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Abstract— In this paper, a new nonlinear filter named 
Salient Point Quadrature Filter (SPQF) using a sparse 
grid method is proposed. The filter is derived using the 
so-called salient points to approximate the integrals in the 
Bayesian estimation algorithm. The univariate salient 
points are determined by the moment match method and 
then the sparse-grid theory is used to extend the 
univariate salient point sets to multi-dimensional cases. 
Compared with the other point-based methods, the 
estimation accuracy level of the new filter can be flexibly 
controlled and the filter algorithm is computationally 
more efficient since the number of salient points for SPQF 
increases polynomially with the dimension, which 
alleviates the curse of the dimensionality for high 
dimensional problems. Another contribution of this paper 
is to show that the Unscented Kalman Filter (UKF) is a 
subset of the SPQF with the accuracy level 2. The 
performance of this new filter was demonstrated by the 
orbit determination problem. The simulation results show 
that the new filter has better performance than the 
Extended Kalman Filter (EKF) and UKF. 

I. INTRODUCTION 
onlinear filtering has been intensively studied and 
widely applied in many science and engineering 

disciplines. The general filtering problem can be addressed 
from the Bayesian estimation theory [1]. In general, exact 
finite-dimensional solutions to the integral equations in the 
Bayesian estimation do not exist. Numerous approximate 
nonlinear filters have been proposed. A large class of them is 
based on the assumption that the state probability density 
function (pdf) is Gaussian. These filters include the 
Gauss-Hermite Quadrature Filter (GHQF) [2, 3], the 
Unscented Kalman Filter (UKF) [4, 5], the Cubature Kalman 
Filter (CKF) [6], the Central Difference Filter (CDF) [2], and 
the Divided Difference Filter (DDF) [7]. All the Gaussian 
approximation filters involve using numerical quadratures to 
approximate the expectations of nonlinear functions with 
respect to Gaussian pdfs. UKF uses the so-called sigma points 
with the number of points increasing linearly with the 
dimension. CDF [2] and DDF [7] are based on interpolation 
formula using the similar deterministic sampling approach. 
The common limitation of those methods including UKF, 
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CDF, DDF and CKF is that they are hard to be extended to 
achieve any higher order estimation accuracy. 

In this paper, we proposed a new nonlinear filtering 
algorithm named Salient Point Quadrature Filter (SPQF) 
using a general moment-match method for one-dimensional 
integral approximation and a sparse grid method for 
multi-dimensional extension. The sparse grid method was 
originally used to alleviate the curse of dimensionality 
problem in the numerical integration [8,9]. It is utilized in the 
approximate nonlinear filter design in this paper using a 
special linear combination of lower-dimensional tensor 
products such that the number of necessary points is 
dramatically less than that of using the direct tensor product 
rule. As a result, the computational cost does not increase 
exponentially using the sparse grid method.  

The new SPQF proposed in this paper is more flexible to 
use than UKF, CKF, CDF, and DDF, and capable of 
achieving higher accuracy levels with moderately increased 
number of points. Another contribution of this paper is to 
prove that UKF is a subset of SPQF with the accuracy level 2.  

The rest of this paper is organized as follows: the Gaussian 
approximation filters are briefly reviewed in Section II. 
Section III introduces the Salient Point Quadrature rule and 
filter. Section IV presents the simulation results for the orbit 
determination and makes comparisons with EKF and UKF. 
Some conclusion remarks are given in Section V. 

II. GAUSS-APPROXIMATION FILTERS 

2.1 Gaussian approximation filters 
Consider a nonlinear discrete-time system with additive 
process noise and measurement noise: 
                               ( )1 1k k kf − −= +x x ν           (1) 

                                ( )k k kh= +y x n         (2) 

where 1k −ν  and kn are white Gaussian process noise and 
measurement noise with the covariances 1k−Q  and kR
respectively. 
Gaussian approximation filters such as GHQF and UKF 
assume that the pdf of the states is Gaussian and calculate the 
state mean and covariance as follows [2]: 
Prediction:  
         ( ) ( )| 1 1 1 1 1| 1 1ˆ ˆ; ,

nk k k k k k k kf N d− − − − − − −= ∫x x x x P x
R

      (3) 

     ( ) ( ) ( )| 1 1 1 1 1 1| 1 1

| 1 | 1 1

ˆ; ,

ˆ ˆ           

n

T
k k k k k k k k k

T
k k k k k

f f N d− − − − − − − −

− − −

=

− +

∫P x x x x P x

x x Q
R  (4) 

where ( )1 1 1| 1ˆ; ,k k k kN − − − −x x P denotes the multivariate normal 
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distribution with the mean 1ˆ k −x and the covariance 1| 1k k− −P . 

Update:            ( )| | 1ˆ ˆk k k k k k k−= + −x x L y z   (5) 

                         | | 1
T

k k k k k xz−= −P P L P   (6) 

 where     ( ) 1
k xz k zz

−= +L P R P  (7) 

                ( ) ( )| 1 | 1ˆ; ,
nk k k k k k k kh N d− −= ∫z x x x P x

R
  (8) 

( ) ( )( ) ( )| 1 | 1 | 1ˆ ˆ; ,
n

T
xz k k k k k k k k k k kh N d− − −= − −∫P x x x z x x P x

R
 (9) 

( )( ) ( )( ) ( )| 1 | 1ˆ; ,
n

T
zz k k k k k k k k k kh h N d− −= − −∫P x z x z x x P x

R
(10) 

The integrals in (3)-(4) and (8)-(10) can be approximated by 
the Gauss-Hermite Quadrature (GHQ), Unscented 
Transformation (UT) or Cubature Rule [6]. The 
corresponding filtering algorithm is given below. 

Prediction:              ( )| 1
1

ˆ
pN

k k i i
i

W f−
=

= ∑x ξ     (11) 

            ( )( ) ( )( )| 1 | 1 | 1 1
1

ˆ ˆ
pN

T
k k i i k k i k k k

i

W f f− − − −
=

= − − +∑P ξ x ξ x Q  (12) 

                     1| 1
T

k k− − =P SS  ;     1| 1ˆi i k k− −= +ξ Sγ x  (13) 

where pN  is the total number of points; iγ and iW  are the 
points and weights used to approximate the integral 

( ) ( )1 1; ,
n k n kf N d− −∫ x x 0 I x

R
; iξ  is the transformed point 

obtained from the covariance decomposition. 
Update:                ( )| | 1ˆ ˆk k k k k k k−= + −x x L y z   (14) 

                             | | 1
T

k k k k k xz−= −P P L P           (15) 

where          ( )
1

pN

k i i
i

W h
=

= ∑z ξ   (16) 

                   ( ) ( )( )| 1
1

ˆ
pN

T

xz i i k k i k
i

W h−
=

= − −∑P ξ x ξ z   (17) 

                   ( )( ) ( )( )
1

pN
T

zz i i k i k
i

W h h
=

= − −∑P ξ z ξ z   (18) 

iξ  is the transformed point obtained from the predicted 
covariance decomposition, i.e. 
                   | 1

T
k k− =P SS ;    | 1ˆi i k k−= +ξ Sγ x   (19) 

There are many rules to choose the quadrature point iγ  and 
the weight iW such as GHQ rule [2, 3] and UT [4]. The 
multivariate GHQ extends the univariate GHQ by the tensor 
product rule [2, 3]. The univariate GHQ with m points is exact 
up to the ( 2 1m − )th order of polynomials [3]. The 
multivariate GHQ rule is exact for all polynomials of the form 

1 2
1 2

n
n
ii ix x x with 1 2 1ji m≤ ≤ − [2]. However, the total 

number of points n
pN m= increases exponentially with the 

dimension n .  
For the UT with 2 1n + points [4], iγ  and iW are given by 

    

[ ]

( )

( )

1 1

1

1

0,0, 0,0 ;                         

1;             ;  2 1    
2

1;       ;   2 2 1
2

T

i i i

i i n i

W
n

n W i n
n

n W n i n
n

κ
κ

κ
κ

κ
κ

−

− −

⎧
⎪ = =
⎪ +
⎪⎪ = + = ≤ ≤ +⎨ +⎪
⎪
⎪ = − + = + ≤ ≤ +

+⎪⎩

γ

γ e

γ e

 (20) 

where 1i−e is the unit vector in nR with the (i-1)th element 
being 1 and κ is a tuning parameter with the suggested 
optimal value of 3 nκ = − for Gaussian distributions [4]. 

III. SALIENT POINT QUADRATURE FILTER 
In this section, the Salient Point Quadrature (SPQ) is 
introduced to calculate the integrals in (3)-(4) and (8)-(10) 
using a linear combination of lower-dimensional tensor 
products based on the Smolyak’s rule, given by [9] 

             
( ) ( ) ( )

( ) ( )( )
1

,

1
1 1

1

; ,

1

n

n
n
q

n n L

L
L q L q

n i i
q L n

f N d I f

I I f
−

− − − −
−

= − ∈

≈

= − ⊗

∫

∑ ∑

x x 0 I x

C

R

Ξ N

 (21) 

where 1 2, , , , ,
T

p nx x x x⎡ ⎤= ⎣ ⎦x . ( ),n LI f is an approximation 

to the n-dimensional integral of the function f with respect 
to ( ); , nN x 0 I  with the accuracy level L ∈ N , where N is the 
set of natural numbers. By accuracy level L it means that

( ),n LI f  is exact for all polynomials of the form 1 2
1 2

nii i
nx x x

with 
1

2 1
n

j
j

i L
=

≤ −∑ [9]. 1
1

L q
n

− −
−C is the binomial coefficient; ⊗  

denotes the tensor product. 
jiI  is the univariate SPQ rule 

with the accuracy level of at least ji ∈ Ξ , where 

( )1 , , ni iΞ  is an accuracy level sequence of n natural 

numbers. By accuracy level ji , it means that
jiI  is exact to at 

least the ( 2 1ji − )th order of all univariate polynomials. 
n
qN  is 

a set of accuracy level sequences defined by 

          
1

:  for 0

for 0

n
n
q d

d
n
q

i n q q

q
=

⎧ ⎧ ⎫= Ξ = + ≥⎨ ⎬⎪
⎩ ⎭⎨

⎪ = ∅ <⎩

∑N

N

          (22) 

The more explicit form of Eq. (21) can be written as  

( ) ( ) ( )
1 1

1
1 1

, 1 1
1

, , 1
p

n
i n iq n

nL
L q L q

n L n n i
q L n x X x X p

I f f x x w
−

− − − −
−

= − ∈ ∈ =∈

⎧ ⎫⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑ ∑ ∑ ∏
Ξ N

C… (23) 

where
jiX is the univariate salient point set with the accuracy 

level ji , which contains ji  or more points. The choice of 

jiX is not unique, which will be discussed afterwards. 
piw is 

the weight in 
piI associated with the state variable px  and the 

term enclosed by the braces is the weight associated with a 
multivariate salient point (n-dimensional) determined by the 
element in Nn

q . For a multivariate salient point that appears 
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multiple times, the weight of this point is the sum of the 
weights on the point over all combinations of 

1 2 ni i iX X X⊗ ⊗  containing the point, which will be shown 

in Algorithm I. 
The set of n-dimensional salient points, ,n LX , with the 
accuracy level L is given by 

                  ( )1

1

, nn
q

L

n L i i
q L n

X X X
−

= − Ξ∈
= ⊗ ⊗

N
∪ ∪   (24) 

where ∪ denotes the union operation of the point sets. Each 
element in n

qN  , i.e. ( )1 , , ni iΞ = , determines a tensor 

product sequence of 
jiX  where n

j qi ∈ Ξ ∈ N .  

The SPQ method includes two steps: 
Step 1: choose salient points and weights for univariate 
integral approximation using the moment match approach. 

The first step is to ensure that the univariate SPQ with the 
level ij is exact for univariate polynomials of the order 2ij-1 in 
order for the multivariate SPQ with the level L to be exact for 
all multivariate polynomials with the total order of 2L-1. This 
is shown in the Theorem 3.1: 
Theorem 3.1[9]: Assume that the sequence of univariate 
quadrature rules { }:

ji jI I i N= ∈ is defined such that 
jiI is 

exact for all univariate polynomials of the order up to 2 1ji − . 

Then the Smolyak rule ,n LI (21) using I as the univariate 
basis sequence is exact for n-variate polynomials of the total 
order up to 2 1L− . 

According to Theorem 3.1, we will use the moment match 
method to ensure that the univariate SPQ with the level ij is 
exact for univariate polynomials of the order 2ij-1.  

In this paper, we use 2ij-1 symmetric salient points for the 
univariate point set with the level ij. Other point selection 
methods are also possible. Take L=3 as an example. 
According to the Smolyak’s rule, or Eq. (22), we need level 1, 
2, and 3 univariate SPQ. For the level 1, the point set is 
chosen to be { }0 with the corresponding weight of 1. For the 

level 2, we choose the symmetric point set as{ }1 1ˆ ˆ, 0,p p− with 

the corresponding weight sequence ( )2 1 2ˆ ˆ ˆ, ,w w w . For the level 

3, we choose the symmetric point set as{ }3 2 2 3ˆ ˆ ˆ ˆ, , 0, ,p p p p− −

with the corresponding weight sequence ( )5 4 3 4 5ˆ ˆ ˆ ˆ ˆ, , , ,w w w w w . 
According to Theorem 3.1, the point sets for the level 2 and 
level 3 should match univariate polynomials of the 3rd order 
and the 5th order respectively. The general moment match 
formula (one-dimensional Gaussian type integral) is 

               ( ) ( )
1

ˆ ˆ;0,1
pN

jj
j i i

i

M x N x dx w p
∞

−∞
=

= = ∑∫  (25) 

where jM is the jth order moment; pN is the number of 

points; ˆ iw  and ˆ ip are the weight and point respectively. 
From the Eq. (25), for the level 2, the following equations 
should be satisfied: 

                                   1 2 0
2

2 1 2

ˆ ˆ2 1

ˆ2 1

w w M

w p M

+ = =⎧⎪
⎨

= =⎪⎩
 (26) 

which leads to  2
1 1ˆ ˆ1 1/w p= −  ; 2

2 1ˆ ˆ1/ (2 )w p=           (27) 
Similarly, for the level 3, the Eq. (28) should be satisfied 

                     
3 4 5 0

2 2
4 2 5 3 2

4 4
4 2 5 3 4

ˆ ˆ ˆ2 2 1

ˆ ˆ ˆ ˆ2 2 1

ˆ ˆ ˆ ˆ2 2 3

w w w M

w p w p M

w p w p M

+ + = =⎧
⎪

+ = =⎨
⎪ + = =⎩

 (28) 

Solving this equation set (if 3 2ˆ ˆp p≠ ) yields 
2 2

3 4 5 4 5 3 2
2 2 2 2

5 2 3 3 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 2 2 ; (0.5 ) /

ˆ ˆ ˆ ˆ ˆ(3 ) / [2 ( )]

w w w w w p p

w p p p p

= − − = −

= − −
  (29) 

In the equation sets (26) and (28), only the even moments are 
considered because the symmetry of the points implies the 
odd moments are matched automatically. 
When the position of the points 1p̂ , 2p̂  and 3p̂ are given, the 
weights can be determined from Eqs. (27) and (29).  
Step 2: extend the univariate SPQ to the multi-dimensional 
SPQ using the sparse grid method, i.e. Eq. (23). 
To better illustrate the sparse grid method, we use the 
Smolyak’s rule to construct 2,3 ( 2,  3)X n L= = from the 

univariate salient point sets 1X , 2X  and 3X containing 1, 3, 
and 5 points, respectively, as shown in Fig. 1 [10].  

 
Fig. 1: Multivariate salient point set for dimension 2 and accuracy level 3 

From Eq. (23), q can be 1 or 2 and then we have 

( ) ( ){ }2
1 1,2 , 2,1=N  and ( ) ( ) ( ){ }2

2 1,3 , 2,2 , 3,1=N . 2
1N and 2

2N

contain the accuracy level sequences that determine the 
tensor products of 1X , 2X  and 3X as shown in Fig.1. The 
final sparse-grid point set 2,3X  yields 17 points as shown on 
the bottom right of Fig. 1. 

The salient points and weights are generated in Algorithm I. 

Algorithm I: Generate Salient Points and Weights 
[ ] [ ], SPQ ,W n Lχ =  

( χ : salient point set with the element of iχ ; W: weight 
sequence with the element of iW ) 
FOR : 1q L n L= − −  
       Determine n

qN  
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       FOR each element ( )1= , , ni iΞ in n
qN , form 

1 2 ni i iX X X⊗ ⊗  

           For each point iχ in 
1 2 ni i iX X X⊗ ⊗   

            IF the point is new, add it to χ , assign a new index 
i to the point and calculate its weight as 

                                ( ) 1 1
1

1

1
p

n
L q L q

i n i
p

W w− − − −
−

=

= − ∏C         (30) 

                    
piw is the weight of the point in 

pi
X and chosen 

from ˆ , 1, , ( 1) / 2j pw j N= +  
                ELSE (the point is already existing)  
                       update the old weight by 

                                ( ) 1 1
1

1

1
p

n
L q L q

i i n i
p

W W w− − − −
−

=

= + − ∏C              (31) 

                END IF 
            END FOR 
        END FOR 
END FOR 

Remark 3.1: The sparse Gauss-Hermite Quadrature [10] can 
be viewed as a special case of SPQ. 
The following theorem shows that UKF is a subset of SPQF. 
Theorem 3.2: The points and weights generated by UT [4] 
are identical to the points and weights generated by the SPQ 
method with the accuracy level 2 (L=2) if three symmetric 
points are used for the level 2 univariate salient point set. 
Proof: For level 1 univariate salient point quadrature rule, the 
point set is { }0 with the corresponding weight 1. For level 2 

univariate SPQ, the point set is { }1 1ˆ ˆ, 0,p p− with the 

corresponding weight sequence ( )2 1 2ˆ ˆ ˆ, ,w w w .  
Since the accuracy level is L=2, the value of qcan be 0 or 1. 

When 0q = , ( )0

 elements

1,1, ,1,1n

n

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

N , the salient point 

corresponding to 0
nN will be [ ]0,0, 0,0 T  with the weight 

( ) ( )
1 elements

2 1 0 2 1 0
11 1 1 1 1 1

n

n n
−

− − − −
−

⎛ ⎞
⎜ ⎟− × × × × × × = − −
⎜ ⎟
⎝ ⎠

C (Eq. (30)).  

When 1q = ,  

( ) ( ) ( ) ( )1

 elements

2,1, 1,1 , 1,2, 1,1 , 1, 1,2,1, 1 , 1,1, 1,2
n n n n

n

n

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

N . 

Corresponding to the combination ( )2,1, 1,1 , there are two 

points 1ˆ ,0, 0,0 Tp−⎡ ⎤⎣ ⎦ and 1ˆ ,0, 0,0 Tp⎡ ⎤⎣ ⎦  with the same 

weight ( )
1 elements

2 1 1 2 1 1
2 1 2 2ˆ ˆ1 1 1 1

n

nW w w
−

− − − −
−

⎛ ⎞
⎜ ⎟= − × × × × × × =
⎜ ⎟
⎝ ⎠

C (Eq. 

(30)). Similarly, corresponding to the combination

( )1, 1, 2,1, 1 , there are two points 1ˆ0, 0, ,0, 0 Tp−⎡ ⎤⎣ ⎦  

and 1ˆ0, 0, ,0, 0 Tp⎡ ⎤⎣ ⎦  with the same weight 2 2ˆW w= . The 

weight for the point [ ]0,0, 0,0 T using (31) is  

( ) ( )
 elements

2 1 0 2 1 12 1 0 2 1 1
1 1 1

 elements

1 elements 2 elements 1 elements

1 1 1

1 1 1 1 1 1

ˆ ˆ ˆ1 1 1 1 1 1 1 1 1 1

n

n n

n

n n n

W

w w w

− − − −− − − −
− −

− − −

⎛ ⎞
⎜ ⎟= − × × × × × × + − ×
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟× × × × × + × × × × × + + × × × ×
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

C C

( ) 1ˆ1n n w

⎧ ⎫
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

= − − + ⋅

since this point is a repeated point. The salient points and 
weights for other combinations in 1

nN can be similarly 
derived. To summarize it, the salient points and weights with 
the accuracy level 2 are 

                         

[ ]1

1 1

1 1

0,0, 0,0
ˆ ,       2 1

ˆ ,  2 2 1

T

i i

i i n

p i n
p n i n

−

− −

⎧ =
⎪

= ≤ ≤ +⎨
⎪ = − + ≤ ≤ +⎩

γ
γ e
γ e

  (32) 

and 
                         

( )1 1

2

ˆ1
ˆ ,   2 2 1i

W n n w
W w i n

⎧ = − − + ⋅⎪
⎨

= = +⎪⎩
     (33) 

respectively. If we choose 1p̂ n κ= + , by Eq. (27),
 

( )1
1ˆ 1w

n κ
= −

+  
and 

( )2
1ˆ

2
w

n κ
=

+
. Hence 

         

( ) ( )

( )

1
11 1

1 ,   2 2 1
2i

W n n
n n

W i n
n

κ
κ κ

κ

⎧ ⎛ ⎞
= − − + ⋅ − =⎪ ⎜ ⎟⎜ ⎟+ +⎪ ⎝ ⎠⎨

⎪ = = +⎪ +⎩

 (34) 

Comparing the points and weights of UT in Eq. (20) and those 
in SPQ, Eqs. (32) and (34), they are identical.  ■ 
The number of salient points can be calculated by analyzing 
the number of points corresponding to all different accurate 
level sequences in n

qN . However, we can use the highest 
accurate level set to calculate the number of points when the 
condition in the following proposition is satisfied. 
Proposition 3.1: If 1 2X X⊆ , 1 q n< < , the point sets 
corresponding to the accuracy level set 1

n
q−N will be contained 

in the point sets corresponding to n
qN . 

Proof: By the definition, 1
1

: 1
n

n
q d

d
i n q−

=

⎧ ⎫
= Ξ = + −⎨ ⎬

⎩ ⎭
∑N  and

1
: 1 1

n
n
q d

d
i n q

=

⎧ ⎫
= Ξ = + − +⎨ ⎬

⎩ ⎭
∑N . If the combination

( )1 2, , , ,j ni i i i  belongs to 1
n
q−N , then the combination 

( )1 2, , , 1,j ni i i i+  belongs to n
qN . For n

qN , each element 
sequence in it contains at most q  elements that are greater 
than 1. Because 1 q n< < and there are at most q elements 
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greater than 1, we can always find an 1,  1ji j n= < < . In this 

case, the points corresponding to ( )1 2, , , ,j ni i i i will be 
generated by 

1 2 1 ni i iX X X X⊗ ⊗ ⊗ . The points 

corresponding to ( )1 2, , , 1,j ni i i i+ will be generated by 

1 2 2 ni i iX X X X⊗ ⊗ ⊗ . Because 1 2X X⊆ , any point 

generated by 1
n
q−N will be contained in the point sets 

generated by n
qN .  ■ 

For the level 3 SPQ, we can give more detailed analysis of the 
SPQ using the same procedure in the proof of Theorem 3.1. 
For convenience, the SPQ points and weights with the 
accuracy level 3 for three different cases are given below.  

A. Case 1: 1 2 3ˆ ˆ ˆp p p= =  
In this case, there are three variables, 1p̂ , 1ŵ and 2ŵ . By the 

Eq. (26) and Eq. (28), we can get 1ˆ 3p = , 1
2ˆ
3

w = , 2
1ˆ
6

w = . 

Because the univariate salient point set with different 
accuracy levels satisfies the condition of Proposition 3.1, we 
only need to use 1

n
L−N to calculate the multivariate salient 

points. Note that L=3 and thus the largest q in n
qN  is L-1. 

( ) ( ) ( ) ( )
2
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The combination ( )3,1, ,1 generates 2 points 

1ˆ ,0, ,0 Tp±⎡ ⎤⎣ ⎦ and the combination ( )2, 2, ,1  generates 4 

new points ( 1 1 1 1ˆ ˆ ˆ ˆ, , ,0 , , , ,0T Tp p p p± ± −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ) and one old 

point [ ]0, ,0, ,0, 0 T
. Similar results can be derived for 

other combinations.  
Therefore, the total number of points is         
                                   2 1 24 2 1 2 1n n n+ + = +C C .  

B. Case 2: 1 2 3ˆ ˆ ˆp p p= ≠  

In this case, we have seven variables, 1p̂ , 3p̂ , 1ŵ , 2ŵ , 3ŵ , 4ŵ
and 5ŵ , where 1p̂ , 3p̂ are two tunable variables. 
Following the similar deduction as Case 1, the total number of 
points can be derived to be 
                           2 1 24 4 1 2 2 1n n n n+ + = + +C C .  
C. Case 3: 1 2 3ˆ ˆ ˆp p p≠ ≠  
In this case, there are eight variables, 1p̂ , 2p̂ , 3p̂ , 1ŵ , 2ŵ , 3ŵ ,

4ŵ and 5ŵ , where 1p̂ , 2p̂ , 3p̂ are three tunable variables. 
Following the similar deduction as Case 1, the total number of 
points can be derived to be 
                      1 2 1 24 4 2 1 2 4 1n n n n n+ + + = + +C C C . 
There are some important merits of the SPQ compared with 
other point-based methods. 
1) The accuracy can be flexibly controlled by the accuracy 

levels of SPQ. Theoretically, if the nonlinear function f can 
be approximated sufficiently well by polynomials, then the 

integral ( ) ( ); ,f d
∞

−∞∫ x N x 0 I x can always be calculated with 

sufficient accuracy by increasing the level of SPQ. Other 
point based methods are difficult to extend to higher accuracy 

levels. For example, the integral ( ) ( )21 ; ,
n

ix d
∞

−∞
+∑∫ N x 0 I x

 
( ix is the ith element of x ) can be calculated by SPQ with 
level 4 and level 5 exactly when n equals 3 or 4 whereas UKF 
is difficult to achieve that.

 2) The number of SPQ points for a fixed accuracy level 
increases polynomially with the dimension due to the sparse 
grid method. Therefore, the filter algorithm does not demand 
high computational load and is very efficient for high 
dimensional estimation problems. 
3) The tunable parameters (location of the salient points) 
make this filter more flexible. For different nonlinear 
functions, different point sets with the same accuracy level 
may have very different performance.  

IV. NUMERICAL RESULTS AND ANALYSIS 
In this section, SPQF is applied to the orbit determination 

problem and compared with EKF, UKF and GHQF.  
The Near-Earth satellite dynamics can be described by [11] 
                          

3=- G Dμ + + +r r / r a a v                        
 
(35) 

where [ ], , Tx y z=r  is the position of satellite in the inertial 

coordinate frame; v is the white Gaussian process noise. Ga
and Da are the instantaneous acceleration due to the 2J  
perturbation and atmospheric drag respectively.  
Measurement model is given by 
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                 (36) 

where the azimuth (az), the elevation (el), and the range 

[ ]T
u e n= ρ ρ ρρ can be measured by the radar site on the 

ground with respect to the local observer coordinate system.  
ρ  can be related to the range vector in the inertial frame by 
the coordinate transformation [11] given by  
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(37) 

R 6378.1363km= is the earth radius; λ and θ are the 
latitude and local sidereal time of the observer respectively; 

,az eln n nρ，  are the white Gaussian measurement noises. 
Since it is hard to track satellite all the time, we assume the 
track time is 5 minutes and the measurement period is 5 

3004



  

seconds. In this paper, we use the accuracy level 2 and level 3 
for the SPQF algorithm, which is sufficient to give 
satisfactory results. 

We use three different parameters for SPQF in Table 1: 
Table 1: Parameter values for different SPQFs 

 1p̂  2p̂  3p̂  
1st SPQF (Case 1) 3  3  3  
2nd SPQF (Case 2) 1.71 1.71 2.5 
3rd SPQF (Case 3) 1.76 1 2.5 

The 2nd SPQF has two tunable variables 1p̂ (= 2p̂ ) and 3p̂  , 
and the 3rd SPQF has three tunable variables 1p̂ , 2p̂ , and 3p̂ .  

The initial true value is assumed to be 0 0 0
p vx x x⎡ ⎤= ⎣ ⎦ , 

where 0 [6949.599783,1045.733299,64.918535] kmpx =  
and      0 [ 0.902571,5.697655, 4.841182] km/svx = −  

The initial estimate is 0 0 0ˆ ˆ ˆp vx x x⎡ ⎤= ⎣ ⎦  where 

0ˆ [7252.009273,1358.407862,383.904071] kmpx =  
and 0ˆ [ 0.613101,5.991868,5.138553] km/svx = − . 

The initial variance is ( )4 4 4 2 2 2
0 diag 10 ,10 ,10 ,10 ,10 ,10P − − −⎡ ⎤= ⎣ ⎦  

The latitude and longitude of the radar site is o10.749−  and 
o70.5983− , respectively. 

The process and measurement noise covariance are               
               ( )16 16 16diag 0,0,0,10 ,10 ,10Q − − −⎡ ⎤= ⎣ ⎦  
and         ( ) ( )( )2 2o o 2diag 0.015 , 0.015 ,0.025 kmR ⎡ ⎤= ⎢ ⎥⎣ ⎦

.
 

The performance of SPQF is compared with EKF, UKF, and 
GHQF using the root-mean square error (RMSE) for 50 
simulation runs. The simulation results of the estimation error 
for the position and the velocity are shown in Fig. 2 and Fig. 3 
respectively. All SPQFs exhibit much better performance 
than EKF. The 1st, 2nd and 3rd SPQFs (level 2) have very close 
performance and all the level 3 SPQFs have no 
distinguishable difference. In addition, the level 3 SPQFs has 
better performance than the level 2 SPQFs. This is because 
the level 3 SPQ has higher accuracy than the level 2 SPQ. 
Note that the level 2 SPQF is identical with the UKF with 

1p̂ n κ= + . The 1st SPQF (level 2) is the same as the UKF 
with the optimal parameter 3 nκ = − . Although SPQFs (level 
3) has the similar performance with GHQF, SPQF (level 3) 
uses 73, 85, and 97 points for the 1st , 2nd, 3rd cases, 
respectively whereas GHQF uses 36 (=729) points. Thus, the 
SPQF is computationally more efficient than the GHQF. 

V. CONCLUSION 
In this paper, a new nonlinear filter, salient point quadrature 
filter (SPQF) was developed using the moment match and the 
sparse grid method. It is proven that UKF is a subset of SPQF 
with the accuracy level 2. In addition, the new filter is flexible 
to use since higher accuracy level can be easily achieved by 
moderately increasing the number of SPQ points 
polynomially with the dimension. The simulation results 
demonstrated that the new filtering algorithm exhibits much 
better performance than EKF and UKF. 

 
Fig. 2: RMSE for position error of EKF, SPQFs and GHQF 

 

 
Fig. 3: RMSE for velocity error of EKF, SPQFs and GHQF 
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