.224}. The stabilizing controller C(z) is given by
[

xc(k + 1)
y1(k)

]

=

[

0.741 0.086
−1 1

] [

xc(k)
v2(k)

]

.
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Fig. 5. Time responses of for (Sop’).

Consider d = 10 and ψ = 45 for the above systems (φ =
18.1). The stable suboptimal quantizers with γ = 2.09 and

γ = 2.35 are obtained from (Sop’) and (Sop), respectively.

Figures 5 and 6 illustrate the time responses of v1(kh),
v2(kh) and zp(kh) for the quantizers via (Sop’) and (Sop)

with the initial state x(0) = [ − 4 0 − 4 ]T, respectively.

In Figs. 5 and 6, the thin lines and the thick lines illustrate

the time responses of the usual feedback system in Fig.

1 (b) and the quantized feedback system in Fig. 1 (c),

respectively. We see that the controlled output of Fig. 1 (c)

approximates that of Fig. 1 (b) even if the discrete-valued

signals v1 and v2 are applied. Especially, the quantizer of

(Sop) can achieve the coarser discrete-valued signals such

as v1 ∈ {−10, 0, 10} and v2 ∈ {0, 10} in Fig. 6 (a) and

(b) than v1 ∈ {−10, 0, 10, 20} and v2 ∈ {−10, 0, 10, 20} in

Fig. 5 (a) and (b), while attenuating the excess performance

deterioration between both quantizers. Then this numerical

example shows the effectiveness of our method and examines

the validity of Theorem 3 in dynamic quantizer synthesis.
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