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Abstract— This paper presents the design, analysis, and
performance evaluation of a novel cascade observer for attitude
estimation. First, a sensor-based observer, which resorts to
rate gyro readings and a set of vector observations, estimates
the rate gyro bias. Afterwards, a second observer explicitly
estimates the attitude in the form of a rotation matrix based
on the rate gyro measurements, the vector observations, and
the estimate of the rate gyro bias provided by the first observer.
The error dynamics of the overall cascade estimation system
are globally exponentially stable (GES) and do not suffer from
drawbacks common to attitude estimation solutions such as
singularities, unwinding phenomena, or topological limitations
for achieving global asymptotic stability (GAS). In addition,
the proposed system is computationally efficient and hence it
is easily implementable with low computational capabilities.
The fact that the observer does not evolve explicitly on SO(3),
providing in fact estimates that converge asymptotically to
SO(3), is also addressed and an effective and efficient solution
is proposed. Finally, the resulting estimator is evaluated, where
a Motion Rate Table (MRT) that provides ground truth data
is employed for performance evaluation purposes.

I. INTRODUCTION

Attitude estimation has been a hot topic of research in

recent years, as evidenced by the large number of publica-

tions on the subject, see e.g. [1], [2], and [3]. The Extended

Kalman Filter (EKF) and variants have been at the core

of numerous stochastic solutions, see e.g. [4], [5], [6], and

[7], while nonlinear alternatives, aiming for stability and

convergence properties, have been proposed in [8], [9], [10],

[11], and [12], to mention just a few, see [13] for a thorough

survey on the subject of attitude estimation.

Lack of convergence guarantees, singularities, unwinding

phenomena and topological limitations for achieving global

asymptotic stability are common drawbacks of attitude es-

timation solutions. In previous work by the authors, [14], a

sensor-based attitude estimation filter was derived that has

globally asymptotically stable (GAS) error dynamics and

does not carry any of the aforementioned limitations. Unfor-

tunately, that solution is computational expensive. Indeed, it

requires the solution of a matrix differential Riccati equation

associated to a state of dimension 3 (N + 1), where N is the

number of vector observations. In addition, the final rotation

matrix is obtained from the solution of the Wahba’s problem,

which involves, in general, an SVD problem.
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The main contribution of this paper is the design, analysis,

and performance evaluation of a novel cascade attitude

observer that: i) has globally exponentially stable (GES) error

dynamics; ii) is computationally efficient; iii) is based on

the exact angular motion kinematics; iv) builds on well-

established Lyapunov results; v) explicitly estimates rate

gyro bias and copes well with slowly time-varying bias; and

vi) has a complementary structure, fusing low bandwidth

vector observations with high bandwidth rate gyro measure-

ments. In this paper, the sensor measurements are included

directly in the system dynamics, following the approach

introduced in [14], and the kinematics are propagated using

the angular velocity provided by a three-axis rate gyro,

whose bias is also considered. A novel computationally

efficient observer is designed for this system, that yields

an estimate of the rate gyro bias, and that feeds a second

novel observer for the rotation matrix, which is also compu-

tationally efficient. The overall closed-loop error dynamics

are shown to be GES and the estimates of the rotation

matrix converge asymptotically to the Special Orthogonal

Group, SO(3). An additional solution refinement is provided

that yields solutions arbitrarily close to SO(3), keeping at

the same time low computational requirements. Finally, the

proposed solution does not exhibit any of the aforementioned

drawbacks common to attitude estimation solutions such as

singularities, unwinding phenomena, or topological limita-

tions for achieving global asymptotic stabilization on SO(3),
see [15].

The paper is organized as follows. The problem statement

is introduced in Section II, whereas the observer design and

stability analysis are presented in Section III. Experimental

results are provided and discussed in Section IV and finally,

in Section V, the main contributions and conclusions of the

paper are summarized.

A. Notation

Throughout the paper the symbol 0 denotes a matrix (or

vector) of zeros and I an identity matrix, both of appro-

priate dimensions. A block diagonal matrix is represented

as diag (A1, . . . ,An). For x,y ∈ R
3, x × y represents the

cross product.

II. PROBLEM STATEMENT

Let {I} be an inertial reference frame, {B} a body-fixed

reference frame, and R(t) ∈ SO(3) the rotation matrix from

{B} to {I}. The attitude kinematics, expressed in the form

of a rotation matrix, are given by Ṙ(t) = R(t)S (ω(t)) ,
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where ω(t) ∈ R
3 is the angular velocity of {B}, expressed

in {B}, and S (.) is the skew-symmetric matrix

S (x) :=





0 −xz xy

xz 0 −xx

−xy xx 0



 , x =





xx

xy

xz



 ∈ R
3.

The angular velocity is assumed to be a continuous bounded

signal. Suppose that rate gyro measurements are available,

corrupted by a constant bias, as given by

ωm(t) = ω(t) + bω(t), (1)

where bω(t) ∈ R
3 is the rate gyro bias, which satisfies

ḃω(t) = 0. In addition to the rate gyro readings, suppose that

a set of N vector observations {vi(t) ∈ R
3, i = 1, . . . , N}

is available, in body-fixed coordinates, of known constant

vectors in inertial coordinates,

ri = R(t)vi(t), i = 1, . . . , N. (2)

In the remainder of the paper the following assumption is

made:

Assumption 1: There exist at least two non-collinear ref-

erence vectors, i.e., there exist i and j such that ri×rj 6= 0.

This assumption is necessary for attitude estimation with

constant vectors in inertial coordinates, see e.g. [11] and [14],

and therefore it carries no conservativeness whatsoever.

The problem considered in the paper is the design of an

observer for the rotation matrix R(t) and the rate gyro bias

bω(t) with globally exponentially stable error dynamics.

III. OBSERVER DESIGN AND STABILITY ANALYSIS

This section details the design of the attitude observer and

the stability analysis. First, a bias observer with GES error

dynamics is derived, in Section III-A, that resorts directly to

the vector observations. Afterwards, an attitude observer with

GES error dynamics is proposed, in Section III-B, assuming

that the rate gyro bias is known. The overall cascade attitude

observer is presented in Section III-C, where it is shown that

the resulting error dynamics are GES. Finally, refinements of

the final solution are discussed in Section III-D.

A. Bias observer

The set of states of the bias observer proposed in this

section corresponds to the set of vector observations, in

addition to the rate gyro bias. The time derivative of the

vector observations is given by

v̇i(t) = −S (ω(t))vi(t), i = 1, . . . , N. (3)

From (1) it is possible to rewrite (3) as

v̇i(t) =−S (ωm(t))vi(t) + S (bω(t))vi(t)

=−S (ωm(t))vi(t) − S (vi(t))bω(t), i = 1, . . . , N.

Consider the bias observer given by






















˙̂v1(t)=−S (ωm(t)) v̂1(t) − S (v1(t)) b̂ω (t) + α1ṽ1(t)
...

˙̂vN(t)=−S (ωm(t)) v̂N(t) − S (vN(t)) b̂ω (t) + αN ṽN(t)
˙̂
bω (t)=

∑

N

i=1
βiS (vi(t)) ṽi(t)

,

(4)

where ṽi(t) := vi(t) − v̂i(t), i = 1, . . . , N, are the errors

of the vector observation estimates, available for stabilization

purposes, and αi, βi, i = 1, . . . , N , are positive scalar

constants. Define the bias estimation error as b̃ω(t) :=
bω(t) − b̂ω(t). Then, it is straightforward to show that the

bias observer error dynamics can be written, in compact

form, as
˙̃x1(t) = AAA1(t)x̃1(t), (5)

where x̃1(t) =
[

ṽT
1 (t) . . . ṽT

N
(t) b̃T

ω
(t)

]T

∈ R
3(N+1) and

AAA1(t)=−diag (α1I + S (ωm(t)) , . . . , αNI + S (ωm(t)) ,0)

+









0 . . . 0 −S (v1(t))
...

...
...

0 . . . 0 −S (vN(t))
−β1S (v1(t)) . . . −βNS (vN(t)) 0









.

Before presenting the main result of this section, the

following lemma is introduced.

Lemma 1 ([14, Lemma 1]): Let f(t) : [t0, tf ] ⊂ R → R
n

be a continuous and two times continuously differentiable

function on I := [t0, tf ], T := tf − t0 > 0, and such that

f (t0) = 0. Further assume that

∥

∥

∥
f̈(t)

∥

∥

∥
≤ C for all t ∈ I.

If there exist scalar constants α∗ > 0 and t∗ ∈ I such that∥

∥

∥
ḟ (t∗)

∥

∥

∥
≥ α∗, then there exist 0 < δ∗ ≤ T and β∗ > 0

such that ‖f (t0 + δ∗)‖ ≥ β∗.

The following theorem is the main result of this section.

Theorem 1: Under Assumption 1, consider the bias ob-

server (4), where αi > 0, βi > 0, i = 1, . . . , N , are positive

scalar parameters. Then, the origin of the observer error

dynamics (5) is a globally exponentially stable equilibrium

point.

Proof: Consider the Lyapunov function candidate

V1(t) := x̃T
1 (t)Dx̃1(t) =

1

2

N
∑

i=1

βi ‖ṽi(t)‖2
+

1

2

∥

∥

∥
b̃ω(t)

∥

∥

∥

2

,

where D := 1
2diag (β1I, . . . , βNI, I). Clearly,

γ1 ‖x̃1(t)‖2 ≤ V1(t) ≤ γ2 ‖x̃1(t)‖2
, (6)

where γ1 := 1
2 min (1, β1, . . . , βN) and γ2 :=

1
2 max (1, β1, . . . , βN). The time derivative of V1(t) can

be written as

V̇1(t) = −x̃T
1 (t)CT

1 C1x̃1(t) ≤ 0, (7)

where

C1 =













√
α1β1 0 . . . 0 0

0
. . .

. . .
...

...
...

. . .
. . . 0 0

0 . . . 0
√

αNβN













∈ R
3N×3(N+1).

It is well known that, if in addition to (6) and (7), the pair

(AAA1(t),C1) is uniformly completely observable, then the

origin of the linear time-varying system (5) is a globally

exponentially stable equilibrium point, see [16, Example

8.11]. The remainder of the proof amounts to show that the

pair (AAA1(t),C1) is uniformly completely observable. For any

piecewise continuous, bounded matrix K1(t), of compati-

ble dimensions, uniform complete observability of the pair
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(AAA1(t),C1) is equivalent to uniform complete observability

of the pair (A1(t),C1), with A1(t) := AAA1(t) − K1(t)C1,

see [17, Lemma 4.8.1]. Now, notice that, attending to the

particular forms of C1 and AAA1(t), there exists a continuous

bounded matrix K1(t), which depends explicitly on the

observer parameters, the rate gyro readings, ωm(t), and the

vector observations vi(t), i = 1, . . . , N , such that

A1(t) =













0 . . . 0 −S (v1(t))
...

...
...

...
... −S (vN(t))

0 . . . 0 0













.

The expression of K1(t) is not presented here as it is evident

from the context and it is not required in the sequel. It

remains to show that the pair (A1(t),C1) is uniformly

completely observable, i.e., that there exist positive constants

ǫ1, ǫ2, and δ such that

ǫ1I � W (t, t + δ) � ǫ2I (8)

for all t ≥ t0, where W (t0, tf ) is the observability Gramian

associated with the pair (A1(t),C1) on [t0, tf ]. Since the

entries of both A1(t) and C1 are continuous and bounded,

the right side of (8) is evidently verified. Therefore, only the

left side of (8) requires verification. Let

d =







d1

...

dN+1






∈ R

3(N+1), di ∈ R
3, i = 1, . . . , N + 1,

be a unit vector and define

f (τ) :=







√
α1β1

[

d1 −
∫ τ

t
S (v1(σ))dN+1dσ

]

...√
αNβN

[

dN −
∫ τ

t
S (vN(σ))dN+1dσ

]






∈ R

3N .

It is easy to show that

dT
W (t, t + δ)d =

∫ t+δ

t

‖f (τ)‖2
dτ.

If there exists i, 1 ≤ i ≤ N , such that di 6= 0, then it is

clear that ‖f(t)‖ = λ1 > 0 for all t ≥ t0. On the other hand,

if di = 0 for all i = 1, . . . , N , then it must be ‖dN+1‖ = 1,

f(t) = 0, and

∂f

∂τ
(τ)

∣

∣

∣

∣

τ=t

=







−
√

α1β1S (v1(t))
...

−
√

αNβNS (vN(t))






dN+1.

Now, notice that, under Assumption 1, and from the defini-

tion of the vector observations, there exist i and j such that

vi(t) and vj(t) are non-collinear for all t. Therefore, there

exists λ2 > 0 such that
∥

∥

∥

∥

∂f

∂τ
(τ)

∣

∣

∣

∣

τ=t

∥

∥

∥

∥

≥ λ2.

In addition, the second derivative of f is bounded as the an-

gular velocity is assumed bounded. Therefore, using Lemma

1, there exists δ1 > 0 and λ3 > 0 such that ‖f (t + δ1)‖ ≥ λ3

for all t ≥ t0. Therefore,

∃
λ∗>0
δ∗>0

∀
t≥t0

∀
d∈R

3(N+1)

‖d‖=1

‖f (t + δ∗)‖ ≥ λ∗,

and, using Lemma 1 again,

∃
ǫ1>0
δ>0

∀
t≥t0

∀
d∈R

3(N+1)

‖d‖=1

dT
W (t, t + δ)d ≥ ǫ1,

which completes the conditions for uniformly completely

observable and therefore concludes the proof.

B. Attitude observer

This section proposes an attitude observer assuming that

the rate gyro bias is known. In addition, the following

assumption is considered.

Assumption 2: The matrix [r1 . . . rN ] ∈ R
3×3N has full

rank.

Remark 1: It is important to stress that, given a set of ref-

erence vectors (and corresponding vector observations) that

satisfy Assumption 1, it is always possible to construct a set

of reference vectors (and corresponding vector observations)

such that Assumption 2 is satisfied. Indeed, let ri ∈ R
3 and

rj ∈ R
3 denote two non-collinear reference vectors. Then,

notice that the set of reference vectors {r1, . . . , rN , ri × rj}
satisfies Assumption 2, to which corresponds the set of vector

observations {v1(t), . . . , vN(t), vi(t) × vj(t)} . Therefore,

Assumption 2 does not impose, in practice, any conserva-

tiveness whatsoever.

In order to simplify the derivation of the attitude observer

and the corresponding proofs, consider a column represen-

tation of the rotation matrix R(t) given by

x2(t) =





z1(t)
z2(t)
z3(t)



 ∈ R
9,

where

R(t) =





zT
1 (t)

zT
2 (t)

zT
3 (t)



 , zi(t) ∈ R
3, i = 1, . . . , 3.

It is straightforward to show that

ẋ2(t) = −S3 (ωm(t) − bω(t)) x2(t),

where

S3 (x) := diag (S (x) ,S (x) ,S (x)) ∈ R
9×9, x ∈ R

3.

From (2) it is possible to write the vector observations as a

function of the column representation of the rotation matrix,

as given by

v(t) = C2x2(t),

where

v(t) =







v1(t)
...

vN(t)






∈ R

3N

and

C2 =





















r11 0 0 r12 0 0 r13 0 0
0 r11 0 0 r12 0 0 r13 0
0 0 r11 0 0 r12 0 0 r13

...
rN1 0 0 rN2 0 0 rN3 0 0
0 rN1 0 0 rN2 0 0 rN3 0
0 0 rN1 0 0 rN2 0 0 rN3





















,
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C2 ∈ R
3N×9, where ri =

[

ri1 ri2 ri3

]T ∈ R
3. Notice

that, under Assumption 2, matrix C2 has full rank.

Consider the attitude observer given by

˙̂x2(t) = −S3 (ωm(t) − bω(t)) x̂2(t)

+CT
2 Q−1 [v(t) − C2x̂2(t)] , (9)

where Q = QT ∈ R
3N×3N is a positive definite matrix, and

define the error variable x̃2(t) = x2(t) − x̂2(t). Then, the

observer error dynamics are given by

˙̃x2(t) = AAA2(t)x̃2(t), (10)

where AAA2(t) := −
[

S3 (ωm(t) − bω(t)) + CT
2 Q−1C2

]

.
The following theorem is the main result of this section.

Theorem 2: Suppose that the rate gyro bias is known

and consider the attitude observer (9), where Q ≻ 0 is a

design parameter. Then, under Assumption 2, the origin of

the observer error dynamics (10) is a globally exponentially

stable equilibrium point.

Proof: Consider the Lyapunov candidate function

V2(t) :=
1

2
‖x̃2(t)‖2

.

It is straightforward to show that

V̇2(t) = −x̃T
2 (t)CT

2 Q−1C2x̃2(t).

Now, as C2 is a constant matrix with full rank and Q is

a positive definite matrix, it follows that CT
2 Q−1C2 ≻ 0.

Therefore,

V̇2(t) ≤ −λmin

(

CT
2 Q−1C2

)

‖x̃2(t)‖2
,

where λmin (X) corresponds to the minimum eigenvalue of

matrix X. This concludes the proof, see [16, Theorem 4.10].

C. Cascade observer

This section presents the overall cascade observer and its
stability analysis. In Section III-A an observer was derived,
based directly on the vector observations, that provides an
estimate of the bias, with globally exponentially stable error
dynamics. The idea of the cascade observer is to feed the
attitude observer proposed in Section III-B with the bias
estimate provided by the bias observer proposed in Section
III-A. The final nonlinear cascade observer reads as










































˙̂v1(t) = −S (ωm(t)) v̂1(t) − S (v1(t)) b̂ω (t) + α1ṽ1(t)
...

˙̂vN(t) =−S (ωm(t)) v̂N(t) − S (vN(t)) b̂ω (t) + αN ṽN(t)
˙̂
bω (t) =

∑

N

i=1
βiS (vi(t)) ṽi(t)

˙̂x2(t) = −S3

(

ωm(t) − b̂ω (t)
)

x̂2(t)

+CT

2 Q−1 [v(t) − C2x̂2(t)]

.

(11)

The error dynamics corresponding to the bias observer are

the same and therefore Theorem 1 applies. Evidently, the use

of an estimate of the bias instead of the bias itself in the

attitude observer introduces an error, and the stability of the

system must be further examined. In this situation, the error

dynamics of the cascade observer can be written as
{

˙̃x1(t) = AAA1(t)x̃1(t)

˙̃x2(t) =
[

AAA2(t) − S3

(

b̃ω(t)
)]

x̃2(t) + u2(t),
(12)

where u2(t) := S3

(

b̃ω(t)
)

x2(t).

The following theorem is the main result of the paper.

Theorem 3: Consider the cascade attitude observer (11).

Then, in the conditions of Theorem 1 and Theorem 2, the

origin of the observer error dynamics (12) is a globally

exponentially stable equilibrium point.

Proof: That x̃1 = 0 is a globally exponentially

stable equilibrium point follows directly from Theorem 1.

Next, it is shown that x̃2 = 0 is a globally exponentially

stable equilibrium point of (12). First, consider the perturbed

system

˙̃x2(t) =
[

AAA2(t) − S3

(

b̃ω(t)
)]

x̃2(t). (13)

From Theorem 1 it follows that

lim
t→0

∥

∥

∥
S3

(

b̃ω(t)
)∥

∥

∥
= 0.

Moreover, from Theorem 2, the origin of the undisturbed

system ˙̃x2(t) = AAA2(t)x̃2(t) is a globally exponentially

stable equilibrium point. Therefore, it is possible to conclude

that the origin of the perturbed system (13) is a globally

exponentially stable equilibrium point, see [16, Example

9.6]. Now, notice that, since x2(t) corresponds to a column

representation of the rotation matrix, which is norm-bounded,

and b̃ω(t) converges globally exponentially fast to zero, it

follows that u2(t) converges globally exponentially fast to

zero. Therefore, the dynamics of x̃2(t) correspond to those

of a GES linear system driven by an exponentially decaying

disturbance, from which follows that x̃2 = 0 is a globally

exponentially stable equilibrium point, therefore concluding

the proof.

D. Solution refinements

1) Full cascade observer: In the cascade observer pro-
posed in Section III-C, the attitude observer considers only
the bias estimate provided by the bias observer and the vector
estimates are disregarded. Indeed, the observer employs, for
feedback purposes, the output v(t) instead of the estimate
v̂(t). For performance purposes, particularly in the presence
of sensor noise, it may be better to employ the vector
estimate v̂(t) provided by the bias observer. It should be
stressed that the nominal asymptotic stability analysis is not
affected. Indeed, for the full cascade observer










































˙̂v1(t) = −S (ωm(t)) v̂1(t) − S (v1(t)) b̂ω (t) + α1ṽ1(t)
...

˙̂vN(t) =−S (ωm(t)) v̂N(t) − S (vN(t)) b̂ω (t) + αN ṽN(t)
˙̂
bω (t) =

∑

N

i=1
βiS (vi(t)) ṽi(t)

˙̂x2(t) = −S3

(

ωm(t) − b̂ω (t)
)

x̂2(t)

+CT

2 Q−1 [v̂(t) − C2x̂2(t)]

,

the error dynamics are similar to (12), but with

u2(t) = S3

(

b̃ω(t)
)

x2(t) + CT
2 Q−1ṽ(t).

Evidently, the steps of Theorem 3 apply yielding the same

properties, as the additional term CT
2 Q−1ṽ(t) converges

globally exponentially fast to zero.
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2) Orthogonalization step: The cascade observer pro-

posed in the paper yields an estimate of the rotation matrix

R(t) given by

R̂(t) =





ẑT
1 (t)

ẑT
2 (t)

ẑT
3 (t)



 , ẑi(t) ∈ R
3, i = 1, . . . , 3,

where

x̂2(t) =





ẑ1(t)
ẑ2(t)
ẑ3(t)



 ∈ R
9.

However, the estimate of the rotation matrix, R̂(t), is not

necessarily a rotation matrix as there is nothing in the

observer structure imposing the restriction R̂(t) ∈ SO(3).
In fact, if this restriction is imposed, it is actually impossible

to achieve global asymptotic stabilization due to topological

limitations, see [15]. Nevertheless, the estimation error of

the proposed observer converges globally exponentially fast

to zero and therefore the corresponding rotation matrix

restrictions are verified asymptotically.

In practice, both the vector observations and the rate

gyro readings are subject to noise, which induces errors

in the rotation matrix estimate not related to the initial

transients that appear due to possible mismatch of initial

conditions. Therefore, in order to obtain a better estimate,

in the form of a rotation matrix, it is convenient to compute

an orthogonal matrix that approximates the estimate provided

by the cascade observer. Since, in practice, the estimate of the

rotation matrix is very close (in steady-state) to an element of

the Special Orthogonal Group SO(3), one orthogonalization

cycle suffices, as given by

R̂f (t) =
1

2

(

R̂(t) +
[

R̂T (t)
]−1

)

,

see [18]. Nevertheless, additional orthogonalization cycles

may be employed should it be required in order to achieve

solutions closer to SO(3). Experimental results reveal that

with two cycles the orthogonality error is of the same mag-

nitude of the computational accuracy of low-cost hardware

(below 10−12). The projection of the estimate on SO(3) is

an alternative to the orthogonalization cycles. Although more

expensive, it does provide solutions explicitly on SO(3).
During the initial transients, which typically last less then

10 seconds, it may happen that the previous solution is

not well-defined. In this case, the attitude may be simply

obtained from the solution of the Wahba’s problem as in

traditional solutions resorting directly to the vector observa-

tions.

IV. EXPERIMENTAL RESULTS

In order to evaluate the proposed solutions in real world

applications experiments were carried out as described in

[19], where a high precision Motion Rate Table, Model

2103HT from Ideal Aerosmith [20], was employed that

allows for accurate and reliable motion control and yields

ground truth data for performance evaluation purposes. The

table outputs the angular position of the table with a res-

olution of 0.00025 °. The IMU that was employed is the

nanoIMU NA02-0150F50 [21], from MEMSENSE, which

outputs data at a rate of 150 Hz. This 9 degree-of-freedom

(DOF) Micro-Electro-Mechanical System (MEMS) device is

a miniature, light weight, 3-D digital output sensor (it outputs

acceleration, angular rate, and magnetic field data) featuring

RS422 or I2C protocols, with built-in bias, sensitivity, and

temperature compensation. The standard deviations of the

noise of the outputs of the IMU are 0.95 °/s for the angular

velocity, 0.008 m/s2 for the gravity acceleration, and 0.0015G

for the magnetic field measurements.

Unfortunately, the calibration table distorts the magnetic

field in the neighborhood of the IMU, even though it was

attempted to place the IMU as far as possible from the other

components of the experimental setup, by means of a small

nonmagnetic bar, which elevates the sensor from the table

top. Therefore, magnetic field measurements were simulated

in the loop. Sensor noise was naturally added so that the

results are as realistic as possible.

The motion rate table has three rotational joints which

allow for movement about 3 orthogonally mounted axis, so

called inner, middle, and outer axis, and that were defined

as the x, y, and z axis of the body-fixed reference frame,

so that the rotation from body-fixed coordinates to inertial

coordinates is given by

R(t) = Rz (θout(t)) Ry (θmid(t)) Rx (θinn(t)) ,

where Rx (.), Ry (.), and Rz (.) are the rotation matrices

about the x, y, and z axis, respectively, and θinn, θmid, and

θout are the inner, middle, and outer axis angles, respectively.

The evolution of the inner, middle, and outer angles is

depicted in Fig. 1. Notice that the angular motion full

range is used, and if Euler angles were employed problems

would have appeared due to singularities. Also, note that

the angular velocity ω(t), which is shown in Fig. 2, reaches

interesting values, typical of many autonomous vehicles such

as Autonomous Underwater Vehicles, Autonomous Ground

Vehicles, or Unmanned Air Vehicles.
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Fig. 1. Evolution of the inner, middle, and outer angles

The bias observer parameters were chosen as α1 =
9.8

0.00810−3, α2 = 0.5
0.001510−3, and β1 = β2 = 10−3, which

are related to the norm of the vector observations and the

noise of the sensors. The attitude observer parameter was

chosen as Q = 0.25I and all the initial estimates were set

according to the first set of measurements. The initial bias

estimate was set to zero.

The convergence rate of the observer is very fast and

the steady-state is achieved in less than 1 s. The initial
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Fig. 2. Evolution of the angular velocity ω(t)

evolution of the error variables is not shown due to the lack

of space. Using the Euler angle-axis representation for the

rotation estimation error, the evolution of the angle error

is shown in Fig. 3. The mean error is 0.18 °, which is a

very good value considering the low-grade specifications of

the IMU at hand. It is also comparable with the results

obtained in simulation and it compares to a mean error

of 0.13 ° for the solution proposed in [19]. However, the

present solution is computationally efficient. Indeed, it does

not require the online solution of Riccati equations nor

the Wahba’s problem, while the solution proposed in [19]

requires all of these.
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Fig. 3. Evolution of the angle error θ̃(t)

V. CONCLUSIONS

This paper presented the design, analysis, and performance

evaluation of a novel cascade observer for attitude estimation.

The proposed solution resorts directly to a set of vector

observations, in body-fixed coordinates, of known constant

reference vectors in inertial coordinates, in addition to rate

gyro readings. In short, a bias observer with GES error

dynamics feeds a second attitude observer, which preserves

GES error dynamics. An estimate of the rotation matrix

is directly obtained, without the explicit solution of the

Wahba’s problem, and the observer gains do not require

the solution of any differential equation. Therefore, the

proposed system is computationally efficient and appropriate

for application in platforms where computational resources

are scarce. Furthermore, the present solution does not exhibit

drawbacks common to attitude estimation solutions such as

singularities, unwinding phenomena, or topological limita-

tions for achieving global asymptotic stability. Compelling

experimental results were provided with a a low-cost, low-

power IMU, where a Motion Rate Table was employed

for performance evaluation purposes, providing ground truth

data.
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