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Abstract— Sensing and localization mechanisms, employed by
mobile robots for the detection of obstacles and other nearby
agents, may inaccurately estimate the position of obstacles due
to noise, delays, and interferences incurred during the detection
process. Therefore, it is critical to design collision avoidance
strategies that are robust to the presence of measurement
errors. In this paper, we present a decentralized, cooperative
collision avoidance strategy for a pair of agents considering
bounded sensing uncertainties and acceleration constraints. The
avoidance control can be appended to any other stable control
law (i.e., main control objective) and is active only when the
vehicle is close to the other agent. A numerical example is
presented that validates the proposed avoidance strategy.

I. INTRODUCTION

Recent advances in intelligent systems and wireless com-

munication have allowed the use of multiple mobile robots

in a wide range of commercial, military, and scientific

applications [1], [2]. Nowadays, mobile robotic systems are

employed in diverse complex tasks such as surveillance

[3], space exploration [4], and warehouse management [5].

Despite many applications and progress in distributed mobile

robotics, the field still faces plenty of control challenges

[1], [2]. One of these challenges is to guarantee collision

avoidance between neighboring agents and obstacles at all

times independently of sensing uncertainties. Mobile agents,

such as unmanned vehicles, typically rely on navigation

and localization sensors to estimate the location of nearby

agents and obstacles or on wireless communication networks

for the broadcast of position coordinates among agents.

These sensing mechanisms may inaccurately estimate the

position of obstacles and agents as a result of process delays,

interferences, and quantization, as well as other sources

of measurement errors [6]–[8]. Therefore, it is critical to

design avoidance control policies that are robust to such

uncertainties.

The design of collision avoidance control laws for the case

of accurate position estimation has arguably been well docu-

mented in the literature (see [9]–[15] and references therein

for examples). This sharply contrast the case of collision-free

navigation under sensing uncertainties, which has not been

comprehensively studied from a control perspective. Instead,

the orthodox solution in the presence of uncertainties has

been to improve sensory perception [16]–[18]. Some of the
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few examples that effectively deal with inaccurate obstacle

position estimation include the certainty grid [19] and the

occupancy grid [20], both based on probabilistic methods,

and a noncooperative strategy for unicycle models [21]

based on the concept of reachable sets [12]. However, the

aforementioned strategies do not address collision avoidance

with moving obstacles. Recently in [22], a noncooperative

collision avoidance algorithm based on the velocity occu-

pancy space, a variation of the occupancy grid, was proposed

to guarantee the safe navigation of vehicles interacting with

dynamic obstacles. Yet, the performance of the avoidance

algorithm in the case of time-varying speed obstacles, such

as other agents, was not explicitly investigated.

In this paper, we now present a decentralized, cooperative

collision avoidance strategy for a team of two agents with

bounded sensing uncertainties and limited sensing range.

The control formulation relates to the concept of avoidance

control presented in [9], [23], yet the control inputs proposed

herein are bounded. Advantages of the proposed avoidance

strategy include the use of relative position information

rather than absolute position and the robustness to time-

varying delays, quantization, and other measurement errors.

The strategy is also reactive (or real-time), meaning that

collision avoidance control inputs are computed on-line

as obstacles are detected, rather than computed according

to a predetermined (i.e., planned) collision-free trajectory.

Furthermore, the avoidance control can be appended to any

other stable control law and is exclusively active when the

vehicle is close to another agent. This implies that the agent’s

main objective, such as flocking, trajectory tracking, or set-

point regulation, is unaffected when both agents (including

obstacles) are safely apart. Finally, a numerical example

is presented to illustrate the performance of the proposed

avoidance control.

II. PROBLEM FORMULATION

A. Dynamics of the Two-Agent System

We aim to control a pair of n-degree-of-freedom (DOF)

agents with double-integrator dynamics given by

q̈i(t) = ui(t), qi ∈ ℜn, ui ∈ Ui ⊂ ℜn (1)

where qi represents the position and Ui denotes the set of

admissible control inputs ui for the first (i = 1) and second

(i = 2) agent. We assume that the magnitudes of the control

inputs are radially upper bounded by µi > 0, i.e., ‖ui(t)‖ ≤
µi, ∀t ≥ 0. The case where limits on the control inputs

vary according to the Cartesian coordinates can be similarly

covered by means of a coordinate transformation.
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We also assume that each agent can locate the other

agent within some margin of error. Specifically, we suppose

that the ith agent is able to sense the jth agent as being

located at q̂j(t) = qj(t) + di(t), where di ∈ ℜn is

a time-varying vector representing the uncertainty on the

localization process (e.g., errors due to delays, noise, and

quantization) and which is considered to be upper bounded

by some positive constant ∆i, i.e., ‖di(t)‖ ≤ ∆i, ∀t ≥ 0.

In what follows, we will omit time dependence of signals

except when considered necessary.

B. Control Objective

Our main objective is to develop a control policy that

enforces the completion of the agents’ main tasks, such as

flocking and trajectory tracking, while guaranteeing a safe

separation between both agents at all times independently of

bounded sensing uncertainties. In general, we would like to

define a safety region around each agent and design a control

law that keeps the vehicles from entering into each other’s

safety region. According to this idea, and inspired by the

concept of avoidance sets [9], we introduce the following

definitions.

We define an Antitarget Region (see Fig. 1), T , as the

collision zone for both agents, i.e.,

T =
{
q : q ∈ ℜ2n, ‖qi − qj‖ ≤ r∗

}

where r∗ denotes the minimum safe, separation distance

between both vehicles and q = [qT
i ,q

T
j ]

T . Similarly, we

define an Avoidance Region, Ω, as the zone for which the

two agents are not allowed to enter at any given time.

Mathematically,

Ω =
{
q : q ∈ ℜ2n, ‖qi − qj‖ ≤ r

}

where r ≥ r∗ is the desired minimum separation distance

between both agents. Note that if we design a control policy

such that q1 and q2 avoid Ω, then we have that they must

also avoid T .

Now, consider the dynamic limitations of the ith agent.

Since its control inputs and acceleration components are

bounded, a control policy aimed to avoid Ω needs to be

implemented with enough anticipation, such that the ith ve-

hicle has sufficient time to decelerate and prevent a collision.

Consequently, we define a Conflict Region, Wi, as

Wi =
{
q : q ∈ ℜ2n, r < ‖qi − qj‖ ≤ r̄i

}

where r̄i > r is a lower bound on the distance that the ith
agent can come from the other agent and still be able to

decelerate and avoid Ω. Thus any avoidance strategy for the

ith agent must take effect as soon as qi and qj enter Wi.

Finally, in order for the problem to be well-defined, it is

assumed that Wi lies within the Detection Region, Di, of the

ith agent, defined as

Di =
{
q : q ∈ ℜ2n, ‖qi − qj‖ ≤ Ri

}

where Ri > r̄i is the detection radius. That is, the ith agent

can detect any obstacle or agent inside the Detection Region.

r∗

r

r̄i

Ri

Wi

T
Ω

Di

qi

hi

Fig. 1. Antitarget (T ), Avoidance (Ω), Conflict (Wi), and Detection (Di)
Regions for the ith agent.

In addition, note that whereas T and Ω are equal for both

agents, Wi and Di can differ.

According to the above definitions, we can state the control

objective as follows. Given ∆1, ∆2 and T , design control

inputs u1(t) and u2(t) such that [qT
1 (t),q

T
2 (t)]

T /∈ Ω for all

t ≥ 0, where Ω ⊇ T .

III. COLLISION AVOIDANCE CONTROL

In order to achieve our control objective, we propose the

use of the following control input:

ui =

(

1− ‖ua
i ‖

µ̄i

)

uo
i + ua

i − kiq̇i (2)

where uo
i ∈ ℜn represents a known objective control law

satisfying the constraint ‖uo
i (t)‖ ≤ µ̄i for all t ≥ 0 and

µ̄i =
1
2µi, and where ki is a positive constant given by

ki =
µ̄i

ηi
, for some ηi > 0.

The objective control law uo
i is designed such that the ith

agent can accomplish its primary task, whereas the term

kiq̇i is injected into the system to regulate the maximum

velocity of the agent, as will be shown at the end of this

section. The control term ua
i ∈ ℜn is the avoidance control

input designed to guarantee collision-free trajectories. It is

computed according to

ua
i = −

∂V a
ij(qi, q̂j)

∂qi

T

(3)

where V a
ij , called the avoidance function [23], is given by

V a
ij =







Γi

(

min

{

0,
‖q̂ij‖2 − R2

i

‖q̂ij‖2 − r2

})2

, if ‖q̂ij‖ ≥ hi

−µ̄i ‖q̂ij‖+ ci, otherwise

(4)

for q̂ij = qi − q̂j , hi = r̄i +∆i, and

Γi =
µ̄i

(
h2
i − r2

)3

4hi(R2
i − h2

i )(R
2
i − r2)

, ci = Γi

(h2
i −R2

i )
2

(h2
i − r2)2

+ µ̄ihi.
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The reader can verify that V a
ij is non-negative, continuously

differentiable (except at ‖q̂ij‖ = 0), and that ua
i reduces to

ua
i =







0, if ‖q̂ij‖ ≥ Ri

Ka
i (R

2
i − ‖q̂ij‖2)

(‖q̂ij‖2 − r2)3
q̂ij , if hi ≤ ‖q̂ij‖ < Ri

µ̄i

q̂ij

‖q̂ij‖
, if 0 < ‖q̂ij‖ < hi

not defined, if ‖q̂ij‖ = 0

(5)

where Ka
i = 4Γi(R

2
i − r2). Note that in contrast to the

unboundedness of the avoidance functions and control inputs

in [23], (4) and (5) are bounded by ci and µ̄i, respectively.

Similarly, the overall control input ui can be shown to be

bounded by µi.

We now prove that the control law in (2) guarantees

boundedness of the velocities if ki > 0.

Lemma 3.1: Consider the system in (1) with control law

(2) and (5). Let ki = µ̄i/ηi for µ̄i =
µi

2 , ηi > 0. Then, for

all initial conditions satisfying ‖q̇i(0)‖ ≤ ηi, we have that

‖q̇i(t)‖ ≤ ηi ∀t ≥ 0.

Proof: Consider the following Lyapunov function

Vη =
1

2
‖q̇i‖2 .

Taking its time derivative we obtain that

V̇η =q̇T
i q̈i ≤ ‖q̇i‖ µ̄i − ki ‖q̇i‖2 = ‖q̇i‖ (µ̄i − ki ‖q̇i‖) .

Since V̇η is negative for all ‖q̇i‖ > ηi, we can conclude that

the velocity solutions of (1) are bounded by ηi.

IV. COOPERATIVE COLLISION AVOIDANCE UNDER

BOUNDED SENSING UNCERTAINTIES

In this section we present the main results of this paper.

In general, we show that the proposed control law enforces

collision-free trajectories for the system in (1) given that

the design parameters r and r̄i satisfy a set of inequality

constraints. We start the analysis with the following lemma,

which will aid us to show that if the ith vehicle has control

input given by (2) and (5), then it will try to evade the other

agent.

Lemma 4.1: Consider the two-agent system in (1). As-

sume that the ith agent has control input given by (2)

and (5) for ki = µ̄i/ηi and ηi > 0. Define βij(t) =

(qi(t) − qj(t))
T q̇i(t), θi ∈

(

0, sin−1

(√
r2ǫ−∆2

i

rǫ

))

, and

δi =
θirǫ
ηi+ηj

, where rǫ ∈ (r, r̄i] and r > ∆i. Let t0 ≤ tf − δi
and suppose that ‖q̇i(t0)‖ ≤ ηi, ‖q̇j(t)‖ ≤ ηj for some

ηj ≥ 0, ‖di(t)‖ ≤ ∆i, and ‖qi(t)− qj(t)‖ ∈ [rǫ, r̄i]

∀ t ∈ [t0, tf ]. Then, βij(tf ) is bounded from below by (6),

where ωij = − ηi+ηj

rǫ
.

Proof: To simplify the notation, let tδ = tf − δi
and qij(t) = qi(t) − qj(t). From the assumption that

[qT
i (t),q

T
j (t)]

T ∈ Wi ∀t ∈ [t0, tf ] we have that the velocity

solution for the ith agent can be computed as

q̇i(tf ) = e−kiδi q̇i(tδ) +

∫ tf

tδ

e−ki(tf−τ)ua
i (τ)dτ.

Therefore,

βij(tf ) = qij(tf )
T e−kiδi q̇i(tδ)

+ qij(tf )
T

∫ tf

tδ

e−ki(tf−τ)µ̄i

q̂ij(τ)

‖q̂ij(τ)‖
dτ

≥− ηi ‖qij(tf )‖ e−kiδi

+ µ̄i ‖qij(tf )‖
∫ tf

tδ

e−ki(tf−τ) qij(tf )
T q̂ij(τ)

‖qij(tf )‖ ‖q̂ij(τ)‖
dτ

=− ηi ‖qij(tf )‖ e−kiδi

+ µ̄i ‖qij(tf )‖
∫ tf

tδ

e−ki(tf−τ) cosφij(τ)dτ (7)

where φij(τ) defines the angle between qij(tf ) and q̂ij(τ)
for τ ∈ [tδ, tf ] and where we used the fact that ‖q̇i(t)‖ ≤
ηi ∀t (due to Lemma 3.1). Now, our first objective in

developing the proof is to compute a lower bound on
∫ tf
tδ

e−ki(tf−τ) cosφij(τ)dτ . In order to do so, we would

like to first find an upper bound on φij(τ) at every instance

of time τ . That is, we would like to define a function φij(τ)

such that φij(τ) ≤ φij(τ) for all τ ∈ [tδ, tf ]. Therefore, let

us consider the illustration in Fig. 2. Observe that φij(τ)
is always upper bounded by the summation of the angle

between qij(tf ) and qij(τ) and the angle between qij(τ)
and q̂ij(τ), denoted as ϑij(τ) and ϕij(τ), respectively, i.e.,

‖φij(τ)‖ ≤ ‖ϑij(τ)‖+ ‖ϕij(τ)‖. Hence, a suitable function

would be

φij(τ) = sup
t∈[tδ,τ ]

‖ϑij(t)‖
︸ ︷︷ ︸

ϑij(τ)

+ sup
t∈[tδ,τ ]

‖ϕij(t)‖
︸ ︷︷ ︸

ϕij(τ)

where ϑij(τ) and ϕij(τ) are yet to be determined.

Now, consider ϑij(τ). Since ‖qij(τ)‖ ≥ rǫ ∀ τ ∈ [tδ, tf ]
and the velocities of the agents are bounded, we have

that ϑij(τ) attains its maximum when the agents approach

each other at maximum speed along the boundary of Ωǫ,

where Ωǫ =
{
q : q ∈ ℜ2n, ‖qij‖ < rǫ

}
(see Fig. 3 for an

illustration). Then, using the arc-length formula to compute

βij(tf ) ≥ ‖qi(tf )− qj(tf )‖
[

−e−kiδiηi +
µ̄i

rǫ(k2i + ω2
ij)

(

ki

√

r2ǫ −∆2
i + ωij∆i

−e−kiδi

(

ki

√

r2ǫ −∆2
i cos θi − ki∆i sin θi + ωij

√

r2ǫ −∆2
i sin θi + ωij∆i cos θi

))]

(6)

3365



r∗

r

rǫ

r̄i

Ri

hi

qiqi

q̂ij(tf )

qij(tf )

qij(τ)

q̂ij(τ)

∆i

∆i

φij(τ)

ϕij(τ)

ϕij(tf )

ϑij(τ)

Fig. 2. Hypothetical motion of qj(τ) with respect to qi(τ) for tδ ≤ τ ≤
tf . The larger black dots represent the vectors (i.e., distances) qij(τ) and
qij(tf ), whereas the gray dots denote q̂ij(τ) and q̂ij(tf ).

the maximum length traveled by the agents and invoking its

relation with the central angle ϑij we obtain

ϑij(τ) ≤
∫ tf
τ

‖q̇ij(s)‖ ds
rǫ

≤ (ηi + ηj)(tf − τ)

rǫ
= ϑij(τ)

for τ ∈ [tδ, tf ]. Note that ϑij(tδ) =
(ηi+ηj)δi

rǫ
= θi while

ϑij(tf ) = 0. Now, we are left to find ϕij(τ).
Since ‖qij(τ)‖ ≥ rǫ ∀ τ ∈ [tδ, tf ] and ‖di‖ ≤ ∆i < r,

we have that ϕij(τ) is maximized when qij(τ) is close

to the boundary of Ωǫ. Thus, let us consider the diagram

in Fig. 3, which details this case. First, observe that the

maximum angle ϕij(τ) is constant whenever qij(τ) lies on

the boundary of Ωǫ. Consequently, it is sufficient to find

ϕij(τ) when τ = tδ. To this end, let us choose the vectors

e1 and e2 as an orthonormal basis for the plane containing

qij(tδ) and q̂ij(tδ) and let e2 be oriented along the same

direction and origin as qij(tδ), as shown in Fig. 3. Then,

qij(tδ) can be rewritten as qij(tδ) = rǫe2. Similarly, q̂ij(tδ)
can be written as q̂ij(tδ) = c1e1+c2e2, where c1 and c2 are

constants. Now, from the constraint ‖q̂ij(tδ)− qij(tδ)‖ =
‖di(t)‖ ≤ ∆i, we have that c1 and c2 must satisfy the

following equation: c21 + (c2 − rǫ)
2 ≤ ∆i. Likewise, we

have that ϕij is maximized when the ratio |c1/c2| attains its

maximum. Such conditions are satisfied when

c1 =± ∆i

rǫ

√

r2ǫ −∆2
i , c2 =

r2ǫ −∆2
i

rǫ
.

Therefore, ϕij(τ) = ϕij can be computed as

ϕij=cos−1

(
qij(tδ)

T q̂ij(tδ)

‖qij(tδ)‖ ‖q̂ij(tδ)‖

)

= cos−1

(√

r2ǫ −∆2
i

rǫ

)

.

Now, let us return to (7). Since ϑij(τ) ≤ θi <

sin−1

(√
r2ǫ−∆2

i

rǫ

)

and ϕij(τ) = cos−1

(√
r2ǫ−∆2

i

rǫ

)

, we

have that φij(τ) = ϑij(τ) + ϕij(τ) < π
2 . Therefore,

cosφij(τ) ≥ cosφij(τ) > 0 for all τ and

∫ tf

tδ

e−ki(tf−τ) cosφij(τ)dτ ≥
∫ tf

tδ

e−ki(tf−τ) cosφij(τ)dτ

=
1

k2i + ω2
ij

(
ki cosφij(tf ) + ωij sinφij(tf )

)

− ekiδi

k2i + ω2
ij

(
ki cosφij(tf ) + ωij sinφij(tδ)

)
(8)

where we used the fact that φ̇ij(t) = ωij = − ηi+ηj

rǫ
is

constant. Also note that φij(tf ) = ϕij and hence

cosφij(tf ) = cosϕij =

√

r2ǫ −∆2
i

rǫ

sinφij(tf ) = sinϕij =
‖qij(tδ)× q̂ij(tδ)‖
‖qij(tδ)‖ ‖q̂ij(tδ)‖

=
∆i

rǫ
.

In order to evaluate cosφij(tδ) and sinφij(tδ), let us rewrite

qij(tf ) using e1 and e2 as orthonormal basis, i.e., qij(tf ) =
rǫ sin θie1 + rǫ cos θie2. Then, we have that

cosφij(tδ) = cos(θi + ϕij) =
qij(tf )q̂ij(tδ)

‖qij(tf )‖ ‖q̂ij(tδ)‖

=

√

r2ǫ −∆2
i cos θi −∆i sin θi

rǫ

sinφij(tδ) = sin(θi + ϕij) =
‖qij(tf )× q̂ij(tδ)‖
‖qij(tf )‖ ‖q̂ij(tδ)‖

=

√

r2ǫ −∆2
i sin θi +∆i cos θi

rǫ

and returning to (8), we obtain
∫ tf

tδ

e−ki(tf−τ) cosφij(τ)dτ

≥ 1

rǫ(k2i + ω2
ij)

(

ki

√

r2ǫ −∆2
i + ωij∆i

− e−kiδiki

√

r2ǫ −∆2
i cos θi + e−kiδiki∆i sin θi

−e−kiδiωij

√

r2ǫ −∆2
i sin θi − e−kiδiωij∆i cos θi

)

.

Therefore, substituting the above equation into (7) yields (6),

and the proof is complete.

Remark 4.1: Mathematically, we can interpret
βij(t)

‖qij(t)‖
as

the scalar projection of the velocity vector q̇i onto the

collision threat vector qij . Accordingly, we can say that the

previous lemma provides an indication of the direction of

the ith agent’s velocity vector with respect to the collision

threat. For instance, if for some time tf , βij(tf ) > 0, then

we can conclude that at time tf the ith agent is moving away

from the jth agent.

Remark 4.2: Although the analysis in this paper will focus

on the design of cooperative avoidance strategies, it is worth

mentioning that Lemma 4.1 provides much general results.

Note that Lemma 4.1 does not make any assumption on the

control used by the jth agent and, therefore, it can be applied

to a noncooperative scenario.
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−rǫ rǫqi

q̂ij(tf )

qij(tf )

qij(tδ)

q̂ij(tδ)

∆i

∆i ϕij

ϕij

φij(tδ)

ϑij(tδ) = θi

θirǫ

e1

e2

Ωǫ

Fig. 3. Extreme case in Lemma 4.1. The agents approach each other at
maximum speed along the boundary of Ωǫ for τ ∈ [tδ , tf ].

Having established Lemma 4.1, we now proceed to state

the main result of this paper.

Theorem 4.1: (Cooperative Collision Avoidance with

Sensing Uncertainties): Consider the two dynamical systems

in (1) with control inputs (2) and (5). Let ki = µ̄i/ηi and sup-

pose ‖q̇i(0)‖ ≤ ηi, ‖di(t)‖ ≤ ∆i, and [qT
i (0),q

T
j (0)]

T /∈
Wi∪Ω for all i, j ∈ {1, 2}, i 6= j. Furthermore, assume that

there exist ηi > 0, r ≥ r∗, θi ∈
(

0, sin−1

(√
r2ǫ−∆2

i

rǫ

))

and

an arbitrarily small constant ǫ > 0 such that

r̄i = (θi + 1)(r + ǫ) < Ri −∆i (9)

and
(

ki +
ωij∆i

√

r2ǫ −∆2
i

)

cos θi +

(

ωij −
ki∆i

√

r2ǫ −∆2
i

)

sin θi

≤
(

ki +
ωij∆i

√

r2ǫ −∆2
i

)

ekiδi −
rǫ(k

2
i + ω2

ij)

ki
√

r2ǫ −∆2
i

(10)

∀ i, j ∈ {1, 2}, i 6= j. Then, [qT
1 (t),q

T
2 (t)]

T /∈ Ω ∀t ≥ 0.

Proof: Consider (1) with control inputs (2) and (5)

for i ∈ {1, 2}. Assume that (9) and (10) hold. Let ki =
µ̄i/ηi and ‖q̇i(0)‖ ≤ ηi. Then, applying Lemma 3.1 we can

conclude that ‖q̇i(t)‖ ≤ ηi for all i, t ≥ 0. Now, let us

consider the following Lyapunov candidate function

V (t) =
1

4(‖q12(t)‖2 − r2)2
.

Taking its time derivative along the trajectories of (1) yields

V̇ (t) =− β12(t) + β21(t)

(‖q12(t)‖2 − r2)3
.

Our approach to prove collision avoidance will be to show

that βij(t) is positive semi-definite for i, j ∈ {1, 2}, i 6= j,

which will be used to demonstrate that ‖qij(t)‖ is bounded

from below. For simplicity, let us consider first the case of the

ith agent. Let [qT
i (0),q

T
j (0)]

T /∈ Wi ∪Wj ∪Ω and suppose

that for some time t ≥ δi > 0, ‖qij(t)‖ → r + ǫ = rǫ
from above. Since ‖qij(0)‖ > r̄i and the velocities of the

agents are bounded, it will take the agents some time ∆t to

reduce their distance from r̄i to rǫ. Therefore, we have that

[qT
i (τ),q

T
j (τ)]

T ∈ Wi ∀τ ∈ [t−∆t, t], where it is easy to

demonstrate that ∆t ≥ δi =
r̄i−rǫ
ηi+ηj

= θirǫ
ηi+ηj

. Consequently,

we can apply Lemma 4.1 and, after some manipulation and

use of (9) and (10), we can easily show that βij(t) ≥ 0. Since

the above result holds ∀i, j, i 6= j, we have that V̇ (t) ≤ 0, for

‖q12(t)‖ ≤ rǫ. The fact that q1(t) and q2(t) are continuous

and V̇ (t) is non-positive for ‖q12(t)‖ ≤ rǫ implies that

V (t) < ∞. (i.e., V (t) is finite for any t ≥ 0). Hence, the

solutions of q12(t) are uniformly ultimately bounded by rǫ,
which further implies that [qT

1 (t),q
T
2 (t)]

T /∈ Ω ∀ t ≥ 0.

Note that Theorem 4.1 enforces collision-free trajectories

for (1) under the presence of bounded sensing uncertainties

given the existence of constants θi and r satisfying (9) and

(10) for all i ∈ {1, 2}. The statement, however, does not

suggest how to optimally choose θi and r. In general, we

would like to design θi and r such that the extent of the

agents’ Conflict Regions is minimized. That is, we want

to minimize the distance at which the agents start applying

maximum avoidance control such that the attenuation of the

objective control inside the Detection Region is reduced.

V. EXAMPLE

In order to illustrate the performance of the proposed

avoidance strategy, we now present the following example.

Consider a pair of 2-DOF agents with double-integrator

dynamics described by (1) and control inputs bounded by

µ1 = 50m/s2 and µ2 = 60m/s2. Let the overall control

input for both agents be given as in (2) with k1 = 6.25s−1

and k2 = 6.00s−1. Then, using Lemma 3.1, we can show

that the velocities of the first and second agents are bounded

by η1 = 4m/s and η2 = 5m/s, respectively. Now, assume

the minimum separation and detection radii for both agents

to be r∗ = 1m and R1 = R2 = 5.5m. Furthermore, suppose

that the sensing uncertainties are characterized by

d1(t)=

∫ t−T1

t

q̇2(τ)dτ, d2(t)=

∫ t−T2

t

q̇1(τ)dτ +ζ(t)− ξ

where T1 = 0.3s and T2 = 0.2s denote the detection delay

for the first and second agent, respectively, ζ(t) represents a

random noise with uniform distribution on the set Z = {ζ :
ζ ∈ ℜ2, ‖ζ‖ < 0.5m}, and ξ = [0.2m, 0.0m]T is a constant

error. It is easy to show that ‖di(t)‖ ≤ ∆i = 1.5m ∀i.
The avoidance control inputs (5) are computed according

to Theorem 4.1, which yields that the minimum set of

conflict radii r̄i is attained when r = 2.33m, θ1 = 0.63rad,

and θ2 = 0.66rad. Choosing ǫ = 0.01 we obtain that

r̄1 = 3.81m and r̄2 = 3.88m. Finally, we take the objective

control input to be computed as

uo
i =







ũo
i , if ‖ũo

i ‖ ≤ µ̄i

ũo
i

‖ũo
i ‖

, otherwise
, ũo

i =Kp(q
d
i − qi)

where qd
1 = −qd

2 = [8m, 8m]T and Kp = 8s−2 are

the agents’ desired final configurations and the proportional

control gain, respectively. The initial conditions for the

system are set to q1(0s) = −q2(0s) = [−8m,−8m]T and
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Fig. 4. Cooperative collision avoidance example. The left and right plot
illustrate the motion of both agents in the intervals t ∈ [0.0s, 2.4s] and
t ∈ [2.4s, 20.0s], respectively, where each mark is time-spaced by 0.15s.
The initial position of the two agents at the start of each simulation interval is
indicated by the dark-colored dots. The Avoidance, Conflict, and Detection
Regions for both agents at the end of the simulation intervals are traced by
the bold, thin, and dashed lines, respectively.
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Fig. 5. Distance between both agents.

q̇1(0s) = q̇2(0s) = [0m/s, 0m/s]T . Therefore, the main

objective is to safely drive both vehicles to the other agent’s

initial location.

The response of the two-agent system is illustrated Fig. 4.

The two agents start traveling toward each other at maximum

speed, according to their control objective. Once they enter

into each other’s Detection, and eventually, Conflict Region

(see left-side plot), the two agents decelerate and start an

oscillatory motion toward opposite sides while avoiding a

collision (corresponding to the right-side plot). After the

conflict has been solved and the agents are safely apart, the

two systems continue toward their final destinations.

As depicted in Fig. 5, the agents successfully evaded the

Avoidance Region (indicated by the dark orange rectangle).

The observed oscillatory behavior of both agents can be

attributed to the sensing delay and to the symmetry of their

desired trajectories (i.e., their desired trajectories are the

same but with opposite direction, which maximizes the risk

of a collision). In fact, the measurement errors ζ and ξ

introduced during the sensing process of the second agent are

what finally break the symmetry in the vehicles’ trajectories.

VI. CONCLUSION

A cooperative collision avoidance strategy for the case of

two agents with acceleration constraints, bounded sensing

uncertainties, and limited sensing range has been reported.

It is shown that for agents with double-integrator dynamics

and radially bounded sensing uncertainties, collision-free

trajectories can be guaranteed if the initial distance between

both agents is equal or greater than a computed conflict

radius. Simulations results validated the proposed strategy.

REFERENCES

[1] T. Arai, E. Pagello, and L. E. Parker, “Guest editorial advances in
multirobot systems,” IEEE J. Robot. Automat., vol. 18, no. 5, pp. 655–
661, Oct. 2002.

[2] R. M. Murray, “Recent research in cooperative control of multivehicle
systems,” J. Dyn. Syst. Meas. Control, vol. 129, no. 5, pp. 571–583,
Sept. 2007.

[3] R. W. Beard, T. W. McLain, D. B. Nelson, D. Kingston, and D. Johan-
son, “Decentralized cooperative aerial surveillance using fixed-wing
miniature UAVs,” Proc. IEEE, vol. 94, no. 7, pp. 1306–1324, July
2006.

[4] P. S. Schenker, T. L. Huntsberger, P. Pirjanian, E. T. Baumgart-
ner, and E. Tunstel, “Planetary rover developments supporting mars
exploration, sample return and future human-robotic colonization,”
Autonomous Robots, vol. 14, pp. 103–126, 2003.

[5] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hundreds
of cooperative, autonomous vehicles in warehouses,” AI Mag., vol. 29,
no. 1, pp. 9–20, 2008.

[6] J. A. Volpe, “Vulnerability assessment of the transportation infras-
tructure relying on the Global Positioning System,” NTSC, U.S.
Department of Transportation, Tech. Rep. NAV-CEN, Aug. 2001.

[7] G. N. Desouza and A. C. Kak, “Vision for mobile robot navigation:
A survey,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 2, pp.
237–267, Feb. 2002.

[8] J. C. Kinsey, R. M. Eustice, and L. L. Whitcomb, “A survey of un-
derwater vehicle navigation: Recent advances and new challenges,” in
Proc. IFAC Conf. Manoeuvring Control Mar. Craft, Lisbon, Portugal,
Sept. 2006.

[9] G. Leitmann and J. Skowronski, “Avoidance control,” J. Optim. Theory

Appl., vol. 23, no. 4, pp. 581–591, Dec. 1977.
[10] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile

robots,” Int. J. Robot. Res., vol. 5, no. 1, pp. 90–98, 1986.
[11] D. E. Koditschek and E. Rimon, “Robot navigation functions on

manifolds with boundary,” Adv. Appl. Math., vol. 11, no. 4, pp. 412–
442, Dec. 1990.

[12] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, “A time-dependent
Hamilton-Jacobi formulation of reachable sets for continuous dynamic
games,” IEEE Trans. Automat. Control, vol. 50, no. 7, pp. 947–957,
July 2005.

[13] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Algo-
rithms and theory,” IEEE Trans. Automat. Control, vol. 51, no. 3, pp.
401–420, Mar. 2006.

[14] K. D. Do, “Bounded controllers for formation stabilization of mobile
agents with limited sensing ranges,” IEEE Trans. Automat. Control,
vol. 52, no. 3, pp. 569–576, Mar. 2007.
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