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Abstract— Managing networks of Autonomous Vehicles (AVs)
for accomplishing a common goal, such as target pursuit, is
very challenging due to the limited processing, sensing and
communication capabilities of the agents. The effects of these
limitations on stability of control systems are investigated in this
paper. Having the performance of a target-pursuit controller
provided with limited information about the target as an
incentive, we develop a complete methodology for analyzing
robustness of nonlinear controllers under intermittent infor-
mation. As long as new information arrive within Maximum
Allowable Transfer Intervals (MATIs), stability of the closed-
loop system is guaranteed. Considering networks of AVs as
spatially distributed systems, we adopt a Network Control
Systems (NCSs) approach. Using Lyapunov techniques and
the small-gain theorem, we are able to analyze stability of
internal dynamics in feedback linearized systems within the
same framework, and not as a separate problem. Finally, based
on the target’s maneuver, we provide MATIs leading to different
types of stability for the investigated target-pursuit policy, and
provide corroborating numerical simulations.

I. INTRODUCTION

With the advent of more skillful and sophisticated Au-

tonomous Vehicles (AVs) in recent years, novel methods

are investigated in order to exploit the full potential of

multi-agent networks performing a coordinated task. AVs

in such groups are inevitably coupled by sensing and com-

munication. As technology pushes sensing, communication

and processing capabilities of AVs further, the appetites and

expectations of the industrial and civil sectors grow accord-

ingly. Therefore, it will always be important to consider

effects that non-perfect communication and sensing have on

the quality of the group’s performance.

A tendency in the field of robotics networks is to fully

exploit accomplished agents via distributed control laws and

estimation schemes resulting in more robust and reliable per-

formance of the group [1]. Many open problems in the area

of distributed control and estimation are tackled within the

area of Networked Control Systems (NCSs) [2]. NCSs are

spatially distributed systems for which the communication

between sensors, actuators, and controllers is supported by

a shared communication network.

Among many interesting problems and approaches pre-

sented in [2], the work that grabbed our attention is presented

in [3] and [4]. The authors in [3] present a framework

in which one first designs a controller without taking into

account the network and then, in the second step, one de-

termines a design parameter called the Maximum Allowable
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Transfer Interval (MATI) so that the closed loop remains

stable when control and sensor signals are transmitted via the

network. This framework models NCSs as hybrid (or jump)

systems ( [5], [6]), and utilizes the small-gain theorem [7] to

study stability. Notice that MATI is an upper bound between

two consecutive sampling times, and the source of the MATI

is not specified (e.g., communication delays and collisions,

sampling period, processing time, network throughput, oc-

clusions of agents, limited communication/sensing range,

etc.). A limitation of considering only Lyapunov Uniformly

Globally Exponentially Stable (UGES) scheduling protocols

in [3] is circumvented in [4] where Persistently Exciting Pro-

tocols (PEPs) are covered. Informally, PEPs are scheduling

protocols that always visit all links of a NCS within every

T <∞ consecutive transmissions. A very educative example

where the fast sampling and processing are essential in order

to achieve desirable performance is the control of UAVs [8].

One of the driving forces for the research reported in

this paper is the Marco Polo game introduced in [9] and

formalized further in more recent work ( [10], [11], and

[12]). The game mimics a pursuit-evasion game often played

by children in swimming pools. Marco Polo is a pursuer

that receives information about the evaders’ location in

random time intervals. The goal of the Marco Polo game

is to capture a group of intelligent evaders as quickly as

possible using a team of autonomous pursuers that have

intermittent knowledge of the evaders’ locations. Our former

work successfully brings together surveillance of an area-

of-interest, sensor placement, collision avoidance and false

alarms. Estimation of targets’ locations and velocities is

investigated in [13]. In [13], we compare performance of

Unscented Kalman Filter (UKF) and Particle Filter (PF)

under intermittent (or limited) information. In addition, we

develop a novel filter whose performance is comparable to

UKF and PF given limited and noisy information of targets

and targets’ locations.

Once a sensor is deployed to capture a target, a ques-

tion that is still not adequately addressed is: “Given some

control law, how often a pursuer has to obtain information

about an evader in order to assure that the evader will

be captured?” In this manner, the pursuer rationalizes the

use of expensive resources needed to work within a group

and energy at disposition. The controller investigated in this

paper is the leader-follower controller designed via input-

output feedback linearization, and is presented in [14]. We

choose this controller due to versatility of its applications, its

complexity and our familiarity with it. For instance, in the

case where the desired separation between the leader and

follower is zero, one practically deals with a target-pursuit

problem.
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The contributions of this paper are threefold: a) all steps

needed to analyze robustness of nonlinear controllers under

intermittent information are provided; b) resulting in a novel

approach for analyzing stability of internal dynamics in

feedback linearized systems; and c) based on the target’s

maneuver, MATIs leading to different types of stability for

the target-pursuit policy are provided. In addition, to the best

of our knowledge, the work in [4] has not been applied to

nonlinear settings yet.

Other works related to this paper are found in [15],

[16], [17] and [18]. However, these works appear to be

more restrictive and less general than the approach pro-

posed herein in terms of types of stability reached under

intermittent information (e.g., exponential stability, a user

defined performance), requirements on the system in the

absence of communication network (e.g., exponential sta-

bility, state feedback, error-to-state stability, availability of

Lyapunov functions, homogeneous/polynomial systems, con-

trollers without dynamics), and no consideration of external

inputs (or disturbances).

The rest of the paper is organized as follows. Section II

presents the notation and previous results utilized in this

work. A methodology for analyzing robustness of nonlinear

controllers under intermittent information utilizing NCSs

modeling is presented in Section III. In the exposition of

Section III, an emphasis is put on controllers designed via

feedback linearization method. The methodology is exempli-

fied on the target-pursuit controller and stability analysis is

provided in Section IV. Simulations and numerical results

are presented in Section V. Finally, conclusions are drawn

and the future work is discussed in Section VI.

II. MATHEMATICAL PRELIMINARIES

A. Notation

For brevity, we use (x, y) for [xT yT ]T . Let f : ℝ → ℝ
n

be a Lebesgue measurable function on [a, b] ⊂ ℝ. We use

∥f [a, b]∥2 :=

(
∫

[a,b]

∥f(s)∥2ds

)1/2

to denote the ℒ2 norm of f on [a, b]. In the above expression,

∥ ⋅ ∥ refers to Euclidean norm of a vector. If the argument

of ∥ ⋅ ∥ is a matrix, then it denotes the induced matrix 2-

norm. Let us define an operator x̄ where x ∈ ℝ
n such that

x̄ = (∣x1∣, ∣x2∣, . . . , ∣xn∣) where ∣ ⋅ ∣ denotes the absolute

value of a real number. For a function f : ℝn → ℝ
m, Γ(f)

denotes the function that takes components of the image

of f to their absolute values, i.e., Γ(f) : x → f̄(x). ℝnx

denotes Euclidean space of dimension nx where nx equals

the dimension of x, and ℝ
r×c denotes the vector space of

matrices with dimension r × c.
The partial order ⪯ on vectors x and y is defined by

x ⪯ y ⇐⇒ (∀i ∈ {1, ⋅ ⋅ ⋅ , n}) xi ≤ yi.

Finally, A+
n denotes the set of all n × n matrices that

are positive semidefinite, symmetric, and have nonnegative

entries, and ∗ℰ is the element-wise matrix multiplication.

B. Definitions and Earlier Results

Let {ti}
∞
i=0 be a sequence of increasing time instants such

that 0 < ti+1 − ti < � < ∞, ∀i ∈ ℕ. Consider the hybrid

system

Σj . . .

⎧

⎨

⎩

ẋj = fj(t, xj , !), t ∈ [ti, ti+1]

xj(t
+
i ) = ℎj(i, xj(ti))

yj = gj(t, xj)

initialized at (t0, xj0), with input (or disturbance) ! and

output yj . We assume enough regularity on fj and ℎj to

guarantee existence of the solution xj(⋅, t0, xj0, !) on the

interval of interest.

Definition 1: Let 
 ≥ 0 be given and p = 2. We say that

Σj is ℒ2-stable from ! to yj with (linear) gain 
 if ∃K ≥ 0
such that ∥yj [t0, t]∥2 ≤ K∥xj0∥+
∥![t0, t]∥2 for all t ≥ t0.

Definition 2: Let 
 ≥ 0 be given and p = 2. We say

that state xj of Σj is ℒ2 to ℒ2 detectable from (yj , !) to

xj with (linear) gain 
 if ∃K ≥ 0 such that ∥xj [t0, t]∥2 ≤
K∥xj0∥+ 
∥yj [t0, t]∥2 + 
∥![t0, t]∥2 for all t ≥ t0.

Next, we state the theorems of [4] utilized herein in order

to make this paper self-contained.

Consider a feedback interconnection, denoted with Σ, of

two hybrid systems Σ1 and Σ2 with a common input !.

The small-gain theorem for hybrid systems is stated in the

following theorem.

Theorem 1: Suppose that the feedback interconnection

system Σ of two hybrid system satisfies:

1) hybrid system Σ1 is ℒ2-stable from (y2, !) to y1 with

gain 
1;

2) state x1 is ℒ2 to ℒ2 detectable from (y1, !);
3) hybrid system Σ2 is ℒ2-stable from (y1, !) to y2 with

gain 
2;

4) state x2 is ℒ2 to ℒ2 detectable from (y2, !); and

5) 
1
2 < 1 (the small-gain condition).

Then, Σ is ℒ2-stable from ! to (x1, x2).
Theorem 2: In addition, suppose that the interconnected

system Σ satisfies the following:

∃L1 ≥ 0 : ∥f1(t, x1, x2, 0)∥ ≤ L1(∥x1∥+ ∥x2∥)

∃L2 ≥ 0 : ∥f2(t, x1, x2, 0)∥ ≤ L2(∥x1∥+ ∥x2∥)

∃L3 ≥ 0 : ∥ℎ1(i, x1)∥ ≤ L3∥x1∥ (1)

∃L4 ≥ 0 : ∥ℎ2(i, x2)∥ ≤ L4∥x2∥ (2)

for all x1 ∈ ℝ
nx1 , x2 ∈ ℝ

nx2 , all t ≥ t0 and all i ∈ ℕ.

Then, Σ with ! ≡ 0 is UGES.

Theorem 3: Suppose that the NCS scheduling protocol is

uniformly persistently exciting in time T (see Definition 4.4.

from [4]), and there exist A ∈ A+
ne and a continuous ỹ :

ℝ
nx × ℝ

n! → ℝ
ne
+ so that the error dynamics satisfies

¯̇e = ḡ(t, x, e, !) ⪯ Aē+ ỹ(x, !) (3)

for all (x, e, !) ∈ ℝ
nx×ℝ

ne×ℝ
n! , all t ∈ (ti, ti+1), for all

i ∈ ℕ. Further suppose that MATI satisfies � ∈ (�, �∗), � ∈
(0, �∗) where

�∗ =
ln(2)

∥A∥T
. (4)

Then, the NCS error subsystem is ℒ2-stable from ỹ(x, !̂) to

e for p ∈ [1,∞] with gain
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s(�) =
Texp(∥A∥(T − 1)�)(exp(∥A∥�)− 1)

∥A∥(2− exp(∥A∥T�))
. (5)

Theorem 4: Consider interconnected NCS Σ and suppose

that

1) the hypothesis of Theorem 3 hold with ỹ = G(x) + !;

2) (x1, x2) = f(t, x1, x2, e, !) is ℒ2-stable from (e, !) to

G(x) with gain 
;

3) and MATI satisfies � ∈ (�, �∗), � ∈ (0, �∗), where �∗ =
ln(z)/∥A∥T , A comes from (3), and z solves

z(∥A∥+ 
T )− 
Tz1−1/T − 2∥A∥ = 0. (6)

Then, Σ is ℒ2-stable from ! to (G(x), e) with linear gain.

III. METHODOLOGY

A. Feedback Linearization Method

In this subsection we restate only the most necessary

details of the feedback linearization method needed to un-

derstand the approach presented herein. For a comprehensive

treatment of feedback linearization techniques, refer to [7]

and [19].

Consider a “square” (number of inputs is equal to the

number of outputs, i.e., nu = ny) Multi-Input-Multi-Output

(MIMO) system that is affine in control:

ẋ = f(x) +

nu∑

i=1

gi(x)ui, y = ℎ(x) (7)

where f : D → ℝ
nx , gi : D → ℝ

nx , and ℎ : D → ℝ
ny are

sufficiently smooth on a domain D ∈ ℝ
nx .

Using substitution z = D(x) such that D(x) is a diffeo-

morphism (smooth, invertible and has the smooth inverse)

on a domain D0 ⊂ D, we can write (7) in the normal form

�̇ = f0(�, �), (8a)

�̇ = Ac� +Bc
(x)[u(x)− �(x)], (8b)

y = Cc� (8c)

where � ∈ ℝ
nx−�, � ∈ ℝ

�, (Ac, Bc, Cc) is the Brunovsky

canonical form of a chain of � integrators, � is the relative

degree of (7), and z = (�, �). The Brunovsky canonical

form is both controllable and observable. Next, by choosing

the control law u(x) = �(x) + 
−1(x)v, we linearize (8b)

with v as the auxiliary control input, while (8a) is made

unobservable. Hence, the linearized part of the system (7)

becomes

�̇ = Ac� +Bcv, y = Cc�. (9)

While analyzing stability of a feedback linearized system,

internal dynamics (8a) play an important role and have to be

treated carefully.

In order for the feedback linearization to succeed, state

x has to be known with great accuracy so that the corre-

sponding terms cancel out. Due to the inevitable existence

of intermittent knowledge of the state x, the cancellation

might not occur in real-life applications. As a result, the

linearization process might not yield the expected behavior,

and the closed-loop system can become unstable.

Fig. 1. A diagram of a control system from NCS perspective.

B. Networked Controlled Systems Modeling

Let us introduce communication networks between the

controller and plant, and model nonlinear control system

(8) as an NCS. The communication networks considered in

this paper introduce intermittent knowledge of signals being

exchanged between the controller and plant, but do not distort

the signals (i.e., measurement noise is not considered).

The effect of the communication networks is comprised

in the information error vector e defined as

e(t) :=

[
�̂(t)− �(t)
û(t)− u(t)

]

=

[
e�
eu

]

(10)

where �̂ (û) is an estimate of � (u) performed from the

perspective of the controller (plant). In scenarios where

no estimation is performed, �̂ (û) is the most recently

transmitted measurement (control signal). An illustration of

the obtained NCS is provided in Figure 1.

The measurement model considered herein is

� = H(z) = (H1(�), H2(�)) (11)

where H : D(D) → ℝ
n� has the following property that

allows us to analyze internal dynamics within the same

framework:

Assumption 1: State x can be reconstructed from � (and

possibly u) using H , and H is continuously differentiable.

Remark 1: Since x = D−1(z) = D−1(H−1(�)), we

require that H is invertible on the set D(D). Recall that

D is invertible being a diffeomorphism. Continuous differ-

entiability is required in (14).

Remark 2: The conclusion of the previous remark can be

loosen under the following conditions. In scenarios where

û = u or an estimator collocated with the controller can

access û, one can take H1(�) = Cc� and perform estimation

of � using Kalman filtering under intermittent observation

[20] for the linear part of the system. In scenarios including

AVs where û is not accessible to the estimator collocated

with the controller, the estimation methodology presented in

[13] can be used. Obviously, H2 has to be invertible in all

scenarios.

Assuming no estimation is performed ( ˙̂� = ˙̂u = 0), we

have everything to rewrite the closed loop system as a system

with jumps that is more amenable for analysis:

ż = fbig(z, e), ∀t ∈ [ti, ti+1] (12a)

ė = gbig(z, e), ∀t ∈ [ti, ti+1] (12b)

e(t+i ) = e(ti) ∗ℰ Δ(ti), (12c)

where Δ(ti) is a ne× 1 matrix of zeros and ones such that

Δj(ti) =

{

0, jtℎ component of e is refreshed at ti

1, jtℎ component of e is not refreshed at ti,

and fbig(z, e) and gbig(z, e) are given with (13) and (14),

respectively. After a novel signal value is received, �̂ and
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fbig(z, e) =

[
Ac� +Bc
(D

−1(z))[u(D−1(H−1(H(z) + e�))) + eu − �(D−1(z))]
f0(z)

]

, (13)

gbig(z, e) = −H ′(z)fbig(z, e) (14)

û experience jumps as indicated in (12c). For more details

regarding the above step, refer to [4].

Having fbig and gbig , we are ready to utilize the results of

Subsection II-B. Theorem 3 is applied to gbig , while Theorem

4 is applied to both fbig and gbig . In order to further specify

stability, we apply Theorems 1 and 2.

Although the aforementioned theorems give conditions of

existence and sufficient conditions for achieving different

types of stability (as the majority of results in nonlinear

control), the actual implementation presents a significant

challenge. For example, upper bounding a nonlinear vector-

valued function with a function of a certain form (in Theorem

3), turns out to be quite a difficult task. The tighter the

upper bound is, the less conservative and more useful results

become. Another difficult problem is to estimate the ℒ2-

gain (or H∞ norm) of nonlinear systems (Theorem 4). This

problem is reportedly very hard to solve ( [21], [22], [4]).

While solving the problem, we use the algorithm of [21]

with initial points being signals characteristic to the protocol

used in our setup. A comprehensive discussion about ℒ2-

gain techniques in nonlinear settings can be found in [23]

and [24].

In what follows, we present a complete approach to find

MATIs for the target-pursuit controller designed via the

input-output feedback linearization method. In other words,

we provide all steps needed to successfully solve any similar

problem, and fill in gaps between the theory presented in [4]

and its actual implementation in nonlinear settings. More-

over, all the steps are exemplified with the above controller.

IV. TARGET-PURSUIT EXAMPLE

The AVs in this work are modeled as velocity-controlled

unicycles. Hence, the kinematics of the itℎ robot are given

with

ẋi = vi cos �i, ẏi = vi sin �i, �̇i = !i (15)

where (xi, yi, �i) ∈ SE(2), and vi and !i are the linear and

angular velocity, respectively. Since we consider a target-

pursuit problem, we have i ∈ {1, 2}.

The nonlinear control system is given with:

�̇ = !1 − !2, �̇ = G(�, �)u+Υ(�)! (16)

where � = (l12,  12) is the system output, � = �1−�2 is the

relative orientation, ! = (v1, !1) is the input (or disturbance)

to the system, u = (v2, !2) is the control input to the system,

and G(�, �) and Υ(�) are the following matrices

G(�, �) =
[

cos 
12 d sin 
12
− sin 
12
l12

d cos 
12
l12

]

,Υ(�) =
[
− cos 12 0

sin 12
l12

−1

]

where 
12 = �12 +  12, and d is the offset to an off-axis

reference point on the pursuer.

Notice that (16) already has the form of (8); therefore,

D(x) = x. Assuming that we know !, we can cancel the

term including ! using the following control input

u(�, �) = G(�, �)−1[v(�)−Υ(�)!], (17)

where v is an auxiliary control input given by

v(�) =

[
k1(l

d
12 − l12)

k2( 
d
12 −  12)

]

= k(�d − �).

Positive real constants k1 and k2 are user defined controller

gains, and k = [k1 k2]. A desired separation between

robots is ld12 while a desired relative bearing is  d12. Finally,

the closed-loop linearized system is simply given by

�̇ = !1 − !2, �̇ = v(�) = k(�d − �). (18)

The equilibrium point of the closed-loop system is zeq =
(ld12,  

d
12, 0). In order to proceed further, we have to place

the equilibrium at the origin. Therefore, we introduce sub-

stitution znew = z − zeq . For brevity, z is used instead of

znew in the rest of the paper unless specified otherwise, and

the state z before the above substitution is denoted zold.

Consequently, the components of z are [l12  12 �] instead

of (lnew12 ,  new12 , �new), and 
12 is used instead of 
new12 .

When dealing with AVs, the communication network for

transmitting control input u can be neglected due to on-board

controllers. Therefore, we have e = �̂ − � = (e1, e2, e3).
Furthermore, for the sake of simplicity, we choose

� = H(z) = z. (19)

It is implicitly assumed that we deal with an adversarial

target. In adversarial scenarios, v1 and !1 can be estimated

using the scheme presented in [14] or [13]. In the case of a

cooperative scenario, ! is communicated to the pursuer at the

same time instances when the measurements are obtained.

These information are denoted !̂.

Having said that, we proceed as follows

ė = −ż =−Gext(z)G
−1(z + e)[v(z + e)−

Υ(z + e)!̂]−Υext(z)! (20)

where

Gext(z) =

[
cos(
12+ 

d
12) d sin(
12+ 

d
12)

− sin(
12+ d12)

l12+ld12

− cos(
12+ d12)

l12+ld12
0 −1

]

and

Υext(z) =

[
− cos( 12+ 

d
12) 0

sin( 12+ d12)

l12+ld12

−1

0 1

]

are extended matrices of the system (16). After some calcu-

lation we obtain equation (21).

Let us proceed further by putting constraints on values

of l12 + ld12 and  12 that stem from physical properties of

AVs in our control problem. Since the AVs are not points

in ℝ
2, we put min{l12 + ld12} = m > 0. In addition, we

constrain max{∣ 12∣} = M > 0 as a characteristic of the

given problem. In order to make the further calculations

tractable and easier to follow, we assume that input ! is

(approximately) constant between two measurements, i.e.,

!̂ = !. This is not a restrictive assumption since the worst-

case scenario, based on finite maximal absolute accelerations

av,max and a!,max of the target, can easily be implemented.
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gbig(z, e) =

⎡

⎣

k1l12 cos e2+k2(l12+e1+l
d
12) 12 sin e2

1

l12+ld12

[k1l12 sin e2+k2(l12+e1+l
d
12) 12 cos e2]

−k1l12 sin(
12+e2+ d12)

d
−
k2(l12+e1+ld12) 12

d
cos(
12+e2+ 

d
12)

⎤

⎦+

+

⎡

⎢
⎣

− cos( 12+2e2+ 
d
12) −(l12+e1+l

d
12) sin e2

1

l12+ld12

sin( 12+ 
d
12) −

l12+e1+ld12
l12+ld12

cos e2

1
d
sin(�1−�2)

l12+e1+ld12
d

cos(
12+e2+ 
d
12)

⎤

⎥
⎦

[
v̂1
!̂1

]

+

[
cos( 12+ 

d
12) 0

− sin( 12+ d12)

l12+ld12

1

0 −1

] [
v1
w1

]

(21)

For example, the pursuer can use the following sampling

period

Ts = inf
v1∈[v̂1−�(!̂)av,max,v̂1+�(!̂)av,max]

!1∈[!̂1−�(!̂)a!,max,!̂1+�(!̂)a!,max]

�(v1, !1).

From (21) and taking m ≤ 1, we are now are now able to

write (22) and (23). The case with m > 1 is very similar;

therefore, not included. Positive real constants �1 and �2 in

(22) are chosen to minimize ∥A∥ such that A ∈ A+
n provided

!̂1. Notice that all the conditions of Theorem 3 are satisfied.

In order to obtain stability results regarding the closed-

loop NCS in Figure 1, according to Theorem 4, we have

to find ℒ2-gain 
 from (e, !̂) to ỹ(z, !). Using (20), (23)

and the approach of [21], we are able to estimate the

corresponding gain 
 for every MATI � (i.e., over a finite

horizon). Basically, we are solving the following maximiza-

tion problem

[
(�, !̂)]2 = sup
e∈ℒ2[0,� ]

{ ∫

[0,� ]
∥ỹ∥2dt

∫

[0,� ]
∥(e, !̂)∥2dt

}

(24)

with zero initial conditions. A good initial guess for compo-

nents of the input e are segments of lines going through the

origin since we use the protocol in which the components

of input e are equal to zero after obtaining measurements

(illustrated in Figure 5(c)). We choose such MATIs that result

in the ℒ2-stable closed-loop system from ! to (e, ỹ(z, !̂))
according to the small-gain theorem, i.e., 
s(�)
(�, !̂) < 1.

Notice that expression (6) cannot be used since 
 is not

constant any more.

A. Stability of the Pursuit Policy

The stability analysis for the pursuit policy is comprised

in the following theorem.

Theorem 5: Consider the target-pursuit problem given

with (16), control law (17), and measurement model (19).

If MATIs � are obtained with the previously presented

methodology, then the pursuit policy is:

i) stable for the case v1 = !1 = 0 with exponential

convergence to a point dependent on the initial condition,

ii) UGES for the case v1 ∕= 0 and !1 = 0, and

iii) stable for the case v1 ∕= 0 and !1 ∕= 0.

Proof: Due to the space limitation, and long and

cumbersome expressions involved in this proof, we provide

only an outline of the proof.

By checking whether (20), (21) and the corresponding

jump equations satisfy the conditions of Theorems 1 and

2, we are able to further specify ℒ2-stability obtained for an

adequate MATI � . The communication protocol considered

herein results in the following jump equations:

z(t+i ) = z(ti), e(t+i ) = 0.

By choosing L3 = 1 and L4 > 0, conditions (1) and (2) of

Theorem 2 are satisfied.

i) In the case of v1 = !1 = 0, the conditions of the

aforementioned theorems are satisfied, but 
(�) ≡ 0 as

illustrated in Figure 2. Therefore, we have a stable system

that exponentially converges to ld12 and  d12 provided a non-

zero initial condition, but relative orientation �12 converges

to a finite value dependent on the initial condition.

ii) If we consider a constant linear velocity v1 ∕= 0 with

!1 = 0, the conditions of Theorems 1 and 2 are satisfied

as well; therefore, the pursuit policy is UGES (as long as

�12 ∕= � as stated in [14]).

iii) In the case of !1 ∕= 0, the theorems are no longer

satisfied due to the second and third row in (21). Stability

of the pursuit policy follows from ! = !̂ and ℒ2-stability of

the closed-loop system.

The second and third case are illustrated in Figure 5(a).

Remark 3: The small-gain theorem ensures boundedness

of �12 in all the above cases. Hence, the internal dynamics

are analyzed within the same framework, and not as a

separate problem as in [14]. This integrated stability analysis

makes the presented approach really appealing.

Remark 4: Apparently, we have reached the same stability

results as in [14], but under intermittent information.

V. SIMULATIONS AND NUMERICAL RESULTS

In order to provide a better analysis, the control error

ec = z − zd is introduced. Since we do not consider bus

communication, we set T = 1. The parameters of the

target-pursuit system are chosen as follows: d = 0.25 m,

m = 0.8 m, ld12 = 3 m,  d12 = 13�
18 rad, k1 = 1,

k2 = 0.01, and M = max{∣2� −  d12∣, ∣ −  d12∣} rad. The

“physical” parameters d, m, and M are chosen based on the

characteristics of our testbed [25], while the controller gains

represent a trade-off between the dynamics of ec and e. Note

that the greater k1 and k2 become, the faster ec converges

in the ideal case (without intermittent information). It is

straightforward to conclude that such an increase causes e to

grow faster leading to an increase in 
s(�, !̂), i.e., a decrease

in MATI � . Hence, conclusions made about parameters of

“continuous” controllers have to be carefully transferred to

settings including communication networks.

Graphs of gains 
s(�) and 
(�, !̂) are provided in Figure

2 for different !̂. For !1 = 0.15 rad/s, values �1 = 0.76 and

�2 = 0.01 minimize ∥A∥ in (22), and that case is provided in

Figure 2. Having 
(�) and 
s(�, !̂), we are able to calculate

� for different ! (Figure 3).

Next, we compare MATIs obtained via the presented

methodology with “real” MATIs obtained via simulation

(Table I). The calculated MATIs are about two or three
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times smaller than the “real” ones. This observation is highly

comparable with the linear scenarios from [4] since MATIs

from [4] are 1.6 to 15 times smaller than the “real” ones.

In the scenario included in this paper, the target performs

maneuvers with v1 = 0.6 m/s and !1 ∈ {0,±0.15} rad/s.

During the simulation, MATI � adaptively switches between

0.48 s and 0.16 s depending on input !, and ld12 and  d12 are

changed by a user as indicated in Figure 5(a). Corresponding

characteristic signals are provided in Figures 4 and 5, and

the results of Theorem 5 are verified. Hence, no matter what

maneuver the target performs, it will be captured for ld12 = 0.

TABLE I

CALCULATION-BASED AND SIMULATION-BASED MATIS FOR

DIFFERENT INPUTS !̂.

�cal[s] �sim[s] �sim/�cal
v̂1 = 0; !̂1 = 0 �∗ = 0.64 1.32 2.1
v̂1 = 0.6; !̂1 = 0 0.48 0.68 1.42

v̂1 = 0.6; !̂1 = −0.15 0.16 0.47 2.94
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Fig. 4. Trajectories of the target and pursuer using the adaptive sampling
represented by the red and blue dashed lines, respectively. Red triangles
represent the target in different time instants, while blue triangles represent
the pursuer in different time instants. Green crosses represent initial
positions of the agents. Black dashed lines connect positions of the target
and pursuer at the corresponding time instants.

VI. CONCLUSION AND FUTURE WORK

Motivated by the limited processing, sensing and commu-

nication capabilities of the agents in mobile agent networks,

we analyze stability of agents’ control policies provided

with intermittent information about the environment. A com-

plete methodology for analyzing robustness of nonlinear

controllers under intermittent information is provided. First,

one designs a nonlinear control system without taking into

account the presence of limited information. Second, the

system is modeled as an NCS and an information error vector

is introduced. Afterwards, utilizing the small-gain theorem,
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zold is provided; (b) Control error ec of the target-pursuit system using the adaptive sampling; and, (c) An illustrative detail of information error e of the
target-pursuit system at the beginning of the simulation.

MATIs leading to closed-loop stability under intermittent

information are obtained. Specifically, a target-pursuit con-

troller is investigated, and MATIs resulting in different types

of stability for the pursuit policy are obtained. The obtained

MATIs depend on the target’s linear and angular velocity.

Finally, a stability analysis of the pursuit policy is provided

and illustrated using numerical simulations. The experimen-

tal verification of the obtained MATIs has already been

conducted, and will be included in upcoming publications.
In the future, we plan to apply the presented methodology

to controllers designed via other nonlinear methods. In addi-

tion, saturation of actuators (i.e., bounded inputs of pursuers)

should also be taken into account. Although preliminary

simulations suggest that MATIs increase in that case, a more

detailed analysis is needed. Another interesting extension of

this work is to consider measurement noise and estimation.

Estimation and noise call for a stochastic approach. A

number of stochastic approaches are investigated in the area

of NCSs. However, this area is still under investigation and

is part of our future research agenda.
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to tracking maneuvering targets using a heterogeneous mobile sensor
network,” in Proc. of the IEEE Conf. on Decision and Control,
Shanghai, China, December 2009, pp. 1080 – 1087.
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